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Abstract. A lattice Boltzmann method (LBM) for two-phase flows containing
solid bodies with viscoelastic membranes is proposed. The method is based on
the two-phase LBM, in which one phase is regarded as the solid phase. In the
present model, the membrane is assumed to be composed of identical particles
that are connected to their neighboring particles by elastic springs to take account
of stretching and compression effects. The method is applied to two representative
problems, namely the behavior of a viscoelastic body under shear flow and the
motion of a viscoelastic body in a Poiseuille flow. Tank-tread motion and axial
migration, which are both characteristic of the motion of viscoelastic bodies, are
simulated by using the method. These results indicate that the method is capable
of simulating the complex behavior of viscoelastic bodies in capillaries, such as
the motion of red blood cells in blood flows.

1 Introduction

Problems of solid–fluid two-phase flow can be found not only in engineering applications,
such as solid–liquid slurry flow, but also in biological fields connected with blood flow in cap-
illaries. If the latter problem is taken as an example, the interaction between red blood cells
(RBCs) and blood plasma becomes important in small blood vessels where the cellular size is
comparable to the vessel diameter. A normal RBC has a biconcave shape that is easily deformed
into ellipsoidal shape under uniform shear stress. The deformability of the RBC is related to the
erythrocyte configuration, the viscosity of the internal fluid, and the viscoelasticity of the mem-
brane [1,2]. In particular, the elastic behavior of the RBC is determined by the nature of the
elastic membrane. Although investigations of the complicated behavior of the RBC are needed,
it is difficult to examine the phenomena that are involved, particularly in microscale vessels, by
means of experiments. Therefore, numerical simulation is considered to be an effective approach
for microscopic investigation of such flow problems.

With regard to numerical studies of solid–fluid two-phase flows, Boryczko et al. [3] and
Dzwinel et al. [4] have proposed discrete particle models for simulation of RBCs in capillary
vessels by the Lagrangian coordinates technique. Tanaka and Takano [5] used smoothed particle
hydrodynamics [6,7] to investigate the microscopic behavior of blood flow. Tsubota et al. [8] also
carried out a simulation based on the particle method [9] to examine a peculiar rotary motion
(i.e., tank-tread motion [10,11]). Although these studies have produced interesting results,
because of the complexity of the algorithms employed for the solid–fluid coupling problems,
elaborate computing code is required and computation times are rather long.
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Fig. 1. Membrane model.
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Fig. 2. Spring system with material points
P�−1, P�, and P�+1. K is an elastic modulus and
d� is a length of the elastic spring between P� and
P�−1.

Recently, the lattice Boltzmann method (LBM) [12–14] has been developed into an alterna-
tive and promising numerical scheme for simulating flows of viscous fluids and multicomponent
or multiphase fluids. In particular, for solid–fluid two-phase flows, Ladd [15–17] was the first to
simulate solid–fluid suspensions of spheres in shear flows. Aidun and Lu [18] and Qi [19,20] also
performed similar simulations for cylinders and for nonspherical particles, respectively. Inamuro
et al. [21] investigated the motion of neutrally buoyant circular cylinders between parallel walls
by using the LBM. These are confined to simulations involving rigid bodies; the LBM has not
previously been thoroughly established for two-phase flows containing viscoelastic bodies.

We proposed an LBM for flows containing solid bodies in the form of viscoelastic membranes
by regarding the membrane of the RBC as an elastic body with a finite thickness. By using the
method, we simulated the behavior of a viscoelastic body under shear flows and the motion of
a viscoelastic body in a plane Poiseuille flow.

2 Numerical Method

As described previously [22], we use nondimensional variables defined by a characteristic
length L, a characteristic particle speed c, a characteristic time scale t0 = L/U , where U is
a characteristic flow speed, a reference order parameter φ0, and a reference density ρ0. The
two-dimensional nine-velocity model is used in the present study. The velocity vectors in the
nine-velocity model are given by c1 = 0, ci = [cos(π(i− 2)/2, sin(π(i− 2)/2] (i = 2, 3, 4, 5), and
ci =

√
2[cos(π(i − 11/2)/2, sin(π(i − 11/2)/2] (i = 6, 7, 8, 9).

2.1 Formulation

The numerical algorithm is based mainly on the LBM for incompressible two-phase flows
with large density differences, as proposed by Inamuro et al. [22] Hence, for a detailed for-
mulation of the present method, please refer to the literature and to the recently published
Ref. [23]. We assume that the fluid phase is an inelastic Newtonian fluid and that the solid
phase is a membrane composed of identical particles that are connected to their neighbors by
elastic springs. Also, the interior phase surrounded by the membrane is assumed to be the same
Newtonian fluid as the fluid outside the membrane.

