Adsorption of Eu³⁺ to smectites and fluoro-tetrasilicic mica By Tomohiko OKADA^{1†}, Yusuke EHARA² and Makoto OGAWA^{1,2}

1. Department of Earth Sciences, Waseda University, Nishiwaseda 1-6-1, Shinjuku-ku, Tokyo 169-8050, Japan.

2. Graduate School of Science and Engineering, Waseda University, Nishiwaseda 1-6-1, Shinjuku-ku, Tokyo 169-8050, Japan.

Running title : Adsorption of Eu³⁺ to smectites and fluoro-tetrasilicic mica

Corresponding author: Makoto OGAWA Address: Department of Earth Sciences, Waseda University, Nishiwaseda 1-6-1, Shinjuku-ku, Tokyo 169-8050, Japan.

E-mail: makoto@waseda.jp

[†] Present address: Department of Chemistry and Material Engineering, Faculty of Engineering, Shinshu University, Wakasato 4-17-1, Nagano 380-8553, Japan

ABSTRACT

The adsorption of Eu^{3^+} from aqueous solution to natural Na⁺-montmorillonite (Kunipia F), synthetic saponite (Sumecton SA) and synthetic fluoro-tetrasilicic mica (Na⁺-TSM) clay samples was investigated. Adsorption capacities derived from the isotherms were, respectively, 1.02, 0.71 and 1.00 meq / g clay for Kunipia F, Sumecton SA and Na⁺-TSM. The adsorption capacities were comparable to the cation exchange capacities of the clays, which were, respectively, 1.19, 0.71 and 0.94 meq / g clay. The greater slope of the TSM adsorption isotherm relative to the montmorillonite and saponite isotherms indicates a high affinity of Eu^{3^+} for Na⁺-TSM. The high affinity of TSM for Eu^{3^+} was thought to be related to the large electronegativity of the octahedral fluorine groups in TSM. Photoluminescence of adsorbed Eu^{3^+} was observed for

saponite and TSM, but not for montmorillonite. Quenching of Eu^{3+} luminescence by iron in the montmorillonite structure is the probable reason for this phenomenon. The luminescence intensity varied with the amount of adsorbed Eu^{3+} for saponite and TSM as a result of self-quenching.

Key Words, Adsorption, Europium (III) ion, Kunipia F, Montmorillonite, Sumecton SA,

Synthetic saponite, Fluoro-tetrasilicic mica, Photoluminescence

INTRODUCTION

Adsorption of Eu³⁺ onto layered silicates such as natural hectorite (Bergaya and van Damme, 1983), natural montmorillonite (Bergaya and van Damme, 1983; Takahashi, et al., 1998; Bradbury and Baeyens, 2002; Coppin, et al., 2002; Stumph, et al., 2002; Rabung et al., 2005; Okada et al., 2006) and synthetic magadiite (Mizukami et al., 2002) through cation exchange reactions. The luminescence properties of the resulting Eu³⁺ exchanged layered silicates have been investigated for the basic understanding of the host-guest interactions. It has been pointed out that the iron in a natural montmorillonite quenched the luminescence of Eu³⁺ (Bergaya and van Damme, 1983). On the other hand, relatively intense luminescence has been observed for the magadiite system partly due to the absence of iron in the silicate layer (Mizukami et al., 2002). Based on the variation of luminescence intensity as a function of the adsorbed amount, the interlayer spatial distribution of Eu^{3+} is proposed to affect luminescence intensity (Mizukami et al., 2002). Recently, Eu³⁺-montmorillonite was successfully used as an adsorbent with luminescence detection ability for 4-nonylphenol (Okada et al., 2006). The adsorptive and sensing properties of various rare earth ions adsorbed layered materials is worth further investigating to optimize materials' performance. In the present study, the adsorption and the photoluminescence of Eu^{3+} on smectites (a natural montmorillonite [Kunipia F], a synthetic saponite [Sumecton SA]) and synthetic fluoro-tetrasilicic mica (Na⁺-TSM) were investigated.

