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Abstract
The lattice kinetic scheme (LKS) for a binary miscible fluid mixture was applied to the
simulation of the mass transfer of calcium in concrete. Cement paste, a major compo-
nent of concrete, is a porous medium with a complicated three-dimensional geometry.
The structure of the model concrete was selected on the basis of experimental data ob-
tained by high-intensity X-ray computed tomography. The LKS, an improved version
of the original lattice Boltzmann method, was used to save computational memory and
to maintain numerical stability. First, an unsteady convection–diffusion problem was
examined, and the accuracy of the method and the error norms with various lattice
resolutions were investigated. Next, the problem of the calcium current in concrete
was simulated. Pressure drops in the concrete were calculated for various Reynolds
numbers, and the results were compared with those of an empirical equation based on
experimental data. Also, velocity fields and concentration profiles were obtained at a
pore scale for a structure with inhomogeneous mass diffusivities. These simulations
showed that the present method might be useful for predicting calcium leaching in
concrete from the microscopic point of view.
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1. Introduction

Concrete is widely used as a fundamental material in construction, and consists of 5–25
mm-sized coarse aggregate (crushed stone), less than 5 mm-sized fine aggregate (sand), and
cement paste (cement kneaded with water). The mixture of the fine aggregate and the cement
paste is called mortar. Mortar has a porous network structure in which the scale of the pores
varies between several nanometers and several micrometers.(1) Because the quality of concrete
in prolonged contact with liquids such as seawater or groundwater frequently deteriorates, it
is necessary to make precise predictions and estimations of the degree of degradation. The
problem is associated with leaching of calcium from the constituent material of concrete. In
addition, recent studies(2), (3) have shown that the constituent material of concrete is changed by
chemical reactions with ions that penetrate into the material from its surroundings. However,
the mechanisms underlying these phenomena remain unclear.

Recently, Saito et al.(4) experimentally studied the transport of calcium in concrete by
means of the electrochemical acceleration tests. They also carried out a one-dimensional
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mass-transfer simulation by means of a volume-averaged approach, and they verified the ap-
propriateness of the calculated mass diffusivity by comparison with the experimental results.
However, it is difficult to perform experimental investigations because of the complexity of
the pore structures. Therefore, numerical simulations based on microscopic approaches could
be used to investigate transport phenomena of calcium in concrete.

With regard to numerical methods, when conventional Navier–Stokes codes are applied
to flows in porous media, we often have trouble with long computational times, poor conver-
gence, and numerical instabilities. Hence, it was desired to develop a new numerical scheme.
Since the early 1990s, the lattice Boltzmann method (LBM)(5), (6) has been developed as an al-
ternative and promising numerical scheme for simulating flows of viscous, multicomponent,
and multiphase fluids. The advantages of the LBM over standard Navier–Stokes codes are
the simplicity of the algorithm in complex systems and the accuracy of the mass and momen-
tum conservations. There have been many studies on transport phenomena in porous media
by the LBM. For example, Inamuro et al.(7) and Yoshino and Inamuro(8) investigated viscous
flows and binary mass transfer in a porous structure composed of identical spherical bodies
for wide range of Reynolds numbers. They also demonstrated the validity and effectiveness of
the LBM in such flow problems. Okabe and Blunt(9) performed simulation of flows through
porous media reconstructed by using multiple-point statistics(10) for the prediction of the ap-
propriate permeability. Li et al.(11) tackled two-phase fluid flows in three-dimensional porous
media to investigate the viscous coupling effect(12) that is characteristic of immiscible two-
phase flow. More recently, Seta et al.(13) simulated natural convection in porous media, and
they demonstrated the superiority of the LBM to conventional schemes such as the finite-
difference method. Yamamoto et al.(14) simulated the accumulation of soot in porous media to
examine particle trapping in a diesel particulate filter (a porous medium with a porosity that
ranges from about 0.7 to 0.9). Thus, the LBM is expected to be a powerful numerical scheme
for simulating mass transfer of calcium in concrete.

