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Numerical Analysis of Control of Flow Oscillations

in Open Cavity Using Moving Bottom Wall∗

Takashi YOSHIDA∗∗, Takashi WATANABE∗∗∗, Toshihiko IKEDA∗∗ and Shouichiro IIO∗∗

In this study, we investigate the active control of self-sustained oscillating flow over an
open cavity using a moving bottom wall. The incompressible Navier-Stokes equations are
solved using finite difference methods for the two-dimensional cavity with laminar boundary
layer upstream. We move the cavity bottom wall tangentially with nondimensional velocities
ranging from −0.2 to +0.2. The results show that wall velocity changes the characteristics
of recirculating flow in the cavity and that the modification of recirculating flow plays an
important role in changing the oscillation characteristics of the separated shear layer. When
the wall velocity is less than −0.1, two recirculating vortices change to one clockwise recir-
culating vortex in the cavity, so that the self-excited shear layer oscillations are completely
suppressed. When the wall velocity is more than +0.19, two stationary vortices exist on
the upper side and lower side of the cavity and the self-excited shear layer oscillations are
suppressed.
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1. Introduction

Flows over cavities occur in a wide variety of engi-
neering applications, for example, the wheel wells of air-
crafts, sunroofs and windows of automobiles, and spaces
between bullet train cars. Cavity flow was the focus of
much attention of many investigators in the past because
of its fundamental interest. Despite its geometrical sim-
plicity, the flow over a cavity is characterized by a com-
plex feedback mechanism that leads to self-sustained os-
cillations of a separated shear layer. The feedback proc-
ess consists of the following loop of events: shear layer
instability and the growth of vortices, the impingement
of the vortices at the downstream edge, the generation
of hydrodynamic or acoustic pressure disturbances, the
upstream propagation of these disturbances, influence on
the receptive region of the shear layer near the upstream
leading edge of the cavity, the conversion of this influ-
ence into new vertical fluctuations, and the amplification
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of the vortical perturbations with convection by the shear
layer resulting in a new impingement. However, there
still remain many questions about even the basic physi-
cal mechanisms underlying the self-sustained oscillations.
Flow-induced cavity oscillations have been classified by
Rockwell and Naudascher(1) into fluid-dynamic and fluid-
resonant. Incompressible flows such as low-Mach number
air flows, low-speed water flows over a cavity are classi-
fied as fluid-dynamic oscillations. For this condition, the
acoustic wavelength is much longer than the length of the
cavity and the feedback mechanism can be regarded as
purely hydrodynamic. In this investigation, we assume
that the flow has a very low-Mach number or is a low-
speed liquid flow and we regard the fluid as incompress-
ible.

The suppression of cavity flow oscillations has re-
ceived considerable attention in recent years. The con-
trol of cavity oscillations has been reviewed by Cattafesta
et al.(2) Numerous workers have used various control de-
vices, for example, piezoelectric flaps, pulsed blowing ac-
tuators, fixed fences, spoilers, and ramps. They reported
the suppression of oscillations by the control of a sepa-
rated shear layer using these devices.

Kuo and Huang(3) studied the effect of a sloped bot-
tom of a shallow cavity (cavity length to depth ratio,
L/D= 2). They noted the role of large-scale vortex struc-
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Fig. 1 Sketch of cavity flow with moving bottom wall

tures in the cavity and their interaction with shear lay-
ers. They reported that a sloped bottom of the cavity
changes recirculation vortices and the modified recircula-
tion flow perturbs the unstable shear layer. Shear layer
oscillations are completely suppressed in the case of a
large sloped bottom. Their results show that the recircu-
lation flow inside the cavity also plays an important role
in the sustainment of shear layer oscillations. Pereira and
Sousa(4) investigated the unsteady characteristics of self-
sustained shear layer oscillations for an L/D = 2 cavity
by the two-dimensional numerical simulation of incom-
pressible Navier-Stokes equations. They also noted that
the shear layer instability process involves a complex cou-
pling of the shear layer and recirculating flow field dy-
namics. These results suggest that it is possible to control
shear layer oscillations by a modification of the recirculat-
ing flow field within the cavity.

