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Summary 

 

The physical properties of hydrated multilamellar sample of 

1,2-dimyristamido-1,2-deoxyphosphatidylcholine (DDPC) were investigated by means 

of differential scanning calorimetry (DSC), static X-ray diffraction, and simultaneous 

DSC and X-ray diffraction. The DDPC is a synthetic sphingomyelin analogue and has 

two amide bonds in its hydrophobic parts. This paper reports on metastable phase 

behavior of the hydrated DDPC sample.  By cooling from a chain-melted state at the 

rates of greater than 4 oC min-1, hydrated DDPC bilayers form a metastable gel phase.  

In the gel phase, the hydrophobic chains are tilted with respect to the bilayer normal, as 

like the gel phase of glycero-phosphatidylcholines.  By heating, the metastable gel 

phase is transformed in to a stable phase associated with an exothermic heat event at 

18.3 oC (∆H = 14.6 kJ mol-1) and then the stable phase is transformed into a 

liquid-crystalline phase at 25.6 oC (∆H = 42 kJ mol-1).  The incubation at 17 oC for 

more than 1 hour also induces the formation of the stable phase. In the stable phase, the 

hydrophobic chains are packed into highly ordered crystal-like structure. However, the 

X-ray diffraction pattern of the stable phase suggested that the entire DDPC molecules 

do not form a two-dimensional molecular ordered lattice, differing from normal subgel 

phase of glycero-phosphatidylcholines.  The structure and phase behavior of DDPC 

revealed by the present study are discussed from the viewpoint of hydrogen bonds.  
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1. Introduction 

 

Acylamino-phospholipid, 1,2-dimyristamido-1,2-deoxyphosphatidylcholine 

(DDPC) has two amide bonds, instead of two ester bonds in 

dimyristoylphosphatidylcholine (DMPC) (Fig.1). The DDPC was synthesized as an 

analogue of sphingomyelin by Sunamoto et al. [1].  One of their motivations was to 

create an artificial boundary lipid.  Jost et al. [2] first proposed the concept of 

boundary lipid, based on their electron spin resonance (ESR) study of the interaction 

between phospholipids and cytochrome oxidase.  The boundary lipid is defined as the 

layer of lipids surrounding an integral membrane protein in which the mobility of the 

lipids is restricted in comparison with that of bulk lipids.  From 1970s to early 1990s, 

it was speculated that sphingomyelin is one of candidates of the boundary lipid in 

biomembranes, because it was suggested that sphingomyelin's amide group can bind to 

an integral membrane protein by forming a hydrogen bond [3]. Based on such a 

situation, Sunamoto et al. designed the chemical structure of DDPC [1].  Nuclear 

magnetic resonance (NMR) study has revealed that DDPC interacts with glycophorin 

strongly in comparison with DMPC, indicating that DDPC behaves as boundary 

lipid-like for glycophorin in DDPC/DMPC mixed bilayers [4]. This conclusion has been 

also supported by ESR study [5]. Furthermore, it has been revealed that addition of 

DDPC to a liposome enhance the efficiency of protein transfer from various biological 

systems to the liposome [6-11].   

In spite of considerable effort, there is no direct evidence that sphingomyelin 

acts as boundary lipid in natural biomembranes. However, a renewed interest in 

sphingomyelin has emerged from the late 1990s, in connection with the concept of 

functional lipid domains, so-called "lipid rafts" [12-14].  The lipid rafts are constituted 

of cholesterol and sphingolipids (sphingomyelin and glycosphingolipids, such a like, 

GM1-ganglioside) and incorporate specific proteins such as 

glycosylphosphatidylinositol (GPI)-anchored proteins, doubly acylated proteins, 

palmitoylated transmembrane proteins, etc.  The lipid domains are thought to play 

important roles in many biological processes, such as, signaling, membrane fusion, lipid 
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sorting, and protein trafficking.  Recently, it has been suggested that the hydrogen 

bond between the amide group of the sphingolipid ceramide backbone and the 3'-OH 

group of cholesterol is one of key factors for the formation of lipid rafts [15,16].  In 

addition, Masserini and Ravasi [17] have proposed a hypothesis that an intermolecular 

hydrogen bond between hydroxyl and amide groups of the ceramide moiety of 

sphingolipids is also one of the main driving forces of lipid raft formation. 

Hence, it is of interest to study the physical properties of lipids having amide 

bonds, such as DDPC. This work aims to get basic knowledge on the physical properties 

that is needed to discuss the function of the lipids having amide bonds in the lipid rafts 

and the molecular mechanism of DDPC-enhanced protein transfer.   