To simulate microscopic transport phenomena in concrete, it is essential to obtain in-
formation about the pore structure of the material. Landis et al.(15) and Turner et al.(16) have
measured actual pore structures by means of X-ray computed tomography (X-ray CT) and
micro-CT. Hitomi et al.(17) also conducted nondestructive inspections of pore structures in
concrete by means of high-intensity X-ray CT at the Super Photon ring-8 (SPring-8)(18) to
extract three-dimensional images of the pores from a sectional view. By making use of the
images obtained by these advanced metrologies, we can achieve a clear understanding of mi-
croscopic transport phenomena in concrete.

Our aims here are to simulate transport phenomena of calcium in a concrete structure
modeled from real images reconstructed by means of X-ray CT and to develop a systematic
method for predicting the degradation of concrete as a result of leaching. In particular, we
examine how the transfer of calcium is affected by the complicated geometries and convective
flows. As a numerical method, the lattice kinetic scheme(19) for a binary miscible fluid mix-
ture is used to save computational memory and to maintain numerical stability at high Pèclet
numbers.

2. Numerical Method

As described previously,(20) we use nondimensional variables defined by using a charac-
teristic length L, a characteristic particle speed c, a characteristic time scale t0 = L/U (where
U is a characteristic flow speed), a reference density ρ0, and a reference mass concentration
C0. We consider a binary miscible fluid mixture composed of water as an incompressible fluid
and calcium as a diffuse component. Here, we assume that the mass fraction of calcium is
much smaller than that of the fluid; it follows that the concentration of calcium can be re-
garded as a passive scalar. Moreover, although the calcium exists in the form of ions in the
fluid, the electric effect can be neglected because there is no external electric potential.

In the LBM for a binary miscible fluid mixture,(20) two particle velocity distribution

14



Journal of Fluid
Science and Technology

Vol.4, No.1, 2009

functions, fi and gi, are used, where i = 1, 2, 3, . . . ,N, where N is the number of particle
velocities. The function fi is used to calculate the fluid density ρ and the fluid velocity u;
the function gi is then used to calculate the calcium concentration C. The 15-velocity model
(N = 15) is used, the velocity vectors of which are given by the following equation:

[c1, c2, c3, c4, c5, c6, c7, c8, c9, c10, c11, c12, c13, c14, c15]

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
0 1 0 −1 0 0 0 1 −1 −1 1 1 −1 −1 1
0 0 1 0 −1 0 0 1 1 −1 −1 1 1 −1 −1
0 0 0 0 0 1 −1 1 1 1 1 −1 −1 −1 −1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦ . (1)

In the LKS, the fluid density ρ, the fluid velocity u, and the calcium mass concentration C at
a point x and at time t are defined by the following equations:

ρ(x, t) =
15∑
i=1

f eq
i (x − ciΔx, t − Δt), (2)

u(x, t) =
1

ρ(x, t)

15∑
i=1

ci f eq
i (x − ciΔx, t − Δt), (3)

C(x, t) =
15∑
i=1
gi(x − ciΔx, t − Δt), (4)

where

f eq
i = Eiρ

[
1 + 3ciαuα +

9
2

ciαciβuαuβ − 3
2

uαuα + AΔx

(
∂uβ
∂xα
+
∂uα
∂xβ

)
ciαciβ

]
, (5)

g
eq
i = EiC (1 + 3ciαuα) + EiBΔx ciα

∂C
∂xα

, (6)

and

E1 = 2/9,

E2 = E3 = E4 = · · · = E7 = 1/9,

E8 = E9 = E10 = · · · = E15 = 1/72.

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(7)

In the above equations, α, β = x, y, z (subscripts α and β represent Cartesian coordinates;
the summation convention is used henceforth), Δx is a spacing of the cubic lattice, Δt is a
time step, and A and B, which are both of O(1), are parameters given below that determine the
kinematic viscosity and the mass diffusivity, respectively. Note that the time step Δt is chosen
as a time during which the particles travel the lattice spacing; it follows that Δt = ShΔx
where Sh = U/c is the Strouhal number. It has been reported by Inamuro(19) that the LKS is
helpful in saving computational memory because there is no need to store the particle velocity
distribution functions.