2.2 Introduction of Elastic Force

Because the viscous effect of the body is inherent in the original LBM for two-phase flows,
only an elastic force based on the Kelvin–Voigt model needs to be introduced into the LBM. As
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Fig. 3. Dynamic behavior of material point P� and the surrounding four grids, A, B, C, and D.

shown in Fig. 1, a two-dimensional annular membrane with a finite thickness is considered. It
is assumed that the membrane consists of M particles positioned a distance d0 apart and that
these particles are initially arranged at the midpoint in the thickness direction of the membrane.
Also, the particles are connected by identical elastic springs that have an initial length d0 and
an elastic modulus K; hereafter, we refer to such particles as “material points.”

Here, let us consider the arrangement between the material points P�+1, P�, and P�−1 (� =
1, 2, . . . , M) as shown in Fig. 2. Note that P0 = PM and PM+1 = P1, because of the circular
arrangement of the material points. If we focus on the material point P� and apply Hooke’s law
to the spring system, the elastic force F � is given by the following equation:

F � = F �+ − F �−

= Kd�+1
x�+1 − x�

|x�+1 − x�| − Kd�
x� − x�−1

|x� − x�−1| , (1)

where d� is the stretch/compression displacement between the two material points P� and P�−1,
x� is the position vector, and |x�| is the magnitude of x�. The dynamic behavior of the material
points is as follows. As shown in Fig. 3, during the time step Δt, the material point P� at the
position x�(t − Δt) and at time t − Δt moves to the position given by the following equation:

x�(t) = x�(t − Δt) + u�(t − Δt)Δt, (2)

where u�(t−Δt) is the velocity of the material point, which is obtained by linear interpolation of
the velocities at the surrounding four grids, A, B, C, and D. At the same time, the displacement
of the springs is changed, and the material point is subject to an elastic force F �, as given
by Eq. (1). In addition, because the position of the material point does not coincide with
computational grids in general, the redistribution of the elastic force at P� to the surrounding
grids is carried out by a linear extrapolation method. In Fig. 3, for example, the elastic forces
F �(Ψ) at the surrounding four grids Ψ (= A, B, C, D) are given by

F �(Ψ) =
SΨ

(Δx)2
F � for Ψ = A, B, C, D, (3)

where Δx is the spacing of the square lattice, and SA, SB, SC, and SD are the respective areas
of the rectangle shown in Fig. 3. Thus, the net elastic force at the grid Ψ can be obtained by
the sum of contributions from the related material points.

The above-mentioned elastic force is incorporated into the equation of motion. In the com-
putations, the term 3EiFαciα/ρS is added to the function gc

i for calculation of the predicted
velocity in the solid phase alone (see Eq. (34) in Ref. [23]), where Ei is the constant coefficient,
ρS is the density of the solid phase, and α, β = x, y (subscripts α and β represent Cartesian
coordinates and the summation convention is used).
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(a) t∗=0.610 (b) t∗ =0.916 (c) t∗=1.22 (d) t∗=3.05

Fig. 4. Time evolutions of body shape and velocity vectors for KΔx = 1×10−5 at Re = 0.156. t∗ = tΓ
is the dimensionless time.

(a) t∗ =2.44 (b) t∗ =9.77

(c) t∗ =14.6 (d) t∗=25.0

Fig. 5. Unsteady rotary motion of membrane
for KΔx = 1× 10−5 at Re = 0.156. The black
circle indicates a certain material point in the
membrane (t∗ = tΓ ).
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Fig. 6. Temporal position of a certain material
point in the membrane for KΔx = 1×10−5 at
Re = 0.156. yc is the y-position of the centroid
of the body (t∗ = tΓ ).

3 Numerical Examples

3.1 Motion of a Body under Shear Flow

To calculate the behavior of an annular body composed of a viscoelastic membrane under
shear flow, we consider a square domain with sides Lx = Ly = 128Δx. A viscoelastic annular
body is placed at the center of this domain. The membrane is assumed to be composed of 60
identical material points (M = 60), and the thickness of the membrane is approximately 6Δx.
The initial distance between the centroid and each material point is set to be r = 16Δx. The
body is brought to the equilibrium state at rest and at t = 0, the top and bottom walls begin to
move with velocities uw and −uw, respectively. The no-slip boundary condition is used on the
moving walls, and the periodic boundary condition is used on the lateral sides of the domain.
Note that, in order to examine the elastic effect itself, surface tension is assumed to be absent.
The Reynolds number Re = Γr2/νF is 0.156, where Γ = 2uw/Ly is the shear rate and νF is
the kinematic viscosity of the fluid.

First, the time evolutions of the body shape and velocity vectors for KΔx = 1 × 10−5

are shown in Fig. 4, where the gray region represents the viscoelastic membrane. Note that
the dimensionless time is defined by t∗ = tΓ . It is found that the body is stretched out and
becomes deformed into an elongated ellipsoidal shape as time passes.