After the succession of DDPC synthesis, studies on the physical properties of 

DDPC have been carried out with the use of various techniques [1,4,18-20]. In these 

previous studies, no structural investigation has been performed. The detailed phase 

behavior depending on thermal history has not been examined, although the appearance 

of metastable phases has been reported for many natural and synthetic sphingomyelin 

bilayer systems [21-23].  In the present study, we investigated the thermal and 

structural properties of the DDPC bilayers, paying attention to the thermal history 

dependant phase behavior.  For this purpose, in addition to normal differential 

scanning calorimetry (DSC) and static X-ray diffraction, simultaneous DSC and X-ray 

diffraction measurements were performed with the use of a synchrotron radiation X-ray 

beam.  Here, we report that after rapid cooling from a chain-melted state, DDPC forms 

a metastable gel phase and that the gel phase is transformed into a stable crystal-like 

phase with an exothermic process by heating scan. 

 

2. Materials and methods 

 

2.1 Materials 

 

Acylamino-phospholipid, 1,2-dimyristamido-1,2-deoxyphosphatidylcholine 

(DDPC), was synthesized from a starting material, diaminopropanol. The detailed 

 4



methods of the synthesis and purification have been reported elsewhere [1].  

Dipalmitoyl-L-α-phosphatidylcholine (DPPC) and poly(vinylpyrrolidone) (PVP) of 

average molecular weight 40,000 were purchased from Sigma (St. Louis, MO). The 

DPPC had a purity >99% and were used without further purification. Water used in this 

study was prepared with a Mill-Q system (Millipore Corp., Bedford, USA).  

 

2.2 Sample preparation 

For DSC, hydrated samples were prepared directly in DSC sample pans. 

Amounts of 1 to 2 mg of the dry lipid samples were accurately weighed and sealed in 

aluminum DSC sample pans with 15 mg of pure water. The lipid concentrations were 

about 7-14 wt%. To get homogeneity, heating and cooling scans from 0 oC to 60 oC 

were performed repeatedly until that identical DSC curves were obtained.      

 For simultaneous X-ray diffraction and calorimetry and static X-ray diffraction, 

to get sufficient X-ray diffraction intensity and heat flow, relatively high concentrated 

samples were prepared as below.  About 20 mg of dry lipid samples were weighed and 

then put into an Eppendorf tube with 0.5 ml pure water.  The lipid and water were 

heated up about 70 oC and kept for 5 min.  Then, the samples were agitated on a vortex 

mixter at a room temperature.  These cycles of heating and agitating were repeated at 

least five times. Next, to concentrate the samples in the Eppendorf tube were 

centrifuged with a temperature-controlled centrifuge (MX-150, Tomy Ltd., Tokyo, 

Japan) with 15,000 rpm for about 60 min at 40 oC. After the centrifugation, supernatant 

water was removed. Judging from the weight, the lipid concentrations of the samples 

treated with this procedure were about 30-40 wt%. 

  

2.3 Differential scanning calorimetry 

 DSC measurements were performed with a DSC6100-Exstra6000 thermal 

analysis system (Seiko Instruments Inc., Chiba, Japan). The scan rate was usually 1.0 or 

2.0 oC min-1. Data acquisition and analysis were carried out using software provided by 

Seiko Instruments Inc.  High-purity gallium and indium were used to calibrate the 

DSC signals.  
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2.4 Static X-ray diffraction 

 Static X-ray diffraction patterns were recorded using a two-dimensional area 

detector (Imaging plate, Fuji Photo Film Co. Ltd., Tokyo, Japan) and a rotating anode 

X-ray generator (RU200BEH, Rigaku, Tokyo, Japan) operating at 50 kV and 30 mA. 

The X-ray beam was focused by a double-mirror optical system and Cu Kα radiation (λ 

= 0.1542 nm) was selected using a Ni filter.  The sample was sealed in a fine wall 

quartz capillary with 1.5 mm diameter.  The capillary was fixed to a brass hollow 

holder.  Temperature of the sample was controlled by circulating water from a 

temperature-controlled water bath to the sample mount. Typical exposure time was 4 

hours.  Several static X-ray diffraction patterns of DPPC bilayers were recorded using 

an X-ray scattering spectrometer installed at BL40B2 of 8 GeV synchrotron radiation 

source of Japan Synchrotron Radiation Research Institute (JASRI). The details of the 

spectrometer have been described elsewhere [24]. In the BL40B2, two-dimensional 

X-ray diffraction patterns were recorded with a Rigaku R-AXIS IV imaging plate 

system. The X-ray wavelength and the exposure time were 0.100 nm and 30 sec, 

repetitively. Two-dimensional diffraction data recorded on imaging plates were 

transformed into one-dimensional data by radial integration. This data conversion was 

performed using FIT2D software written by Dr. A. Hammersley  

(http://www.esrf.fr/computing/scientific/FIT2D/).  The lattice spacings (d) and 

reciprocal spacing (S), 

λ
θsin21

==
d

S , 

where 2θ is the scattering angle and λ is the wavelength of X-ray, were calibrated by the 

diffraction pattern of silver behenate powder crystals [25].   