In this study, we focused on the role of recircula-
tion vortices in the cavity in shear layer oscillations and
on the simple active control of the recirculating flow and
cavity oscillations. The interaction between recirculating
flow field and shear layer oscillations has been neglected
in most previous studies. The basic idea of our control
method is to drive the bottom wall with a constant ve-
locity tangentially to itself, which is similar to the lid-
driven cavity flow problem. The bottom wall of the cav-
ity moves horizontally with either a positive or a nega-
tive constant velocity, uW , as shown in Fig. 1. The moving
bottom wall can produce shear stress in fluid and change
recirculating vortices in the cavity. This control method
is classified into active control according to the classifica-
tion by Cattafesta et al.(2) In this study, we examine the
following issues: what are the effects of the moving wall
on cavity flow dynamics and how effective is this control
method in attenuating shear layer oscillations? We per-
form two-dimensional Navier-Stokes simulations for the
incompressible flow with and without a moving bottom
wall and present the suppressive effect of a moving bot-
tom wall on cavity oscillations.

2. Numerical Methods

The governing equations are the incompressible two-

Fig. 2 Schematic diagram of cavity configuration and
computational domain

dimensional Navier-Stokes equations and the equation of
continuity,
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where all variables are nondimensionalized using the cav-
ity depth D and the free-stream velocity U. These equa-
tions were integrated in time using the semi-implicit split-
ting method by Dukowicz and Dvinsky(5) to enforce the
solenoidal condition, in which the backward Euler method
was used for the viscous terms and the forward Euler
method was used for the other terms. A nonuniform
staggered grid system, which clusters node points in the
boundary layer, shear layer, the cavity bottom, and cav-
ity edges, was used for spatial descretization. The third
order upwind-biased difference scheme was used for the
convective terms and the second order central difference
scheme was used for the other terms. The finite difference
formula for the nonuniform spaced grids were derived us-
ing Fornberg’s algorithm(6).

A schematic diagram of the cavity configuration and
computational domain are shown in Fig. 2. The cavity
length to depth ratio is L/D = 2, which is the same as
that used in the condition of Kuo and Huang’s experi-
ment(3). The computational domain extends to 5D up-
stream of the cavity leading edge, 7D downstream of the
trailing edge and 9D in the normal direction above the cav-
ity. This dimension of the computational domain is similar
to that used in the two-dimensional simulations of Rowley
et al.(7) The laminar Blasius boundary layer is specified
in the inflow boundary. U is the free-stream velocity out-
side the laminar boundary layer. The bottom-wall velocity
uW shown in Fig. 1 is nondimensionalized by U. Time t is
nondimensionalized by D/U. The time t∗ is the nondi-
mensional time elapsed after the sudden start of the move-
ment of the bottom wall. A free-slip condition was applied
to the normal boundary. A no-slip boundary condition was
applied to the wall. At the outflow boundary, we used the
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Sommerfeld radiation condition, which is also called the
convective outflow condition. This condition is written as
∂φ

∂t
+UC

∂φ

∂x
=0, (4)

where φ is any velocity component. The convective veloc-
ity UC is set equal to the mean velocity integrated across
the exit boundary. This boundary condition allows vor-
tices to smoothly pass across the computational domain.

3. Results

3. 1 Baseline flow
The baseline flow is a flow over a cavity with a sta-

tionary bottom wall. The Reynolds number based on U
and D, Re = UD/ν, was 6 000. The oncoming laminar
boundary layer had a thickness δ of 0.235, a displace-
ment thickness δ∗ of 0.081 and a momentum thickness θ
of 0.031 at the upstream edge of the cavity. The Reynolds
number based on θ, Reθ =Uθ/ν, was 186. These Reynolds
numbers are similar to those used in Kuo and Huang’s
study using a water channel.

The computational results were validated by perform-
ing mesh refinement studies to ensure that the results are
independent of mesh dimension. Three meshes were ex-
amined: 175×80 and 75×25, 350×160 and 150×50, and
525×240 and 225×75 points in the computational domain
in the streamwise and streamwise-normal directions and in
the cavity, respectively. Figure 3 shows the spectra of the
normal velocity v at x= 1.9 and y= 0 for the three differ-
ent meshes. The most dominant peak and other harmonic
peaks in the spectrum of the medium mesh (350× 160)
was similar to those of the fine mesh (525×240). Figure 4
shows the stream lines for the three different meshes at the
same phase of self-sustained oscillations. The flow pattern
of the medium mesh (350×160) was similar to those of
the fine mesh (525×240). We concluded that the medium
mesh (350× 160) is adequate for resolving the flow and
was used in this study. The time step was ∆t= 0.001, and

Fig. 3 Comparison of mesh refinement power spectra of
normal velocity at x=1.9 and y=0

the corresponding maximum Courant number was about
0.18.