The pressure p is related to the density ρ by the following equation:

p =
1
3
ρ. (8)

The kinematic viscosity ν of the fluid and the mass diffusivity D of the calcium in the binary
fluid mixture are related to A, B, and Δx as follows:

ν =

(
1
6
− 2

9
A

)
Δx, (9)

D =

(
1
6
− 1

3
B

)
Δx. (10)

The following finite-difference approximation is used to calculate the first derivative of a scalar
variable ψ in Eqs. (5) and (6):

∂ψ

∂xα
≈ 1

10Δx

15∑
i=2

ciαψ(x + ciΔx). (11)
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By applying the asymptotic theory(21), (22) to Eqs. (2)–(6) with appropriate initial and bound-
ary conditions, we find that the velocity for incompressible fluid, the pressure, and the mass
concentration of calcium can be calculated with relative errors of O[(Δx)2].(19) In addition, the
mass flux of calcium with respect to the mass-average velocity, jC, is given by the following
equation:(8), (23)

jC = C(uC − u), (12)

where uC is defined as

uC =
1
C

15∑
i=1
gici. (13)

3. The Accuracy of the LKS for a Binary Miscible Fluid Mixture

The validity of the numerical method has already been demonstrated for a steady prob-
lem of natural convection in a square cavity.(19) Here, a one-dimensional unsteady convection–
diffusion problem is calculated to evaluate the accuracy of the method. A rectangular domain
of Ly = Lz = 0.1Lx is considered, and a fluid flows with a uniform speed U in the x-direction.
A diffuse component is injected from the inlet at time t = 0, and the evolution of the con-
centration is calculated in the domain. At the initial state, a constant concentration C = CI

in the whole domain is assumed. The boundary conditions are C = Cin at the inlet (x = 0)
and ∂C/∂x = 0 at the outlet (x = Lx). In the calculation, the concentration at the outlet is
given by using the second-order one-sided difference approximation so that the concentration
gradient in the x-direction can be equal to zero. Also, at y = 0, y = Ly, z = 0, and z = Lz,
the periodic boundary condition is used for the fluid velocity, and the normal mass flux of the
diffuse component is assumed to be free.

The normalized concentration is defined by the following equation:

Π =
C −CI

Cin − CI
. (14)

The governing equation and the initial and boundary conditions are then given as follows:

Sh
∂Π

∂t
+ U

∂Π

∂x
= D

∂2Π

∂x2
, (15)

t = 0, 0 ≤ x ≤ Lx : Π = 0 ;

t > 0, x = 0 : Π = 1 ;

t > 0, x = Lx : ∂Π/∂x = 0 ,

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
(16)

where Sh is the Strouhal number given in Section 2. If Lx is taken as∞, the exact solution Π∗

of this problem is given by the following equation:(24)

Π∗ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2

[
1 + erf

(
Ut/Sh − x√

4Dt/Sh

)]
+

1
2

exp
(Ux

D

) [
1 − erf

(
Ut/Sh + x√

4Dt/Sh

)]

(for x < Ut/Sh)

1
2

[
1 − erf

(
x − Ut/Sh√

4Dt/Sh

)]
+

1
2

exp
(Ux

D

) [
1 − erf

(
Ut/Sh + x√

4Dt/Sh

)]
,

(for x ≥ Ut/Sh)

(17)

where erf (x) is the error function given by

erf (x) =
2√
π

∫ x

0
e−ξ

2
dξ. (18)
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Fig. 1 Normalized concentration profiles in unsteady convection–diffusion problem at
various dimensionless times with Δx = 1/200: (a) ◦, t∗ = 0.1; (b) �, t∗ = 0.2;
(c) ×, t∗ = 0.4 (t∗ = tU/Lx). The solid lines represent the exact solution.