Kunipia F and Sumecton SA have extensively been investigated for the construction of clay-based advanced materials (Ogawa and Kuroda, 1995; Ogawa and Kuroda, 1997; Shichi and Takagi, 2000; Ogawa, 2004). It has been note that the Kunipia F and Sumecton SA smectites behaved differently. This has been shown by differences in the catalytic activity (Urabe et al., 1988), the adsorption of phenols

(Okada and Ogawa, 2003; 2004; Okada et al., 2005ab), separation efficiency for optical resolution of a racemic mixture (Nakamura et al., 1988) and the aggregation of a cationic cyanine dye after adsorption (Ogawa et al., 1996; Miyamoto et al., 2000). The differences have been ascribed to such factors as surface layer charge density (Nakamura et al., 1988; Ogawa et al., 1996; Okada and Ogawa, 2003; 2004; Okada et al., 2005ab) and the location of isomorphous substitution (Urabe et al., 1988; Ogawa et al., 1996). In contrast, there is no report on the effect of structural differences on metal ion adsorption behavior.

 Na^+ -TSM ($Na_2Mg_{2.5}Si_4O_{10}F_2$ (Kitajima and Daimon, 1975; Kitajima et al., 1976; Soma et al., 1990) exhibits swelling, ion exchange and adsorptive properties similar to those of smectites. Since Na^+ -TSM does not contain $Fe^{2+/3+}$, some applications as photofunctional materials *(i.e. photoinduced electron-transfer reactions)* have been investigated (Ogawa, et al., 1993; Ogawa et al., 2000; Kakegawa and Ogawa, 2005). The negative charge of Na^+ -TSM is derived from octahedral lattice site defects and is not due to isomorphous substitution. The hydroxyl groups in the octahedral sheet in smectites is replaced by fluorine in Na^+ -TSM. The difference in the structure of Na^+ -TSM relative to the smectites was expected to result in different Eu³⁺ adsorption characteristics.

EXPERIMENTAL

Materials

Na⁺-montmorillonite (Kunipia F, supplied by Kunimine Ind. Co., obtained from Aterazawa mine, Yamagata, Japan) and synthetic Na⁺-saponite (Sumecton SA, supplied by Kunimine Ind. Co., synthesized by a hydrothermal reaction) are reference clay samples of the Clay Science Society of Japan and were used as received. Na⁺-TSM (supplied by Topy Ind. Co.) was used after removing non-expandable impurities by a dispersion-sedimentation method. The chemical compositions of these host materials are summarized in Table 1. Cation exchange capacities (CECs) of Na⁺-montmorillonite, Na⁺-saponite and Na⁺-TSM are 1.19, 0.71 and 0.94 meq / g clay, respectively (Ogawa et al., 1992). Europium (III) trichloride hexahydrate (> 99.99 %) was purchased from Aldrich Co. and was used as received.

(Insert Table 1)

Cation exchanges

Samples of Na⁺-clays (0.1 g) were allowed to react with 50-mL aliquots of EuCl₃ solution (pH \approx 5) in 50-mL of polypropylene vessels for 1 day at room temperature. The initial concentrations of aqueous EuCl₃ solution were in the range of 0.01 to 2.0 times as large as CECs ($7.9 \times 10^{-3} \sim 1.6 \text{ mmol L}^{-1}$ for Kunipia F, $4.7 \times 10^{-3} \sim 9.5 \times 10^{-1} \text{ mmol L}^{-1}$ for Sumecton and $6.5 \times 10^{-3} \sim 1.3 \text{ mmol L}^{-1}$ for Na⁺-TSM). Blank samples containing 50-mL of EuCl₃ solution, without adsorbents, were also prepared to estimate vaporization losses of solvents and the adsorption of Eu³⁺ on the polypropylene vessel. The resulting solids were separated by centrifugation (25 krpm for 10 min at 293 K). The amounts of the adsorbed Eu³⁺ on clays were determined by ICP-AES analysis ($\lambda = 381.967 \text{ nm}$) from the difference between the concentration of the remaining Eu³⁺ in supernatant and that of blank sample.

