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Electron-Electron Interaction in Natural Optical Rotation
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   Effects of the electron-electron interaction on the natural optical rotation are

investigated by a general formula for the Faraday effect expressed in terms of a

correlation function of the sDatial Fourier components of total electric current. It is

proved that, in general, the electron-electron interaction is effective on the natural

optical rotation in contrast with that on the Faraday rotation. Furthermore, it is

shown as natural and Dreferable resultthat calculation of the natural optical rotation

is qulte complicated in contrast with that of the Faraday rotation, whereas in

conventional formula the calculation of the natural optical rotation is easier than that

of the Faraday rotation. The electron-electron interactions for the three-dirnensional

harmonic-oscillator model are also discussed.

                             1. Introdesctien

   A number of theoretical investigations of natural optical activity has been made

from various viewpoints and by various methods.i-i5) The natural optical activity has

been able te investigate on the basis of an exciton model and successful results have

beeR obtained by Moflitt,`) Moffitt et al.,5> Ando,8} Kato et al.,iO) Natori,i'> and Kato and

Ando.i3･i5> Thus, it may be expected that the validi-ty of the exciton model is obtained

by mal<ing ･use of a general formula for the Faraday effect'6> eRcompassing the natural

optical activity.

    Since excitons originate in the electron-electron intueractioRs, it is reauuired for us

caiculating effects of the electron-electron interaction on the natural optical rotation.

    In the present pap. er, the electron-electroR interactions in the natural op. tical

rotation are investigated and ca}culations also in a harmonic oscillator model are

carried out. It is shown that, in general, the electron-electron interaction is effective on

the natural optical rotation in contrast with tha.t on the Faraday rotation.

    In sec. 2 the natural optical rotation exDressed in terms of the Green functions is

formulated from the general formula for the Faraday effect on the basis of the first

principle. In sec. 3 the equations for the Green functions are calculated without any

model and the electron-electron interactions are discussed. In sec. 4 by making use of

a harmonic oscillator model the electron-electroR interactions are discussed. Finally in
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sec. 5, summary and discussion are given.

                2. Forinulation of Natural eptieal Retation

   In a previous paperi6) the theory of the Faraday effect was developed and a general

formula for the Faraday rotation including the formula for the natural optical rotation

has been derived. By making use of this formula the natural optical rotation can be

investigated from the same theoretical point of view as in the case of the Faraday

effect. The formula for the Faraday rotation in the absence of a constant magnetic

field becomes a formula for the natural optical rotation.

   The Faraday rotational angle ipF(cv) of the plaRe of polarized Iight per unit path

length* for an incident monochromatic light with the angular frequency to propagating

to the z-axis in medium is of the form'6)

     a5F(co)=:-2..,Jll.(,, whF(qo, (ic)), (1)
where qe= cvlc, c is the speed of light in vaccum, nF(a)) denotes the refractive index in

the presence of the constant magnetic field ff. The expression QNF(q, cv) is represented

by

     QNF(q, cv)==4tl`V lggdt eN`to` 0(t)li'"dA<21(q, t), A(-q, ihA)>, (2)

where

     o(t) :- ( 8 ig:i O, ,

     B- ,i.,

expression .p'(q, t) is the spatial Fourier component of electrlc current density opera-

tor in the presence of ff, k Boltzmann's constant, T the absolute temperature and V

is the volume of the system. The angular brackets denote the canonical ensemble

average under the total Hamiltonian.

   When the constant magnetic field H ==e, the quantity 1(q, t) becomes the spatial

Fourier component of electric current density operator J' (q, t) expressed as

     j(4, t)=:, 2;ii {exp(iq'yi(t))p,<t)+p,(t>exp(iq･r,(t))}, (3)

where e is the charge of an electron, m the mass of the electron and ri(t) and pi(t) the

co-ordinate and momentum operators of the ith electron at time t, respectively. The

natural optical rotational angle ip(tu) reduces to

 ' The sense of rotation is defined so that positive ipF corresponds to counterclockwise rotation as

seen by an observer against the z direction of propagation of the incident light.
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     ip(cv)w-nt (?N(qo, co), (4)
where n(w) is the refractive index in the absence of H aRd the off-diagonal component

(?N(q, to) of the current correlation func£ion is given by

     (?N(q, (v) mu 4tlW .LI ]dt e-itut o(t) .4'BdA<7'x(q, t), iy(-q, ihA)>. (s)

When (}g(q, w) is expanded to the first order in the wave-number q of light, the formula

for the natural optical rotation is expressed in terms of the Green function G.,(q, t)

defined by

    . Gxy(q, t)=--;ll-0(t)<[7'x(q, t), pty(O, O)]>, (6)

where Jct(q, t) is the spatial Fourier component of the electric dipole morinent operator.