 

2.5 Simultaneous X-ray diffraction and differential scanning calorimetry  

 Simultaneous measurements with synchrotron radiation were performed at the 

station BL9C of Photon Factory at the High energy Accelerator Research Organization 

(KEK), Tsukuba, Japan.  At the station, the focusing and monochromatizing of the 
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radiation X-ray beam were carried out using a bent mirror and a double Si(111) crystal 

monochromator.  Further beam collimation was performed by means of three 

independent slit systems. The wavelength of X-ray used was 0.15 nm.  By locating two 

position sensitive proportional one-dimensional counters at different positions, both 

small-angle and wide-angle diffraction data were recorded simultaneously. In addition, 

thermal data were collected simultaneously with the use of a modified differential 

scanning calorimeter that was originally developed for use in optical microscopy.  

Details of the modification of the calorimeter, the set-up and the sample cell used have 

been described elsewhere [26]. The DSC data were recorded for the temperature range 

from 0 oC to 40 oC with the scan rate of 2.0 oC/min, but, the exposure of X-ray beam 

was limited to the temperature range from 5 oC to 35 oC.  Thus, total exposure time 

was about 20 min.  For the present set up, the beam intensity at sample position was 

less than about 1010 photons/sec.  This intensity is relatively weak in comparison with 

that of other synchrotron small angle scattering stations equipped with an insertion 

device, such as variable gap wiggler or undulator.  However, because the exposure 

time is comparatively long, it is necessary to evaluate the degree of radiation damage 

carefully. Judging from the following facts, we concluded that there is no serious 

radiation damage of the sample.  It has been reported that radiation damage induces a 

change of lipid phase transition temperature and a disordering of lamellar stacking [27, 

28].  In the present study, such like phenomena were not observed.  After finish of the 

simultaneous measurement, we recorded again X-ray diffraction pattern at 5 oC of the 

sample used the measurement.  The diffraction pattern almost agrees with that of the 

fresh sample subjected to the same thermal history. The widths and relative intensities 

of each diffraction peak were the same within error for both samples. 

 

2.6 Calculation of electron density profiles 

 One-dimensional electron density profiles across the bilayer, )(xρ , on a 

relative electron density scale were calculated from  

{ } ⎟
⎠
⎞

⎜
⎝
⎛+= ∑

=

= L
xhhFhi
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h
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where L is the lamellar spacing,  F (h) is the structure amplitude,  x is the distance 

from the center of the bilayer, and α(h) is the phase angle for each lamellar diffraction 

order h.  The value of exp{iα(h)} should be +1 or -1, because lipid bilayers are 

expected to a centersymmetric system. Before converting structure amplitudes from 

diffraction intensities, the observed lamellar diffraction intensities of each peak were 

corrected for the Lorenz and polarization factors and normalized according to standard 

methods [29].  The determination of the phase angle, α(h), was achieved using 

so-called swelling method.  In the method, it is assumed that the structure of lipid 

bilayer hardly depends on the change of hydration level, i.e., the change of water layer 

thickness. On the basis of this assumption, the structure amplitude curve of the bilayers 

is traced experimentally by varying the thickness of water layers. Only finite number of 

data can be obtained experimentally. Thus, in order to trace continuous structure 

amplitude curve, the Shannon sampling theorem was used according to the proposal by 

Sayre [30].  To vary the thickness of the water layers between the DDPC bilayers, an 

osmotic stress was applied to the hydrated samples.  For the chain melted state samples, 

an osmotic stress by neutral water-soluble polymer (poly(vinylpyrrolidone)) was 

applied [31,32], and for other cases, an osmotic stress by ice was applied [33].  The 

mechanism of generating an osmotic stress is described briefly as follows. 

Poly(vinylpyrrolidone) molecules cannot exist at water layers between lipid bilayers, 

because the average molecular weight of the polymer used in this study is relatively 

high (40,000) and the thickness of the water layers is relatively small (< ~1 nm).  