Specific surface area

Specific surface areas were determined using BET equation (Brunauer et al., 1938) from the nitrogen adsorption isotherms. Nitrogen adsorption isotherms were obtained at 77 K. Prior to the adsorption experiments, the adsorbents were dried at 333 K under vacuum (10^{-1} torr) for 3 hours. Na⁺-clays were heat-treated at 773 K for 1 h under air for the determination of the external surface area. The dehydration was confirmed by the basal spacings of the heat-treated Na⁺-clays (1.0 nm).

Equipment

X-Ray diffraction patterns were obtained on Rigaku RAD IB using monochromatic Cu Ko radiation, operated at 20 mA and 40 kV. Steady-state luminescence spectra were recorded on a HITACHI F-4500 fluorospectrophotometer. Inductively-coupled plasma atomic-emission spectroscopy (ICP-AES) was performed using a Rigaku Spectro Ciros CCD. Nitrogen adsorption isotherms were obtained at 77 K on a BELSORP 28 instrument (Bell Japan Inc.).

RESULTS AND DISCUSSION

Figure 1 shows the adsorption isotherms of Eu^{3+} for Kunipia F, Sumecton SA and Na⁺-TSM from aqueous solution. According the Giles classification (Giles et al., 1960), the Na⁺-TSM isotherm is type-H and the Sumecton SA and Kunipia F isotherms are type-L. These isotherm types suggest a high affinity of these clays for Eu^{3+} . Langmuir plots were fitted by linear regression of a graph of C_e/Q versus C_e resulting in a linear equation of the form

$$C_e/Q = mC_e + b \tag{1}$$

where m is the slope and b is the intercept (Langmuir, 1918). The amount adsorbed (Q) in meq Eu^{3+} / g clay and equilibrium concentrations (C_e) in mmol Eu^{3+} / L were extrapolated from Figure 1. The plotted values are the extrapolated data points. The plotted lines are graphs of the Langmuir equation using the fitted parameters for each data set (Figure 1). All Langmuir fits to the extrapolated data had r² values of 0.96 or greater.

The maximum adsorbed amounts of Eu^{3+} on Na^+ -TSM, Sumecton SA and Kunipia F were 1.00, 0.71 and 1.02 meq / g clay, which were close to the CECs (0.94, 0.71 and 1.19 meq / g clay for Na^+ -TSM, Sumecton SA and Kunipia F, respectively). The XRD patterns were recorded under relative humidity of ca. 20 % (Figure 2). The basal spacings of Na^+ -TSM, Kunipia F, and Sumecton SA were 1.23, 1.23, and 1.29 nm and increased to 1.52, 1.53 and 1.50 nm after Eu^{3+} adsorption (Figure 2). Judging from the thickness of the silicate layer (0.96 nm), the gallery heights of the Na^+ - and the Eu^{3+} -forms are 0.3 and 0.6 nm, respectively, indicating the change in the hydration from a monolayer of water molecules to bilayer ones in the interlayer space. The polarizing power is directly related to cation electric-field (ionic charge / ion radii) which is larger for Eu^{3+} (3.2) than for Na^+ (0.98). As the polarizing power increased, the strength of the interactions between the cations and water molecules surrounding the cations increased. Therefore, it is thought that a larger amount of water was involved in the Eu^{3+} -form.

(Insert Figures 1 and 2)

The type-H adsorption isotherm of TSM indicated a greater affinity for Eu³⁺

than the type-L isotherms of Kunipia F and Sumecton SA. Difference in Eu^{3+} affinity to clays was also revealed by the Freundlich affinity index (n) values. The calculated values (n) for the present system are listed in Table 2. The Freundlich equation (Freundlich, 1926) is expressed as,

$$Q = K_{\ell} C_{e}^{-1/n}$$
⁽²⁾

where $K_f(\text{mmol g}^{-1})$ and n are constants pertaining to maximum adsorbed amount and a conditional index, which describes the shape of the isotherm (empirical adsorption characteristics), respectively. The n value for TSM system (7.5) was quite larger than those for Kunipia F (1.9) and for Sumecton SA systems (1.5) (Table 2). The high affinity of Sr^{2+} in aqueous solution for a synthetic fluoro-mica was shown previously (Paulus et al., 1992). The high affinity of Eu^{3+} for TSM may be accounted for the structural difference in octahedral sheet (hydroxide or fluoride). The TSM clay contains highly-electronegative fluorine groups instead of the hydroxyls in smectites and this difference might explain the greater Eu³⁺ adsorption by TSM.