The unsteady characteristics of fluid-dynamic oscil-
lations are clearly supported by the computational re-
sults. The time traces of normal velocity and pressure at
x = 1.9 and y = 0 near the downstream edge of the cav-
ity are shown in Fig. 5. The fluctuations of normal veloc-
ity and pressure are alomost periodic. The correspond-
ing power spectra of normal velocity and pressure are

Fig. 4 Comparison of mesh refinement stream lines at the same
phase of self-sustained oscillations

Fig. 5 Time traces of normal velocity and pressure at x=1.9
and y=0 for baseline case

Fig. 6 Power spectra of normal velocity and pressure at x=1.9
and y=0 for baseline case
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shown in Fig. 6. The very well-defined dominant peaks
and higher harmonics of both spectra are evident. The
frequencies of the most energetic peaks of both spectra
are identical and the Strouhal number based on the cavity
depth is S t=0.443.

The Strouhal number based on the momentum thick-
ness at the upstream edge of the cavity was S tθ = 0.013 7.
In Fig. 7, the Strouhal number obtained in the present

Fig. 7 Comparison of Strouhal number based on momentum
thickness at upstream edge of cavity for baseline case
with experimental data
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Fig. 8 Instantaneous streamlines (solid lines) and gray scale contour plots of vorticity for uW =

0 at four different times, corresponding to quarter-phase intervals of periodic cycle, T

computation is compared with the previous experimen-
tal data obtained by Knisely and Rockwell(8) and Kuo
and Huang(3). Our result closely agrees with the solid
curve fitted to the measured data of Knisely and Rockwell.
Our present result for an L/D = 2 cavity shows that self-
sustained oscillations in the cavity shear layer are in mode
II. There are two wavelengths in the cavity in mode II as
observed by Gharib and Roshko(9).

Figure 8 shows four images of vorticity gray scale
contour plots and streamlines over one period of oscilla-
tion. The cavity is occupied by two stationary vortices.
One is a strong clockwise rotating vortex on the down-
stream side of the cavity and the other is a weak counter-
clockwise rotating vortex on the upstream side. The small
clockwise vortex develops in the separation region due to
the Kelvin-Helmholtz instability (see Fig. 8 (d) and (a)).
The third vortex travels over the counterclockwise vortex
(see Fig. 8 (b) and (c)) and pairs with the clockwise rotat-
ing vortex on the downstream side (see Fig. 8 (d) and (a)).
The shear layer vortex travels over the downstream side
vortex and impinges on the corner.

3. 2 Effect of moving bottom wall with negative ve-
locity

A series of computations for the moving bottom wall
with a negative velocity, uW < 0, was conducted over a
range of uW from −0.02 to −0.2. The initial condition was
the instantaneous flow field of the baseline flow and the
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Fig. 9 Time traces of pressure at x=1.9 and y=0 for different
negative velocities of bottom wall

Fig. 10 Instantaneous streamlines (solid lines) and gray scale
contour plot of vorticity at t∗ =1 400 for uW =−0.100

bottom wall was suddenly started at t∗ = 0. The typical
time traces of pressure at x = 1.9 and y = 0 are shown in
Fig. 9 for runs where uW was varied. These calculations
were stopped at different time points. For uW >−0.1, the
oscillations are maintained. For uW =−0.105, the oscilla-
tions are slowly damped and the flow becomes steady. As
for increasing negative wall velocity, the oscillations are
reduced more rapidly and are suppressed completely.