Owing to this size problem, ice crystals also tend to grow in the water region of outside 

of multilamellar phospholipid vesicles. Because the polymer and ice crystals cannot 

penetrate lipid bilayers, these materials existing outside of the vesicles give an osmotic 

stress and reduce the thickness of water layers between lipid bilayers. The Shannon 

sampling theorem was also used to estimate the value of F(0), according to proposal by 

King and Worthington [34] as follows. Assuming F(0) = 0, we first determined the 

phase angle set by tracing continuous structure amplitude curve as described above. 

Afterwards, the value of F(0) was estimated for all data to fit the best by the sampling 

theorem. It has been pointed out that another method for estimating the F(0) value using 
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the data of volume measurement is superior to this method from a viewpoint of 

accuracy [35,36]. However, the advantage of the method we used is that one can 

estimate the F(0) value only from lamellar X-ray diffraction data. In this paper, we will 

discuss mainly the peak positions of electron density profiles. The peak positions do not 

depend on the F(0) value, if the phase angle estimation is correct. This is a reason why 

we used this method. 

  

3. Results 

 

3.1 Differential scanning calorimetry  

 We found that the phase behavior of hydrated DDPC bilayers depends on the 

thermal history. Figure 2 shows typical DSC thermograms recorded with a scan rate of 

1.0 oC min-1. The thermogram A in Fig. 2 was obtained when the heating scan was 

begun immediately after cooling from 40 oC to 0 oC with a cooling rate of more then 

–4.0 oC min-1.  The thermogram B in Fig. 2 was obtained for samples subjected to an 

incubating at 17 oC for more than 1 hour before cooling to 0 oC. The DSC thermogram 

of the sample without incubation at 17 oC (Fig. 2A) has three transition peaks, two 

endothermic and one exothermic. The smaller endothermic transition occurs at 16.5 oC 

with a transition enthalpy of 1.7 ± 0.2 kJ mol-1. Here, the endothermic direction is taken 

to be positive for the sign of the transition enthalpies. At just above the smaller 

endothermic peak, an exothermic peak is observed. The peak temperature is 18.3 oC and 

the transition enthalpy is –14.6 ± 2.3 kJ mol-1.  The bigger endothermic transition peak 

is observed at 25.6 oC with a transition enthalpy of 42 ± 1 kJ mol-1 for both samples 

with and without the incubating at 17 oC.  

 

3.2 Static X-ray diffraction 

  

 The above DSC results suggest that there are three different phases. To identify 

the three phases, X-ray diffraction experiment was carried out. Figure 3 presents static 

X-ray diffraction patterns for hydrated DDPC samples recorded at 3.5 oC, 20 oC, and 30 
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oC.  All samples were heated up to about 40 oC and cooled down to each measurement 

temperature.  Before the measurements, samples were kept at each measurement 

temperature, at least 1 hour.   

At 3.5 oC and 20 oC, several sharp diffraction peaks are observed in the 

small-angle regions with the ratio 1:1/2:1/3:1/4,..., indicating that the lipid molecules are 

organized in a stacked lamellar array.  The lamellar spacings are 6.17 nm (3.5 oC) and 

5.76 nm (20 oC).  At 3.5 oC, a sharp diffraction peak is observed at 1/0.447 nm-1 

together with a relatively broad diffraction peak centered at 1/0.402 nm-1, in the 

wide-angle region. Here, we call this phase by the term of lamellar gel phase or gel 

phase, simply.  Similar diffraction patterns have been reported for a lamellar gel phase 

(or gel-like phase) with tilted chains of phosphatidylcholines or 

phosphatidylethnolamines at relatively low temperatures (near 0 oC and subzero 

temperatures) [37-39].  The authors of [38, 39] used the term "sub-subgel phase (SGII 

phase)" or "metastable ordered phase (LR1 phase)" to call the phase and discussed the 

existence of another phase transition between these phases and a normal lamellar gel 

phase. 

At 20 oC, in addition to two main peaks at 1/0.431 nm-1 and 1/0.407 nm-1, small 

additional diffraction peaks are observed in the wide-angle region (1/0.476 nm-1, 

1/0.431 nm-1, 1/0.431 nm-1 etc.).  This pattern indicates that the hydrophobic chains are 

packed into a crystal-like highly ordered lattice. In this paper, we call this phase  

"highly ordered gel phase".  By incubating at low temperatures for long time, hydrated 

glycero-phosphatidylcholines forms an ordered phase [40-43], for which a term "subgel 

phase" is usually used.  Later, we will discuss the difference between the highly 

ordered gel phase of DDPC and the subgel phase of glycero-phosphatidylcholines. 

At 30 oC, only two diffraction peaks are observed in the small-angle region.  