The n value for Kunipia F (1.9) was slightly larger than that for Sumecton SA system (1.5). The interlayer expandability of smectites is related to electrostatic interactions between adjacent sheets that depend on the layer charge, cation type, and cation position (van Olphen, 1977). Because the layer change density of Sumecton SA is smaller than Kunipia F, the attractive force between adjacent silicate layers that is mediated by exchangeable cations might be weaker in Sumecton SA. The difference in layer charge might give the relatively higher Eu³⁺ affinity for Kunipia F than for Sumecton SA.

(Insert Table 2)

The Freundlich equations for the Eu^{3+} -TSM and Eu^{3} -Kunipia provided poorer fits to the data than the Langmuir equations, as shown by the r² values given in Table 2. In contrast, Freundlich fit to the extrapolated data for the Eu^{3+} -TSM had a larger r² value (0.99). We assume that Eu^{3+} stoichimetrically adsorbed to specific adsorption sites of Na⁺-TSM and Kunipia F, while the Eu^{3+} adsorption occurred on relatively inhomogeneous adsorption sites of Sumecton SA. The variation of luminescence spectra of the Eu^{3+} exchanged Sumecton SA and Na⁺-TSM are shown in Figures 3A and 3B, respectively. The luminescence bands ascribable to the ${}^{5}D_{0}{}^{-7}F_{1}$ and ${}^{5}D_{0}{}^{-7}F_{2}$ transitions of Eu^{3+} were observed at 592 and 614 nm, respectively (Carnall, 1976). On the other hand, the photoluminescence was not observed for the Eu^{3+} -Kunipia F system (data are not shown). The quenching of Eu^{3+} luminescence in Eu^{3+} exchanged Kunipia F was attributed to the 2 wt % structural $Fe^{2+/3+}$ as reported for Eu^{3+} exchanged Wyoming montmorillonite ($Fe^{2+/3+} : 3 wt\%$) (Bergaya and van Damme, 1983). The relative luminescence intensity depends on the strength and symmetry of the electric field around Eu^{3+} . The relative intensity of each of the transitions (I_{592}/I_{614}) observed for the Sumecton SA and TSM systems barely changed with greater amounts of adsorbed Eu^{3+} , which suggests Eu^{3+} was adsorbed in a similar manner. In contrast, the ratio differed depending on the clays; the ratio of the intensity (I_{592}/I_{614}) for Sumecton SA system was 0.7, while that for the TSM system was 1.8.

(Insert Figure 3)

Several groups (Takahashi et al., 1998; Stumpf, et al., 2002; Rabung et al., 2005) have discussed the state of the adsorbed Eu^{3+} on smectites by using the I_{592}/I_{614} value. When the I_{592}/I_{614} value is comparable to the value (1.7) for Eu^{3+} aquo ion (Zaitoun et al., 2000), Eu^{3+} has a similar site symmetry (i.e. a highly symmetrical environment). A large amount of Eu^{3+} has been adsorbed as outer-sphere complex between the Eu^{3+} aquo ion on a clay. In contrast, relatively lower I_{592}/I_{614} has been a result of asymmetrical site symmetry of Eu^{3+} , suggesting the formation of inner-sphere complex of Eu^{3+} with the edge hydroxyl groups. Considering to relatively large BET surface area (Table 1) of Sumecton SA (135 m²/g) compared to that for Na⁺-TSM (6 m²/g), the formation of inner-sphere complex with the edge hydroxyls of Sumecton SA is a probable reason to give relatively lower I_{592}/I_{614} value. The lower intensity ratio was also observed for Eu^{3+} -doped silica gel, which was prepared at a basic condition (Selvan et al.,1999; Zaitoun et al., 2000), and magadiite systems (Mizukami et al., 2002). The complexation of surface silanol groups with Eu^{3+} is a possible explanation on the relatively lower I_{592}/I_{614} .

