# An Examination for Increasing the Motor Constant of a Cylindrical Moving Magnet-Type Linear Actuator

Tsutomu Mizuno<sup>1</sup>, Senior Member, IEEE, Masanori Kawai<sup>1</sup>, Fumiaki Tsuchiya<sup>1</sup>, Masashi Kosugi<sup>1</sup>, and Hajime Yamada<sup>2</sup>, Member, IEEE

<sup>1</sup>Faculty of Engineering, Shinshu University, Nagano 380-8553, Japan <sup>2</sup>Doctors International Collaboration Institute, Nagano, 380-0928, Japan

This paper describes the motor constant of a cylindrical moving magnet-type linear actuator for obtaining high response characteristics. The theoretical expression of motor constant square density *G* is deduced using the permeance method. A prototype linear actuator is designed in both permeance method and the finite element method. Measured motor constant and motor constant square density of the prototype linear actuator are 17.1 N<sup>2</sup>/(Wm<sup>3</sup>) and  $2.6 \times 10^6 N^2/(Wm^3)$  respectively, where these values are over twice as large as those of conventional linear motors.

Index Terms—Finite element method (FEM), linear actuator, motor constant, motor constant square density, permanent magnet, permeance method.

## I. INTRODUCTION

ARGE motor constant is essential for linear actuators (LAs) used in factory automation equipment to minimize the motor size and improve its respondency [1], [2]. This paper compares the motor constant between a prototype LA and conventional linear motors. The prototype LA is designed by using the permeance method and the finite element method [(FEM): Maxwell 2D Ver. 8, Ansoft Co., Ltd.] in order to satisfy these demands.

## II. STRUCTURE OF A MOVING MAGNET-TYPE LA

Fig. 1 shows the basic structure of a moving magnet-type LA. The LA is composed of yokes, permanent magnets (Nd–Fe–B) and a coil. An LA with dimensions of a diameter of 53 mm and a length of 50 mm is used to examine the motor constant. The pure iron is used for a yoke with its length of the gap  $\delta$  is 0.3 mm, slot open width *s* is 3 mm, taper angle  $\alpha$  is 45°, taper height *h* is 0.5 mm and thickness of the bobbin is 1 mm.

## III. DERIVATION OF THE MOTOR CONSTANT SQUARE DENSITY

#### A. Derivation of the Theoretical Expression

Fig. 2 shows the permeance model in the LA [3]. The magnetic resistance  $R_1-R_9$  in the gap are shown in Fig. 2,  $R_{m1}-R_{m6}$  are the inside magnetic resistance of the permanent magnets. Fig. 3 shows the magnetic equivalent circuit of the moving magnet-type LA. Magnetic flux  $\Phi_1 - \Phi_6$  flows through  $R_1-R_6$  respectively.  $F_m$  is the magnetomotive force of the permanent magnets NI is the magnetomotive force by the coil current. The static thrust is calculated by using the permeance method with following assumptions.

- 1) The permeability of the yoke is regarded as infinity.
- The effect of the magnetic saturation in the yoke is disregarded.
- 3) The leakage flux is disregarded.



Fig. 1. Basic structure of a cylindrical moving magnet-type LA (unit: millimeters).



Fig. 2. Permeance model in the moving magnet-type LA.

Magnetic energy  $W_{\rm m}$  and static thrust F are expressed respectively as follows using the magnetic resistance  $R_1-R_6$  and



Fig. 3. Magnetic equivalent circuit of the moving magnet-type LA.

the magnetic flux  $\Phi_1 - \Phi_6$ .

$$W_{\rm m} = \frac{1}{2} \Phi_1^2 (R_1 + R_{\rm m1}) + \frac{1}{2} \Phi_2^2 (R_2(x) + R_{\rm m2}(x)) + \frac{1}{2} \Phi_3^2 (R_3 + R_{\rm m3}) + \frac{1}{2} \Phi_4^2 (R_4 + R_{\rm m4}) + \frac{1}{2} \Phi_5^2 (R_5(x) + R_{\rm m5}(x)) + \frac{1}{2} \Phi_6^2 (R_6 + R_{\rm m6}) + \frac{1}{2} \frac{(NI)^2 (R_7 R_8 + R_8 R_9 + R_7 R_9)}{R_7 R_8 R_9} (J)$$
(1)  
$$F = \frac{\partial W_{\rm m}}{\partial x} = \frac{2\pi \mu_r \mu_0 \{2H_{\rm c} t_{\rm m}(1 - w_{\rm m}/w_{\rm m}) - NIx\} NI}{[\ln(1 + t_{\rm m}/r_{\rm y}) + \mu_r \ln\{1 + \delta/(r_{\rm y} + t_{\rm m})\}]} (N)$$
(2)