However, we concluded that a stacked lamellar array is also formed at 30 oC, judging 

from the ratio of two reflections is 1:1/2 and the fact that, by applying of osmotic 

pressure to the sample, we could detect higher order lamellar diffraction peaks as 

describe later.  The lamellar spacing is 6.52 nm. The broad scattering profile in the 

wide-angle region indicates that the hydrophobic chains are melted state. Hence, the 
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phase at 30 oC is a lamellar liquid-crystalline phase.  

 

3.3 Simultaneous X-ray diffraction and calorimetry 

 In order to investigate the relation between structural changes and thermal 

phase transition behavior, we carried out simultaneous X-ray diffraction and calorimetry 

measurements. Figure 4 displays the results obtained by the simultaneous measurements 

for the samples subjected to different thermal history treatments.  The heating scan rate 

was 2.0 oC min-1.  In the DSC thermograms of the figure, to compare between X-ray 

diffraction and DSC data, by contrast to the usual way, the vertical axis is temperature 

and the horizontal axis is heat flow. From the results obtained by simultaneous 

measurements and the static X-ray diffraction patterns described above, it can be 

concluded that the phase sequences of hydrated DDPC samples are as following. (1) For 

the sample without incubating at 17 oC, after rapid cooling, the gel phase is formed and 

then, by heating, the gel phase is transformed into the highly ordered gel phase 

associated with endothermic and exothermic heat events in the temperature range from 

~16 oC to ~20 oC. Finally, the highly ordered gel phase is transformed into the 

liquid-crystalline phase at ~26 oC. (2) The incubating at 17 oC for more than 1 hour 

induces the formation of the highly ordered gel phase. This highly ordered gel phase is 

converted directly into the liquid-crystalline phase at ~26 oC, by heating.  In other 

word, the present results demonstrate that the gel phase of DDPC is a metastable phase. 

 

3.4 Electron density profiles 

 In order to clarify the further detailed structures of each phase of the hydrated 

DDPC bilayers, electron density profiles have been reconstructed from the lamellae 

diffraction intensity data.  Figure 5 displays the graphs in which, for three different 

temperatures, the normalized structure amplitude data are plotted as a function of 

reciprocal space S and the continuous transform curves are drawn using the Shannon 

sampling theorem.  From these graphs, the phase sequence was deduced to be −, −, +, 

− for all cases, and electron density profiles calculated using this phase set are shown in 

Fig. 6.  In the present study, to vary the thickness of water layers, an osmotic stress by 
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neutral polymer (PVP) was applied to the hydrated DDPC sample at 30 oC.  In the 

sample at 30 oC, although, for the sample in pure water, only two small angle diffraction 

peaks were observed, four diffraction peaks with a ratio of 1/1 : 1/2 : 1/3 :1/4 were 

observed for the samples in polymer solution containing more than 30 wt% PVP, i.e., 

under high osmotic pressure conditions. For zero or low osmotic pressure conditions, it 

can be considered that, due to thermal fluctuation, the intensity of higher order lamellar 

diffraction peaks are too weak to detect experimentally.  The calculated electron 

density profiles show typical characteristic features of "bilayer" structure (Fig. 6).  In 

the electron density profiles, the two peaks in the profiles correspond to the 

electron-rich phosphate moieties of the polar head group of DDPC and the peal-to-peak 

distance (dp-p) is one of the measures of the bilayer thickness. The values are written in 

the figure.  

 

4. Discussion 

 

 The present study revealed that the hydrated DDPC forms three different 

phases: the stable highly ordered gel, metastable gel, and liquid-crystalline phases, and 

that the phase transition sequence depends on the thermal history.  In addition, the 

present X-ray diffraction study characterized the structural properties of each phase. In 

order to address the feature of the amide bond of DDPC, we discuss the present results 

by comparing with literature data of sphingomyelins and glycero-phosphatidylcholines.   

The fatty acyl residue of natural sphingomyelins is a mixture of several species. 

Owing to this heterogeneity, it is difficult to interpret the experimental data on the 

physical properties of natural sphingomyelins. Hence, here we compare with data of 

synthetic chemically pure sphingomyelins.  To our knowledge, however, there is no 

detailed report of the physical properties of synthetic chemically pure 

myristoylsphingomyelin that has hydrophobic chain lengths corresponding to DDPC. 