Next, the motion of the membrane is investigated. Figures 5 and 6 show the unsteady
behavior of the membrane and the temporal position of a certain material point, respectively.
From these figures, it is found that the membrane performs an ellipsoidal rotation with a
constant period (≈ 23t∗). This periodic motion is generally called the tank-tread motion [10,
11], which is a rotary motion like that of a caterpillar track. Thus, an interesting phenomenon
characteristic of RBC behavior can be simulated by using the present method.
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Fig. 7. Computational domain of Poiseuille flow
problem and initial position of viscoelastic body.
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Fig. 8. Time variations of shape and position of
body for KΔx = 1 × 10−4 at Re = 25.6.
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Fig. 9. Lateral migration curves of bodies
with various elastic moduli (¨, KΔx = 5 ×
10−5; N, KΔx = 1 × 10−4; •, KΔx =
5 × 10−4; ˇ, KΔx = 1 × 10−3) at Re = 25.6.
These bodies are released from the same initial
vertical position (yc/Ly = 0.313).
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Fig. 10. Lateral migration curves of bodies
with an elastic modulus (KΔx = 5 × 10−4)
at Re = 25.6. The initially released vertical
positions are as follows: ¨, 0.234; N, 0.316;•, 0.391; ˇ, 0.469. The equilibrium position is
yc/Ly ≈ 0.35 in all cases.

3.2 Motion of a Body in a Poiseuille Flow

To calculate the behavior of a viscoelastic body in a Poiseuille flow, we consider a rectangular
domain with Lx × Ly = 256Δx × 128Δx, as shown in Fig. 7. The same viscoelastic annular
body as discussed in the previous problem is placed at (xc/Lx, yc/Ly) = (0.375, 0.313), where
(xc, yc) is the position of the centroid of the body. In this problem, the elastic modulus of the
body is changed in the range of 10−5 ≤ KΔx ≤ 10−3. The no-slip boundary condition is used
on the top and bottom walls, and the periodic boundary condition with a pressure difference
is used at the inlet and outlet. The pressure difference is set to Δp = 1 × 10−5. The density
ratio of the solid to the fluid is set to 1.04, which corresponds to the ratio of the density of a
RBC to that of blood plasma in a typical human being. Also, the kinematic viscosities of the
solid and the fluid are assumed to be equal to one another. The gravitational effect is neglected;
it follows that a neutrally buoyant flow is assumed in this simulation. The Reynolds number
Re = 2rumax/νF is fixed at 25.6, with umax being the maximum velocity at the centerline
between the walls.

First, the effect of elasticity on the motion of the body is investigated. As an example, the
shape and position of the body for KΔx = 1 × 10−4 are shown in Fig. 8. It can be seen that
the body migrates laterally with an almost flat shape on the upstream side and a convex shape
on the downstream side after transitional flows. Figure 9 shows the lateral migration curves
of bodies with various elastic moduli (KΔx = 5 × 10−5, 1 × 10−4, 5 × 10−4, and 1 × 10−3)
from the same initial vertical position (yc/Ly = 0.313). It can be seen that the body migrates
toward the centerline in the early state, and then reaches an equilibrium lateral position. This
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equilibrium position can be classified into two types; for a low elasticity, it is very close to the
centerline (which is called axial migration), whereas for a larger elasticity, it is at a certain
position between the centerline and the bottom wall.

Next, in the case of KΔx = 5 × 10−4, the lateral migration curves for a body initially
released at various positions between the centerline and the bottom wall are shown in Fig. 10.
Regardless of the initial position, the body migrates to almost the same equilibrium position
(yc/Ly ≈ 0.35), which is closer to the centerline than the equilibrium position (yc/Ly = 0.265)
for the rigid body at Re = 26.7, as reported by Inamuro et al. [21] Segré and Silberberg
[24] showed experimentally that neutrally buoyant particles in a pipe finally reach a certain
equilibrium lateral position. Thus, a peculiar phenomenon similar to the Segré–Silberberg effect
is found in the present simulations.

4 Concluding Remarks

A lattice Boltzmann method for two-phase flows containing solid bodies with viscoelastic
membranes is proposed. The method is applied to two representative problems, namely the
behavior of a viscoelastic body under shear flow and the motion of a viscoelastic body in a
Poiseuille flow. Although the extension of the method to three-dimensions and quantitative
investigations are required in future work, the method could be a promising approach for
simulating the complex behavior of viscoelastic bodies in capillaries, such as the motion of red
blood cells in blood flows.

This work is supported by the Grant-in-Aid for Young Scientists (B) [No.18760121] of the Ministry of
Education, Culture, Sports, Science, and Technology, Japan (MEXT) and of the Japan Society for the
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