Figure 4 shows the relationship between the intensity of the ${}^{5}D_{0}-{}^{7}F_{2}$

luminescence band (at 614 nm) and the amount of the adsorbed Eu^{3+} on Sumecton SA and TSM. Amounts of adsorbed Eu^{3+} were expressed as the amount per ideal surface area (nm²) in order to examine the effect of Eu^{3+} spatial distribution on the luminescence. Ideal surface areas of clays (S_a) were calculated from the unit-cell dimensions and unit-cell weights of the clays using the equation

$$S_a = (1 / M) \times 6.02 \times 10^{23} \times 2 \times A \times 10^{19} m^2 / nm^2$$
 (3)

where "M" equals the unit-cell weight (Table 1) and "A" equals the product of the "a" and "b" unit cell dimensions and 6.02×10^{23} is Avogadro's number (van Olphen, 1977). For example, the ideal surface of Sumecton SA is calculated $S_a = (1 / 810) \times$ $6.02 \times 10^{23} \times 2 \times 0.514 \times 0.893 \times 10^{19} = 681$ (Table 1). The luminescence intensity was normalized using the amount of adsorbed Eu3+ as indicated by the equation $I_n = I_m / m$; where I_n denotes the normalized luminescence intensity, I_m denotes the observed luminescence intensity, and m denotes the amount of adsorbed Eu³⁺. These symbols were proposed in a previous study on the adsorption of Eu³⁺ to magadiite (Mizukami et al., 2002). In the Eu³⁺-magadiite system, the luminescence was intensified with increased amounts of adsorbed Eu^{3+} up to 1.0 meg / g; and 0.28 molecule / nm². This is based on a surface area of 0.73×0.73 nm² for each cell and unit-cell weight of 902 (Brindley, 1969). A further increase in the amount of Eu³⁺ adsorbed to magadiite weakened the luminescence due to concentration quenching at the higher Eu^{3+} loading (Figure 4b). In contrast, a decreased normalized luminescence intensity with increased amounts of adsorbed Eu³⁺ was observed for both the Sumecton SA and TSM systems (Figure 4a). This observation suggests that the concentration quenching occurred even when the loaded amount of Eu³⁺ was quite low compared to that for the magadiite system. Normalized luminescence intensity differences between magadiite and the Sumecton SA and TSM clays might be due to the different nature of the negative sites in these clay minerals. Negative charge sites in smectites are mainly due to isomorphous substitution, whereas, the negative charge sites in TSM are largely due to lattice defects. In contrast, the negative charge sites in magadiite are mostly pH-dependent silanol sites.

(Insert Figure 4)

CONCLUSIONS

The adsorption of Eu^{3+} from aqueous solution to natural montmorillonite (Kunipia F), and synthetic saponite (Sumecton SA) and synthetic fluoro-tetrasilicic mica (Na⁺-TSM) was examined. The Eu^{3+} adsorption capacities (1.02, 0.71 and 1.00 meq / g clay for Kunipia F, Sumecton SA and Na⁺-TSM, respectively) were similar to the cation exchange capacities (1.19, 0.71 and 0.94 meq / g clay for Kunipia F, Sumecton SA and Na⁺-TSM, respectively) were similar to the cation exchange capacities (1.19, 0.71 and 0.94 meq / g clay for Kunipia F, Sumecton SA and Na⁺-TSM, respectively), which suggest Eu^{3+} adsorption by cation exchange. Adsorption isotherms indicated a high affinity of Eu^{3+} for TSM relative to the smectites (Kunipia F and Sumecton SA). Luminescence quenching by structural Fe limited luminescence examination of the Kunipia F montmorillonite. The luminescence efficiency decreased with increases in the adsorbed Eu^{3+} , indicating concentration quenching for both Sumecton SA saponite and TSM fluoro-tetrasilicic mica.