Figure 10 shows streamlines and a vorticity contour
plot at t∗ =1 400 for uW =−0.100. In the cavity, the clock-
wise vortex on the downstream side becomes larger and
the counterclockwise vortex on the upstream side disap-
pears because of negative wall shear stress. A new small
clockwise vortex develops near the upstream corner. The
separated shear layer becomes unstable and maintains os-
cillations. In Fig. 11, flow fields at two different times are
given for uW =−0.105. In Fig. 11 (a), the flow field is sim-
ilar to that for uW = −0.100 during oscillations. The up-
stream small vortex disappears while the oscillations are

(a) t∗=500

(b) t∗ =1 300

Fig. 11 Instantaneous streamlines (solid lines) and gray scale
contour plots of vorticity for uW =−0.105

damping, and the downstream clockwise vortex occupies
the entire space inside the cavity as shown in Fig. 11 (b).
The flow on the upper side of the cavity is parallel to the
separated shear layer over the entire cavity mouth, so that
the shear layer becomes stable and the oscillations are sup-
pressed.

3. 3 Effect of moving bottom wall with positive ve-
locity

The response of the flow over the cavity to a positive
bottom wall velocity differs from that to a negative wall
velocity. The wall velocity uW was changed from +0.02
to +0.2. Figure 12 shows the typical time traces of pres-
sure at x= 1.9 and y= 0. These calculations were stopped
at different time points. For uW =+0.050, the oscillations
are preserved and there is little change in the amplitude of
pressure fluctuation. For +0.190≥uW ≥+0.070, the oscil-
lating amplitude of pressure damps rapidly and the shear
layer oscillations are suppressed, but after a long interval,
the self-sustained oscillations restart. For uW ≥ +0.195,
the oscillations are almost suppressed.

The changes in the flow patterns for a positive wall
velocity are shown in following figures. Figure 13 shows
streamlines and a vorticity contour plot at t∗ = 500 for
uW = +0.050. The configuration of two vortices in the
cavity is similar to that for uW = 0, although the clock-
wise vortex on the downstream side becomes smaller and
the counterclockwise vortex on the upstream side becomes
larger than those shown in Fig. 8. As the wall speed in-
creases up to +0.190, the shear layer oscillations are ini-
tially suppressed and recur after a long time. Figure 14
shows the instantaneous streamlines and vorticity fields
for uW =+0.190. The third clockwise vortex develops near
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Fig. 12 Time traces of pressure at x=1.9 and y=0 for different
positive velocities of bottom wall

Fig. 13 Instantaneous streamlines (solid lines) and gray scale
contour plot of vorticity at t∗ =500 for uW =+0.050

the upstream edge of the cavity as shown in Fig. 14 (a) and
(b) and the flow oscillations are suppressed. The clock-
wise rotating vortex on the downstream side of the cavity
becomes small and moves near the downstream edge of
the cavity and the counterclockwise vortex moves under
the clockwise rotating vortex during the shear layer oscil-
lations are suppressed as shown in Fig. 14 (c). Then three
vortices exist inside the cavity and the flow oscillations re-
cur as shown in Fig. 14 (d). Figure 15 shows a steady flow
field for uW =+0.195 when the oscillations are suppressed.
The two clockwise vortices merge into one vortex, which
occupies the upper region inside the cavity. Figure 15
shows a phenomenon in which one dominant clockwise
vortex covers a full region of the cavity mouth. The domi-
nant vortex can be found in the flow in Fig. 11 (b), and this
vortex suppresses the flow oscillations, as has been said in
section 3.2.

(a) t∗ =20

(b) t∗=50

(c) t∗=600

(d) t∗ =1 200

Fig. 14 Instantaneous streamlines (solid lines) and gray scale
contour plots of vorticity for uW =+0.190

Fig. 15 Instantaneous streamlines (solid lines) and gray scale
contour plot of vorticity at t∗=1 200 for uW =+0.195
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4. Conclusions

A numerical study of the active control of self-
sustained oscillating flow over an open cavity using a
moving bottom wall was conducted. Our control method
involves the moving of the bottom wall tangentially with
a constant velocity uW . The two-dimensional incom-
pressible Navier-Stokes equations were solved using fi-
nite difference methods for the uncontrolled case and con-
trolled cases. The results for the uncontrolled case rea-
sonably demonstrate the characteristics of self-sustained
shear layer oscillations. The effect of the moving bottom
wall is shown by the results for the controlled cases. For
the negative wall speed, a single clockwise vortex occu-
pies the cavity and the shear layer oscillations are sup-
pressed for uW ≤ −0.105. For the positive wall speed,
two vortices, which lie horizontally, occupies the cavity
and the shear layer oscillations are suppressed for uW ≥
+0.195.
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