Fig. 2 Error norms of unsteady convection–diffusion problem. The symbols • and �
indicate respective Er1 and Er2 norms for the present calculation; the symbols
◦ and � represent the corresponding results for original LBM.

The calculations are conducted by setting Lx to a large value to permit a comparison of the
results with the exact solution. The parameters are Lx = 200Δx, B = 0.35, U = 0.01, CI = 1,
and Cin = 5. The Pèclet number is then Pe = ULx/D = 40.

First, the concentration profiles at various dimensionless times are shown in Fig. 1. Here
the dimensionless time t∗ is defined as t∗ = tU/Lx. The solid lines represent the exact solution
obtained from Eq. (17). The calculated results agree well with the exact solution at each
time. Next, to determine the convergence rate, the simulation is performed with various lattice
resolutions, Lx=50Δx, 100Δx, and 200Δx. The fluid velocity U is changed so that the Pèclet
number can be kept constant. Figure 2 shows the error norms Er1 =

∑
x |Π − Π∗| /∑

x |Π∗| and
Er2 =

√∑
x(Π − Π∗)2/

√∑
x(Π∗)2 at t∗ = 0.2. The sums are taken over the same 51 nodes in the

x-direction regardless of the lattice resolution. The slopes of the convergence are m1 = 1.9823
and m2 = 1.9587 for Er1 and Er2, respectively. Hence, the present method is almost a second-
order scheme. According to preliminary calculations, the corresponding slopes in the case of
the original LBM for a binary miscible fluid mixture are m′1 = 1.9905 and m′2 = 1.9970. Also,
the errors in the present method are about ten times larger than those in the original LBM,
as shown in Fig. 2. The main reason is the discretization error in the LKS. Unlike the case
of the original LBM, it is necessary that the first derivatives in Eqs. (5) and (6) of the LKS
should be discretized by using a certain approximation, although in this problem only ∂C/∂x
is considered because U is constant and a concentration gradient is present in the x-direction
only. Therefore, a higher-order difference approximation other than Eq. (11) should be used
to obtain more-accurate results with a fixed lattice resolution.
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Fig. 3 Three-dimensional concrete structure reconstructed by using data obtained
from high-intensity X-ray CT.(17) The degraded and nondegraded regions are
represented by the pore phase and the solid phase, respectively.

Fig. 4 Porosity distribution on the cross-sections perpendicular to the main stream.
0.029 ≤ x/Lx ≤ 0.97 is a porous section.

4. Mass Transfer of Calcium in Concrete

4.1. The Modeled Concrete Structure
We use a modeled concrete structure reconstructed by using data obtained from high-

intensity X-ray CT,(17) as shown in Fig. 3. The microstructure of concrete is composed of
a porous part, from which cement hydrate leaches out in the form of an ion, and an un-
changed part, where little cement hydrate is degraded. Hereafter, the former is referred to
as the degraded region and the latter as the nondegraded region. In Fig. 3, the degraded and
nondegraded regions are represented by the pore phase and the solid phase, respectively. The
three-dimensional distribution of pores larger than 1μm is obtained by binary processing of
images of mortar photographed by high-intensity X-ray CT. By applying these results, we
determined the difference between the degraded and nondegraded regions [see Ref. (17) for
further details]. Also, the porosity distribution on the cross-sections perpendicular to the main
stream is shown in Fig. 4. In the computational domain, 0.029 ≤ x/Lx ≤ 0.97 is a porous sec-
tion representing the concrete model, and the other section is a fully open space. The porosity
of the porous section is ε = 0.609.