where  $\mu_{\rm r}$  is the recoil relative permeability,  $\mu_0$  is the vacuum permeability (H/m),  $w_{\rm c}$  is the width of the coil (m),  $H_{\rm c}$  is the coercive force (A/m),  $t_{\rm m}$  is the thickness of the permanent magnet (m),  $w_{\rm m}$  is the length of the mover (m),  $w_{\rm M}$  is the length of the permanent magnet (m), x is the displacement (m) and  $r_{\rm y}$  is the radius of the mover yoke (mm).

Equation (2)indicates that parameters such as  $w_{
m m}/w_{
m M}, t_{
m m}/r_{
m y}$  and  $\delta(r_{
m y}~+~t_{
m m})$  must be reduce in order to increase the static thrust [4]. The permeance method makes it easier to understand the effect of each dimension on the static thrust. The calculation is made under the assumption that there is no magnetic saturation in the yoke. At this point, the dimension of the stator yoke was decided in order to become the magnetic flux density in the stator yoke of the  $B_{\rm v} = 1.2$  T. Magnetic flux density  $B_{\rm v}$  and magnetic flux  $\Phi_{\rm i}$  of the slot open width are given by

$$B_{\rm y} = \frac{\Phi_1 + \Phi_2 + \Phi_3 + \Phi_{\rm i}}{\pi \{ (r_{\rm y} + t_{\rm m} + \delta + t_{\rm y})^2 - (r_{\rm y} + t_{\rm m} + \delta)^2 \}}$$
(T) (3)

$$\Phi_{\rm i} = NI \frac{R_7 R_8 + R_8 R_9 + R_9 R_7}{R_7 R_8 R_9} \,(\rm Wb) \tag{4}$$



Fig. 4. Motor constant square density dependence with the mover radius as the parameter of permanent magnet thickness in both permeance method and FEM (NI = 500 A).



Fig. 5. Basic structure of the moving magnet-type prototype LA (unit: millimeters).

The resistance R and copper loss  $w_c$  are derived as follows [4]:

$$R = \rho \zeta \frac{w_{\rm c} t_{\rm c} l_{\rm c}}{\pi^2 (d/2)^4} (\Omega) \tag{5}$$

$$W_{\rm c} = RI^2$$
  
=  $\rho \zeta \frac{w_{\rm c} t_{\rm c} l_{\rm c}}{\pi^2 (d/2)^4} I^2(W)$  (6)

where  $\rho$  is the copper resistivity ( $\Omega$ m),  $\zeta$  is the space factor (= 0.8),  $w_c$  is the axial length of the coil (m),  $t_c$  is the thickness of the coil (mm),  $l_c$  is the average length per coil of the copper wire (m) and d is the conductorial diameter (m).

Motor constant  $K_{\rm m}$  of LA is defined as follows:

$$K_{\rm m} = \frac{F}{\sqrt{W_{\rm c}}} ({\rm N}/\sqrt{{\rm W}}). \tag{7}$$

LAs with large dimensions have generally a large motor constant. Then, The motor constant square density G is compared between the LA and conventional linear motors with different dimensions, where G is the square of the motor constant  $K_{\rm m}$ 

 TABLE
 I

 COMPARISON OF THE MOTOR CONSTANT AND MOTOR CONSTANT SQUARE DENSITY BETWEEN THE TRIAL LA AND PM-TYPE LDMS

| Item                          | Symbol              | Prototype LA         | PM type LDM                           | Unit           |
|-------------------------------|---------------------|----------------------|---------------------------------------|----------------|
| Motor volume                  | V                   | $1.1 \times 10^{-4}$ | $1 \times 10^{-5} - 1 \times 10^{-3}$ | m <sup>3</sup> |
| Motor constant                | K <sub>m</sub>      | 17.1                 | 0.1 – 70                              | N/√W           |
| Motor constant square density | $G(=K_{\rm m}^2/V)$ | $2.6 \times 10^{6}$  | $1 \times 10^2 - 1 \times 10^6$       | $N^2/(Wm^3)$   |