Thus, we compare our results with the reported results of synthetic pure 

stearoylsphingomyelin that is one of the most extensively studied sphingomyelins with 

two equivalent length hydrophobic chains.  Bruzik and Tsai [22] have reported that 
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totally synthetic stereochemically pure D-erythro steraloysphingomyelin exhibits 

complex phase behavior depending on thermal history and that the lipid has three 

different gel phases: two are metastable and one is stable.  This behavior is similar to 

that of DDPC, that is, both lipids have several different gel phases.  NMR study [23] 

has revealed that the rotation of the phosphocholine headgroup of the D-erythro 

stearoylsphingomyelin is frozen in the stable gel phase.  From this viewpoint, the 

stable gel phase of the D-erythro stearoylsphingomyelin is the same as the subgel phase 

of glycero-phosphatidylcholines [43].  Later, we will discuss the problem of the 

headgroup rotation of DDPC in the highly ordered gel phase.  

The synthetic method used in the preset study produces raceme DDPC samples. 

On the basis of the results obtained by DSC, flourescence spectroscopy, and X-ray 

diffraction, it has been revealed that DL-erythro steraloysphingomyelin also exhibits 

thermal history dependant phase behavior, that is, the DL-erythro 

stearoylsphingomyelin has, at least, two gel phases: one is a metastable phase and the 

other is a stable phase [21]. The stable gel phase melts at 57 oC and gives rise to a 

number of sharp diffraction peaks in its wide angle X-ray diffraction pattern. The latter 

fact indicates that the packing of hydrophobic chains of the stable gel phase is more 

ordered than that typical phospholipid gel phase. This chain packing state is the same as 

that of the highly ordered gel phase of DDPC.  In addition, under a certain thermal 

history condition, by heating, the metastable gel phase of DL-erythro 

stearoylsphingomyelin is transformed into the stable phase after endothermic and one or 

more exothermic events (Fig.1B of the paper by Estep et al. [21]).  Hence, except for 

the transition temperatures, the phase behavior of DL-erythro stearoyl-sphingomyelin is 

very similar to that of DDPC revealed by the present study.  Since detailed X-ray 

analyses have not been performed, we cannot continue any further comparative 

discussion on the structures of DDPC and the chemically pure synthetic 

sphingomyelins.  

Next, let us compare the structures of DDPC in each phase with those of 

corresponding glycero-phosphatidylcholine, i.e., dimyristoylphosphatidylcholine 

(DMPC).  We recorded the static X-ray diffraction pattern of the liquid-crystalline 
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phase of DDPC at 30 oC and could detect only two lamellar diffraction peaks.  

Petracche et al. [44] have reported X-ray diffraction data of the liquid-crystalline phase 

of fully hydrated DMPC under various osmotic pressure conditions at the same 

temperature (30 oC).  Although Petracche et al. [44] did not described directly, judging 

from the Fig.4 of their paper, it seems that they could also observe only two orders of 

lamellar diffraction under no osmotic pressure condition.  This is due to the thermal 

undulation of the fluid liquid-crystalline phase lipid bilayers. Under relatively high 

osmotic pressure conditions, Petracche et al. [44] have detected four orders of lamellar 

diffraction. From the electron density files calculated using the four orders, they have 

reported the dp-p value of the liquid-crystalline phase of DMPC under 27 atm osmotic 

pressure to be 3.52 nm. In the present study, the dp-p value of DDPC under 31 atm 

osmotic pressure is 3.60 nm (Fig. 6A).  Both values are almost identical, taking 

account of the resolution of the electron density profiles calculated from only four 

orders of diffraction.  This suggests that the bilayer structures are similar to both 

DMPC and DDPC in the liquid-crystalline phase.   

For the gel phase of fully hydrated DMPC bilayers, Tristram-Nagle et al. [45] 

have estimated the dp-p value of DMPC to be 4.01 ± 0.01 nm from high resolution 

electron density profile calculated using ten orders of lamellar diffraction obtained from 

the oriented sample.  This value is almost identical with the dp-p value of DDPC 

estimated here (4.03 nm), suggesting that the structures of DMPC and DDPC bilayers 

are almost the same in the gel phase. The hydrocarbon chains of DMPC are tilted to the 

bilayer normal in the gel phase [35-37, 45]. Hence, one can conclude that the 

hydrophobic chains of DDPC are tilted to the bilayer normal in the gel phase. This is 

also supported by the shape of wide-angle X-ray diffraction profile (Fig. 3A).  The dp-p 

value of the highly ordered gel phase of DDPC is almost same as that of the gel phase, 

indicating that the chains are also tilted in the highly ordered gel phase.  

Subsequently, let us discuss the thermodynamic data.  From the transition 

enthalpy values obtained by DSC, one cannot estimate absolute enthalpy values of each 

phase, but one can calculate the difference between any two phases. The difference 

enthalpy between the gel and liquid-crystalline phases of DDPC is calculated to be 29.1 
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kJ mol-1 (= 42 – 14.8 + 1.7).  For DMPC, the value is calculated to be about 29 kJ 

mol-1, using the literature values [37,46]. Those two values are almost identical. This 

supports the conclusion of the X-ray diffraction, i.e., the structures of DMPC and DDPC 

bilayers are almost the same in both gel and liquid-crystalline phases.  