Although several-nanometer-sized pores are present in the nondegraded region, water
seldom passes through these pores because of the high resistance to fluid flow. The transfer
rate of calcium in the degraded region is considered to be larger than that in the nondegraded
region where many pores are distributed. According to experimental studies,(4), (25) the ap-
parent mass diffusivity in the degraded region is more than ten times that in the nondegraded
region, although the difference depends on the size and tortuosity of the pores. Hence, on
the basis of these experimental data, the mass diffusivities in the degraded and nondegraded
regions are set to different values in the following calculations.
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(a)

(b)

(c)

Fig. 5 Velocity vectors at t∗ = 4.23 for Re = 0.977: (a) z/Lz = 0.50; (b) y/Ly = 0.50;
(c) x/Lx = 0.50. t∗= tu0/d and Re = u0d/ν, where u0 is the superficial velocity.

4.2. Computational Conditions
The whole domain is divided into a 138 × 130 × 130 cubic lattice. In the initial state,

ρ = 1, u = 0, and CI = 1 are assumed in the domain. The boundary conditions are as follows.
At the inlet and outlet, the periodic boundary condition with a pressure difference is used for
the fluid. The concentrations of calcium are set to Cin = 5 at the inlet and ∂C/∂x = 0 at the
outlet. As in the previous problem, the concentration at the outlet is given by using the second-
order one-sided difference approximation so that the concentration gradient in the x-direction
can be equal to zero. On the sides of the domain, the no-slip boundary condition is used for the
fluid velocity, and the normal mass flux of calcium is fixed at zero. Moreover, at the boundary
between the degraded and nondegraded regions, the no-slip boundary condition is used for the
fluid velocity. As mentioned above, the fluid velocity in the nondegraded regions is assumed
to be zero. The kinematic viscosity of the fluid is ν = 0.05Δx, and the mass diffusivities of
calcium are D1 = 0.1Δx and D0 = 2.86 × 10−3Δx in the degraded and nondegraded regions,
respectively. Note that the ratio of these mass diffusivities, r (= D1/D0), is set to 35 with
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Fig. 6 Pressure drops against modified Reynolds numbers in the concrete structure
with a porosity ε = 0.609: •, the present results; —, the Ergun equation, where
ρ̄ is the time- and space-averaged fluid density at the inlet.

(a) t∗=1.06 (b) t∗=2.12

(c) t∗=4.23 (d) t∗=10.6

(e) t∗=19.0 (f) t∗=21.2

Fig. 7 Temporal variation in concentration contours of calcium on z/Lz = 0.50 for
Pe = 0.489 and r = 35 (t∗ = tu0/d, Pe = u0d/D1, r = D1/D0). The contour
interval is 0.08.
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(a) t∗=1.06 (b) t∗=2.12

(c) t∗=4.23 (d) t∗=10.6

(e) t∗=19.0 (f) t∗=21.2

Fig. 8 Temporal variation in concentration contours of calcium on x/Lx = 0.50 for
Pe = 0.489 and r = 35 (t∗ = tu0/d, Pe = u0d/D1, r = D1/D0). The contour
interval is 0.08.

reference to the empirical data in Ref. (25) (i.e., it was reported that the value of r ranges
from 30 to 40 in the case of mortar where the ratios of water to cement and of sand to cement
are 0.4 and 1.5, respectively). In the calculations, the pressure difference Δp between the
inlet and outlet is changed so that the Reynolds number Re = u0d/ν and the Pèclet number
Pe = u0d/D1 become 0.0994 ≤ Re ≤ 7.38 and 0.0497 ≤ Pe ≤ 3.69. Here, d is a characteristic
length representing the concrete structure and u0 is the superficial velocity,(23) which is the
average velocity that the fluid would have in the channel if the solid phase were absent. In this
study, we determine the value of d by comparing the calculated pressure drop with the value
given by the Ergun equation(26) at the lowest Reynolds number (Re = 0.0994), as described in
the next section: the determined value is d = 15.2Δx.