Fig. 6. Static thrust versus displacement characteristics of the moving magnet type LA.

divided by volume V motor constant square density G is given by

$$G = \frac{K_{\rm m}^2}{V} = \frac{4\pi^2 \mu_r^2 \mu_0^2 \zeta w_{\rm c} t_c \{2H_{\rm c} t_{\rm m} (w_{\rm m} - w_{\rm m}) - NIx\}^2}{\rho l_c w_{\rm m}^2 V [\ln(1 + t_{\rm m}/r_y) + \mu_r \ln\{1 + \delta/(r_y + t_{\rm m})\}]}$$
(8)

# B. Comparison of the Motor Constant Square Density

Fig. 4 shows the motor constant square density dependence with the mover radius as the parameter of permanent magnet thickness in both permeance method and FEM. The motor constant square density G becomes maximum in case that the ratio  $r_{\rm M}/r$  of mover radius  $r_{\rm M}$  to the radius r of LA is 0.4 ( $r_{\rm m} = 11$ mm) and the thickness of the permanent magnets  $t_{\rm m}$  is 2 mm.

### IV. COMPARISON OF THE MOTOR CONSTANT

Fig. 5 shows the basic structure of a moving magnet-type prototype LA. Referring to the calculated results shown in Fig. 4, 3 mm for the permanent magnets thickness  $t_{\rm m}$  and 11 mm for the mover radius  $r_{\rm M}$  were given as the optimum value set. These optimum values are also supported from the view point of the armature reaction of permanent magnets.

Fig. 6 shows the static thrust versus displacement characteristics of the LA. Maximum computation errors in permeance method and FEM were 11% and 7% respectively in comparison with measured values. It is assumed that the static thrust drop seen in the measurement at the right shoulder is due to the magnetic saturation in the yoke at a high current of NI = 1000 A.

Table I compares the motor constant  $K_{\rm m}$  and the motor constant square density G between the prototype LA and conventional moving magnet-type linear DC motors (PM-type LDMs) [5]. Motor constant square density G of the LA gives  $2.6 \times 10^6 \text{ N}^2/(\text{Wm}^3)$  that is over twice as large as that of conventional PM-type LDMs.

## V. CONCLUSION

This paper characterized the motor constant and motor constant square density of the cylindrical moving magnet LA. The following results were obtained.

- The theoretical expression of the motor constant square density G was deduced using the permeance method. This expression gave an effective guideline for designing devices and understanding theoretical aspect of moving magnet-type LAs.
- 2) The motor constant square density G became maximum in case that the ratio  $r_{\rm M}/r$  was 0.4 and  $t_{\rm m}$  was 2 mm.
- 3) Motor constant square density G of the prototype LA gave  $2.6 \times 10^6 \text{ N}^2/(\text{Wm}^3)$  that was over twice as large as that of conventional PM-type LDMs.

#### REFERENCES

- S. Guerin, E. Sedda, C. Fageon, J.-P. Yonnet, and C. Chillet, "An original configuration of linear actuator with parallel polarization," in *Proc. Int. Symp. Linear Drives for Industry Applications*, 2003, pp. 557–559.
- [2] M. Tsutomu, U. Makoto, T. Masaki, Y. Takuya, Y. Hideo, S. Kouyou, and Y. Hajime, "A design of a moving magnet type linear oscillatory actuator having motor constant," *MAGDA*, *AL-1*, pp. 21–24, 2003.
- [3] M. Tsutomu, K. Masanori, T. Fumiaki, K. Masashi, and Y. Hajime, "Consideration on static characteristics of cylindrical moving magnet type linear actuator," *Trans. Inst. Elect. Eng. Jpn. LD-04-82*, pp. 17–22, 2004.
- [4] M. Iwadare, T. Mizuno, K. Koyama, T. Anzai, and H. Yamada, "Relationship between the time constant and slot width of a moving-magnettype linear dc motor," *J. The Magn. Soc. Jpn.*, vol. 23, no. 4–2, pp. 1681–1684, 1999.
- [5] H. Wakiwaka, M. Norhisam, A. Kamiya, H. Yajima, N. Fujiwara, and S. Takada, "Evaluation of the characteristics of small linear electromagnetic actuators," *J. Magn. Soc. Jpn.*, vol. 27, no. 4, pp. 482–485, 2003.

Manuscript received February 2, 2005.