ACKNOWLEDGMENT

This work was supported by a Grant-in-Aid for Scientific Research on Priority Areas (417) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of the Japanese Government and CREST (JST).

REFERENCES

- Bergaya, F. and van Damme, H. (1983) Luminescence of Eu³⁺ and Tb³⁺ ions adsorbed on hydrated layer-lattice silicate surfaces. *Journal of Chemical Society, Faraday Transition 2*, **79**, 505-518.
- Brindley, G.W. (1969) Unit cell of magadiite in air, in vacuo, and under other conditions. *American Mineralogist*, **54**, 1583.
- Bradbury, M.H. and Byeyens, B. (2002) Sorption of Eu on Na- and Ca-montmorillonites: Experimental investigations and modeling with cation exchange and surface complexation: *Geochim. Cosmochim. Acta*, **66**, 2325-2334.
- Brunauer, S., Emmett, P. H. and Teller E. (1938) Adsorption of gasses in multilayer layers. *Journal of the American Chemical Society*, **60**, 309-319.
- Carnall, W.T. (1976) The absorption and fluorescence spectra of rare earth ions in

solution. In *Handbook on the Physics and Chemistry of Rare Earth*, Elsevier, North-Holland, the Netherlands.

Coppin, F., Berger, G., Bauer, A., Castet, S. and Loubet, M. (2002) Sorption of lanthanides on smectites and kaolinite: *Chem. Geol.*, **182**, 57-68.

Freundlich, H. (1926) Colloid and Capillary Chemistry, Methuen, London, pp. 114-122.

- Giles, C.H., MacEwan, T.H., Nakhwa, S.N. and Smith, D. (1960) Studies in adsorption: Part Xl. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. *Journal of Chemical Society*, **111**, 3973-3993.
- Kakegawa, N. and Ogawa, M. (2005) Effective luminescence quenching of tris(2,2'-bipyridine)ruthenium(II) by methylviologen on clay by the aid of poly(vinylpyrrolidone): *Langmuir*, **20**, 7004-7009.
- Kitajima, K. and Daimon, N. (1975) Na-fluor-tetrasilicic mica [Na₂Mg_{2.5}Si₂O₁₀F₂] and its swelling characteristics. *Nippon Kagaku Kaishi*, 991-995.
- Kitajima, K., Daimon, N. and Kondo, R. (1976) Changes of swelling and dehydration characteristics of synthetic expandable layered minerals with cation exchange. *Nippon Kagaku Kaishi*, 597-602.
- Langmuir, I. (1918) The adsorption of gases on plane surfaces of glass, mica and platinum. *Journal of the American Chemical Society*, **40**, 1361-1402.
- Miyamoto, N., Kawai, R., Kuroda, K. and Ogawa, M. (2000) Adsorption and aggregation of a cationic cyanine dye on layered clay minerals. *Applied Clay Science*, **16**, 161-170.
- Mizukami, N., Tsujimura, M., Kuroda, K. and Ogawa, M. (2002) Preparation and characterization of Eu-magadiite intercalation compounds: *Clays and Clay Minerals*, 50, 799-806.
- Nakamura, Y., Yamagishi, A., Iwamoto, T. and Koga, M. (1988) Adsorption properties of montmorillonite and synthetic saponite as packing materials in liquid column chromatography: *Clays and Clay Minerals*, **36**, 530-536.
- Ogawa, M., Nagafusa, Y., Kuroda, K. and Kato, C. (1992) Solid-state intercalation of acrylamine into smectites and Na-taeniolite. *Applied Clay Science*, **11**, 291-302.
- Ogawa, M., Inagaki, M., Kodama, N., Kuroda, K. and Kato C. (1993) Novel controlled luminescence of tris(2,2'-bipyridine)ruthenium(ll) intercalated in a fluortetrasilicic mica with poly(vinylpyrrolidone): *Journal of Physical Chemistry*, **97**, 3819-3823.