Finally, according to Refs. (4) and (17), the characteristic values of the dimensional vari-
ables are as follows: fluid velocity, ũ ≈ 10−8 m/s; mean pore size, d̃ ≈ 10−5 m; apparent mass
diffusivity of calcium in the degraded region, D̃1 ≈ 10−12 m2/s. The Pèclet number then be-
comes Pe = ũd̃/D̃1 ≈ 10−1. The present simulation therefore corresponds to actual transport
phenomena of calcium in concrete.
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Fig. 9 Temporal variation of normalized concentration of calcium at
(x/Lx, y/Ly, z/Lz) = (0.50, 0.77, 0.50) for different Pèclet numbers:
•, Pe = 0.489; �, Pe = 0.247; �, Pe = 0.0497; ◦, Pe = 0.
Π = (C − CI)/(Cin − CI) and t∗ = tu0/d, where u0 is the superficial
velocity for Pe = 0.489.

4.3. Results and Discussion
Figure 5 shows the calculated velocity vectors on three different planes (z/Lz = 0.50,

y/Ly = 0.50, and x/Lx = 0.50) at Re = 0.977 after transitional flows. In this figure, the
gray and white regions indicate the degraded and nondegraded regions, respectively. It can
be seen from (a) and (b) that the fluid tends to go through open spaces. Also, secondary
flows can be seen in (c), thus the fluid flows three-dimensionally in the complicated geometry.
Figure 6 shows the pressure drops against the modified Reynolds numbers defined as Re′ =
Re/(1 − ε). The present results agree well with those of the Ergun equation,(26) which is
derived empirically on the basis of experimental data.

Figures 7 and 8 show the temporal variations in the concentration of calcium on the planes
z/Lz = 0.50 and x/Lx = 0.50 for Pe = 0.489. Figure 7 shows that the calcium is transferred in
the degraded regions faster than in the nondegraded regions. In Fig. 8, on the plane perpendic-
ular to the main stream, the calculated concentration profiles are distorted in space owing to
the convective effect of the secondary flows. As there is little difference between (e) and (f),
the flow characteristics and concentration profiles reach their steady state at t∗ ≈ 20, where
the dimensionless time is defined as t∗ = tu0/d.

Finally, to estimate the convective effects, the temporal variation of the local concentra-
tion of calcium is investigated for Pe = 0.0497, 0.247, and 0.489. As an example, the results
at a certain position (x/Lx, y/Ly, z/Lz) = (0.50, 0.77, 0.50) are shown in Fig. 9. For compar-
ison, the results for Pe = 0 (without convection) are also plotted in this figure. As the Pèclet
number becomes larger, the transfer rate of calcium increases significantly. In particular, the
slope of the concentration curve at an early stage for Pe = 0.489 is about four times as large as
that for Pe = 0. Moreover, the concentration curve for Pe = 0.489 becomes saturated as early
as t∗ ≈ 20. These results show that convective effects associated with seawater or groundwater
are of considerable importance in simulations of transport phenomena of calcium in concrete.

5. Concluding Remarks

Numerical simulations of mass transfer of calcium in a three-dimensional concrete struc-
ture modeled by high-intensity X-ray CT have been carried out by using the LKS for a binary
miscible fluid mixture. The flow characteristics and concentration profiles at a pore scale were
obtained by using available physical properties.

Owing to the complicated geometry in concrete, the concentration profiles of calcium
were much affected and distorted in three-dimensional space; steep gradients of concentra-
tion were observed around complicated boundaries of the degraded and nondegraded regions.
Also, convective flows had significant influence on mass transfer of calcium for Pe ≈ 0.5,
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which corresponds to a typical case in concrete. With regard to the numerical method, the
present approach was found to be useful for the microscopic investigation of mass-transfer
problems in complicated geometries. When the LBM for a binary miscible fluid mixture was
applied to the same problem, a numerical instability occurred at high Pèclet numbers (re-
sults not shown): a higher lattice resolution would have been needed for stable calculation by
the original LBM. Consequently, the LKS is superior to the LBM for problems of complex
systems such as the one considered here.

Finally, we took no account of leaching of calcium from the constituent materials in the
present simulations. A study leading to the development of a numerical method for simulating
the leaching of calcium from concrete is required in future work.
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