Finally, we discuss the highly ordered gel phase by comparing with the subgel 

phase of DMPC. The gel phase of DMPC bilayers is transformed into the subgel phase 

by incubating at low temperatures for long time. Lewis et al. [46] has reported that the 

gel phase of DMPC is also a metastable phase. The transition temperature from the 

stable subgel phase to a ripple phase of DMPC is about 2 oC higher than that from the 

metastable gel phase to the ripple phase, i.e., by heating, the subgel phase of DMPC 

bilayers converts directly into the ripple phase not the gel phase [46]. Interestingly, it 

has been recently revealed that myristoylpalmitoylphosphatidylcholine exhibits almost 

the same phase transition sequence [47].  

In comparison with the difference enthalpy value between the liquid-crystalline 

and subgel phase of DMPC (50.7 kJ mol-1) [46], the corresponding value between the 

liquid-crystalline and highly ordered gel phase of DDPC is apparently small (42 kJ 

mol-1). This implies that the highly ordered gel phase of DDPC is less ordered than the 

subgel phase of DMPC. The subgel phases of glycero-phosphatidylcholines are 

relatively dehydrated structures characterized by strongly interacting and fairly 

immobilized polar headgroups [41-43, 46, 48]. Furthermore, in the subgel phase, the 

entire lipid molecules form a two-dimensional ordered lattice [49] that gives rise to 

several X-ray diffraction peaks in middle-angle region (S = 1.0 - 2.0 nm-1) [41-43,47,49].  

Figure 7 shows the middle- and wide-angle diffraction patterns of the highly ordered gel 

phase of DDPC and the subgel phases of dipalmitoylphosphatidylcholine (DPPC).  It 

should be that the highly ordered gel phase of DDPC is compared with the subgel 

phases of DMPC.  However, a complicated temperature treatment is necessary to 

achieve a formation of the subgel phase of DMPC [46]. While the formation of subgel 

phase of DPPC is relatively easily formed by only incubating at 0-4 oC for several days 

[40-43,48]. Strictly speaking, as revealed by detailed kinetic studies [50, 51], the 

incubation at 0-4 oC for several days cannot induce a complete homogenous subgel 
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phase formation for DPPC. The incubation causes that only 70-80% of the whole DPPC 

molecules convert into the subgel phase from the gel phase However, the small 

remainder of gel phase does not greatly contribute to the X-ray diffraction profiles. Thus, 

here we use DPPC as the second best material to discuss the feature of highly ordered 

gel phase of DDPC. The diffraction peaks reflected from the two-dimensional molecular 

lattice, that are associated with ordering of the entire molecule including the headgroup, 

as well as of the hydrocarbon chains, are clearly observed for the subgel phase of DPPC. 

On the other hand, for the highly ordered gel phase of DDPC, no diffraction peak 

appears in the middle angle region except for higher order lamellar diffraction peaks.  

This indicates that the entire DDPC molecules in the highly ordered gel phase do not 

form an ordered two-dimensional lattice and that the molecular packing structure is 

relatively disordered as compared with that of the subgel phase of 

glycero-phosphatidylcholines.  

As mentioned above, although the structural features of DDPC bilayers are 

similar to that of glycero-phosphatidylcholine bilayers for the gel and liquid-crystalline 

phases from various viewpoints, the structural features of highly ordered gel phase of 

DDPC differs from that of the subgel phase of glycero-phosphatidylcholine. In the 

following, we will consider the origin that causes this difference from the viewpoint of 

the interaction around the amide bonds of DDPC bilayers. In addition, we will discuss 

the relation between the interaction around the amide bonds and the peculiar phase 

behavior of DDPC bilayers, i.e., the metastable gel phase is quickly transformed into the 

stable highly ordered gel phase by only heating.  

It is believed that three different interactions mainly contribute to the formation 

of the subgel phase of glycero-phosphatidylcholines: van der Waal interaction between 

hydrocarbon chains, polar interaction at the headgroups, and the interaction at the 

polar/apolar interfacial regions of lipid bilayers [46]. As pointed out by McElhaney and 

co-workers [46,48], because it is incompatible to maximize the three above-mentioned 

interactions in the bilayer structures, the optimization of three different interactions 

should be required to form the subgel phase of glycero-phosphatidylcholines.  On the 

other hand, the present X-ray diffraction study shows no ordering of headgroups of 
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DDPC in the highly ordered gel phase, suggesting that polar interaction at the 

headgroups does not mainly contribute to formation of the highly ordered gel phase. 