- Ogawa, M. and Kuroda, K. (1995) Photofunctions of intercalation compounds: *Chemical Reviews* **95**, 399-438.
- Ogawa, M., Kawai, R. and Kuroda, K. (1996) Adsorption and aggregation of a cationic cyanine dye on smectites: *Journal of Physical Chemistry B*, **100**, 16218-16221.
- Ogawa, M. and Kuroda, K. (1997) Preparation of inorganic-organic nanocomposite through intercalation of organoammonium ions into layered silicate: *Bulletin of the Chemical Society of Japan*, **70**, 2593-2618.
- Ogawa, М., Tsujimura, M. and Kuroda, K. (2000)Incorporation of tris(2,2'-bipyridine)ruthenium(ll) in а synthetic swelling mica with poly(vinylpyrrolidone): Langmuir, 16, 4202-4206.
- Ogawa, M., *Photoprocesses in Clay-Organic Complexes*, in S. M. Auerbach, K. A. Carrado and P. K. Dutta, eds. (2004) *Handbook of Layered Materials*, Marcel Dekker, New York.
- Okada, T. and Ogawa, M. (2003) 1,1'-Dimethyl-4,4'-bipyridinium-smectites as a novel adsorbent of phenols from water through charge-transfer interactions. *Chemical Communications*, 1378-1379.
- Okada, T. and Ogawa, M. (2004) *p*-Phenylenediammonium-smectites as adsorbents with colorimetric detection ability for phenols in water. *Bulletin of the Chemical Society of Japan*, **77**, 1165-1171.
- Okada, T., Morita, T. and Ogawa, M. (2005a) Tris(2,2'-bipyridine)ruthenium(II)-clays as adsorbents of phenol and chlorinated phenols from aqueous solution. *Applied Clay Science*, **29**, 45-54.
- Okada, T., Watanabe, Y. and Ogawa, M. (2005b) Photoregulation of adsorption behavior of phenol for azobenzene-clay intercalation compounds. *Journal of Materials Chemistry*, **15**, 987-992.
- Okada, T., Ehara, Y. and Ogawa, M. (2006) Adsorption and possible luminescence detection of 4-nonylphenol by Eu³⁺-smectites. *Chemistry Letters*, **35**, 638-639.
- van Olphen, H., (1977) An Introduction to Clay Colloid Chemistry 2nd ed. Wiley-Interscience, New York.
- Paulus, W. J., Komarneni, S. and Roy, R. (1992) Bulk synthesis and selective exchange of strontium ions in Na₄Mg₆Al₄Si₄O₂₀F₄ mica. *Nature*, **357**, 571-573.
- Rabung Th., Pierret M. C., Bauer A., Geckeis H., Bradbury M. H. and Baeyens B. (2005) Sorption of Eu(III)/Cm(III) on Ca-montmorilloniteand Na-illite. Part 1:

Batch sorption and time-resolved laserfluorescence spectroscopy experiments: *Geochim. Cosmochim. Acta*, **69**, 5393–5402.

- Selvan, S.T., Hayakawa, T., and Nogami, M. (1999) Remarkable influence of silver islands on the enhancement of fluorescence fro Eu³⁺ ion-doped silica gels: *Journal* of Physical Chemistry B, 103, 7064-7067.
- Shichi, T. and Takagi, K. (2000) in *Solid State and Surface Photochemistry, vol. 5.* (V. Ramamurthy and K. S. Schenze, editors) Marcel Dekker, New York, pp. 31-110.
- Soma, M., Tanaka, A., Seyama, H., Hayashi, S. and Hayamizu, K. (1990) Bonding states of sodium in tetrasilicic mica. *Clay Science*, **8**, 1-8.
- Stumpf, T., Bauer, A., Coppin, F., Fanghänel, T. and Kim, J.I. (2002) Inner-sphere, outer-sphere and ternary surface complexes: a TRLFS study of the sorption process of Eu(III) onto smectite and kaolinite: *Radiochim. Acta*, **90**, 345–349.
- Takahashi, Y., Kimura, T., Kato, Y., Minai, Y. and Tominaga, T. (1998) Characterization of Eu(III) species sorbed on silica and montmorillonite by laser-induced fluorescence spectroscopy: *Radiochim. Acta.*, **82**, 227-232.
- Urabe, K., Sakurai, H. and Izumi, Y. (1988) Cation-exchange synthetic saponite as a 'heat-stable' acidic clay catalyst. *Journal of Chemical Society, Chemical Communication*, **29**, 1250-1251.
- Zaitoun, M. A., Goken, D. M., Bailey, L. S., Kim, T. and Lin, C. T. (2000)
 Thermoanalysis and emission properties of Eu³⁺/Eu²⁺ in Eu³⁺-doped xerogels: *Journal of Physical Chemistry B*, **104**, 189-196.

Adsorbent	Chemical composition	Unit-cell	Ideal	BET
		weight	surface area	surface area
			(m ² /g)	(m ² /g)
Na ⁺ -montmorillonite	$(Na_{0.53}Ca_{0.09})^{0.71\text{+}}\text{-}[(Al_{3.28}Fe_{0.31}Mg_{0.43})^{oct}(Si_{7.65}Al_{0.35})^{tet}O_{20}(OH)_4]^{0.71\text{-}}$	784	704	6
(Kunipia F)				
Na ⁺ -saponite	$(Na_{0.49}Mg_{0.14})^{0.77\text{+}}\text{-}[(Mg_{5.97}Al_{0.03})^{\text{oct}}(Si_{7.20}Al_{0.80})^{\text{tet}}O_{20}(OH)_4]^{0.77\text{-}}$	810	681	135
(Sumecton SA)				
Na ⁺ -TSM	$Na_2Mg_5Si_8O_{20}F_4$	786	702	7

Table 1. Chemical compositions of clays used in this paper. (Okada et al., 2005a)

Host	Maximum	Туре	Langmuir isotherm ^a			Freundlich isotherm ^b		
	adsorbed amount		m	b	r^2	\mathbf{K}_{f}	n	r ²
	of Eu ³⁺		(g/meq)	(10^3 L/meq)		$(meq g^{-1} mM^{1/n})$		
	(meq / g)							
Kunipia F	1.02	L	0.90	6.0×10^{1}	0.99	2.5	1.5	0.93
Sumecton SA	0.71	L	1.1	1.4×10^{2}	0.96	1.2	1.9	0.99
TSM	1.00	Н	0.99	7.3	1.0	1.2	7.2	0.86

 Table 2
 Parameters of the adsorption data fitted to Langmuir and Freundlich equations

a: $C_e / Q = mC_e + b$

 $\mathbf{b}:\mathbf{Q}=\mathbf{K}_{f}\mathbf{C}_{e}^{1/n}$

Figure 1. Adsorption isotherms of Eu³⁺ on Kunipia F (square), Sumecton SA (circle) and Na⁺-TSM (diamond). Solid lines are graphs of the Langmuir equation calculated using the fitted parameters (Table 1) for each data set.

Figure 2. XRD patterns of (a) Sumecton SA, (b) Eu³⁺-Sumecton SA, (c) Kunipia F, (d) Eu³⁺-Kunipia F, (e) Na⁺-TSM and (f) Eu³⁺-TSM.

Figure 3. Luminescence spectra of reaction products of $EuCl_3$ with (a) Sumecton SA and (b) Na⁺-TSM. The numbers along the right side of each figure designate the amount of Eu^{3+} (meq/g clay).

Figure 4. The dependence of luminescence intensity $({}^{5}D_{0}{}^{-7}F_{2}$ transition) on Eu $^{3+}$ concentration for (a) Sumecton SA (circle), Na $^{+}$ -TSM (triangle) and (b) magadiite (diamond, Mizukami et al., 2002).