Hence, it can be presumed that the optimization of only two different interactions at the 

chain and polar/apolar interfacial regions of is required for the formation of the highly 

ordered gel phase of DDPC. This would be one of the reasons for the quick formation of 

the highly ordered gel phase of DDPC from the metastable gel phase by only heating. In 

addition, the hydrogen bonds formed at the amide groups of DDPC would contribute to 

the quick formation of the highly ordered gel phase.   

Previous Fourier transform infrared and NMR spectroscopic studies [1,18] 

have indicated that the amide group of DDPC is linked through hydrogen bonding to a 

water molecule or to an adjacent hydrogen-accepting group. Hence, it is strongly 

suggested that an intermolecular lateral hydrogen bond network is formed between NH 

and CO groups, such like a network of hydrogen bonds proposed by Masserini and 

Ravasi [17], in order to explain the mechanism maintaining sphingolipid molecules 

correlated with each other in sphingolipid domains.  It is very likely that, by this 

hydrogen bond network, the hydrophobic chain parts of DDPC tend to approach closely 

each other and to form easily a crystal-like ordered structure. The other 

hydrogen-accepting group of DDPC is the phosphate of the headgroup. On the basis of 
31P- NMR data, Zhou et al. [20] have suggested the formation of intramolecular 

hydrogen bonding between the amide and phosphate groups. Such the intramolecular 

hydrogen bonding has been reported for sphingomyelins [3, 52-54]. In addition, recent 

molecular dynamic simulation study [54] has shown that the hydrogen bond between 

the amide and phosphate group does not greatly inhibit the conformational freedom of 

the polar headgroup of sphingomyelin.  It is expected that such same situation occurs 

for DDPC bilayers and that, a hydrogen-bonded phosphate-water network that is 

observed for DMPC crystal [55] is not formed in the stable highly ordered gel phase of 

DDPC.  In conclusion, we infer that this nature of the intramolecular hydrogen bond of 

DDPC is one of the reasons for the fact that the DDPC headgroups do not form an 

ordered lattice while the hydrophobic chains are packed into a crystal-like structure in 

the stable highly ordered gel phase.    
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Figure Captions 

 

Figure 1 

Chemical structure of 1,2-dimyristamido-1,2-deoxyphosphatidylcholine (DDPC). 

 

Figure 2 

DSC thermograms of hydrated DDPC samples recorded at heating rate of 1.0 oC min-1. 

(A) Heating scan after cooling from 40 oC to 0 oC. (B) Heating scan after cooling from 

17 oC to 0 oC following more than 1hr incubation at 17 oC. 

 

Figure 3 

Static X-ray diffraction patterns of hydrated DDPC samples recorded at (A) 3.5 oC, 

(B)20 oC, and (C) 30 oC.  Each inset shows the patterns of the wide-angle region.  

 

Figure 4 

Comparison among small- and wide-angle X-ray diffraction and DSC data obtained 

simultaneously for hydrated DDPC samples. The scanning rate was 2.0 oC min-1. (A) 

Heating scan after cooling from 40 oC to 0 oC. (B) Heating scan after cooling from 17 
oC to 0 oC following more than 1hr incubation at 17 oC.  For the DSC data, the 

horizontal and vertical axes represent heat flow and temperature, respectively. 

 

 

Figure 5 

Structure amplitudes and phase assignments of a hydrated DDPC sample at different 

temperatures: (A) 3.5 oC, (B)20 oC, and (C) 30 oC.  The solid curves are drawn using 

the Shannon sampling theorem. 

 

Figure 6 

Relative electron density profiles of a hydrated DDPC sample at different temperatures: 

(A) 3.5 oC, (B) 20 oC, and (C) 30 oC. For 30 oC, the DDPC samples were dispersed into 
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solution containing 30wt% PVP,  i.e.,  under 6.8 atm osmotic pressure. 

 

Figure 7 

X-ray diffraction patterns of the subgel phase of hydrated (A) 

dipalmitoylphosphatidylcholine (DPPC) and (B) DDPC samples recorded at 20 oC.  

Before the measurement, the DPPC sample was kept at about 4 oC for one week to form 

the subgel phase. For DDPC, the pattern is the same as Fig.3B. To show relatively week 

diffraction peaks clearly, the diffraction intensities are presented by logarithmic scale.  

The arrows indicate the diffraction peaks come from a two-dimensional ordered lattice 

formed by entire DDPC molecules. The marks, d/5, d/6.,…, indicate that the peaks 

correspond higher order of lamellar diffraction. 
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