   The system under consideration is a polymer composed of sirniiar monomers in the

absence of tke constant magnetic field. By mal<ing use of eq. (3) and by substituting eq.

(5) into eq. (4), the natural optical rotational ang}e ¢(w) caR be expressed in terms of

the Fourier componeRts Gp.(w) of the GreeR functions Gptu(t)("u==xy and yx) in the

form

                2rrie
     ¢(w) = -                      {Gxy(a))-Gyx(w)}, (7)              Vmc2n( to)

where

     GAu({D) == 1[i:dt eH`bl` G"u(t) (pty=xy, yc) (s)

with

     G"u(t) =: --ill'0(t)<[¥]2i.]zin(t)p"in(t), ptv(e)]>. (g)

Here ri.(t) is the co-ordinate operator of the ith electron in the nth monomer at time

t and ft(t) the electric dipole rnoment operator at time t, that is

     xs(t) == ]Il; ¥.]erin(t). (10)
   The Harniltonian M of the system under consideration is expressed as

     M = :lllpu. ( 21m p?'n + vn(rin)) -- El}ww :lll ]El.l.] .]vA(rin - r:,'n)

         -i- -li- :li]#Ill;¥. :i.] V;im(rin-rjm), (ii)

where vn(rin) is the interaction between the ith electron in the nth moRomer and the

nucleus in the same nth monomer, vL(ri. - r>･.) the interaction between the ith and the

]'th electrons in the same nth monomer and n.(ri. -rj.) is the interaction between the

ith electron in the nth monomer and the ith electron in the mth monomer.The

iRteractions between the ith e}ectron in the nth monomer and the nucleus in the other



mth monomer (m:iFn) are negiected.

                          3. Greem FuRctiofts

   In order to obtain the Fourier components Gpt.(to) of the GreeR functions, it is

necessary for us to have equations of the Green functions G..(t)(uy:=:xy and yx).

Differentiating eq. (9) with respect to time t, we have an equation

        h dGptu(t)- i     -T' dt M--ili-0(t)<[[¥¥. Zin(t)P"in(t), M]J pau(O)]>･ (12)

By making use of Hamiitonian (il) the equation of the Green function Gpt.(t) becomes

     - 4. -[IS!is7,<-C-)- =- - 4. -in Gas(t) + Gie(t) -t- -li-Gh?(t) + -Ill-Ght(t),

                                                 (pty=xy, yx) (13)

where

     GhL(t) =: - -ili-e(t) <[:ll] >l.]p"in(t)pzin(t), uv(O)]>, (14)

     Gh2y(t) == --il}-0(t)<[:ll]Z.](2in(t)Pptinvn(rin(t))), ptu(O)]>, (15)

     Gh?(t)==-tO(t)<[:l]Z.l.I;,I](zin(t)-&'n(t))(PpinvA(rin(t)-rl,'n(t))), uu(O)]>, (16)

               i     Gh`u(t) = - JiiT0(t)<[:ill lll] Ei.] Il.](zin(t)-&'n(t))(P"in lx;zm(rin(t)- rl,'m(t))), Liu(O)]>

                                                                (17)

and it appears four new Green functioRs Gl'i.(t), Gl2.(t), Gh3.(t), Gl'`.(t). It should be

noted that eq. (13) contaiRs the eiedL'ron-electron interac'L'ions in the Green fuRctions

Gh3.(t) and GP'`.(t) defined by eqs. (16) and (17), respectively. It states that, as is shown

in the previous paperi7) the elect"ron-eleckLron in4ieractions have a little effect on the

Faraday effect,whereas these interactions are effective on the naLi ural opticai activity.

   Furthermore, when we take the eirne derivative of Gl'L(t), Gi2.(t), Gh3.(t), Gl'`.(t)

defined by eqs. (14)-(17), we obtain the eqttations of these Green functions as foilows

       h dGhL(t) -     -T･ dt -GZLi(t)+GftL2(t)+GZL3(t)+GZi.`(t)+Gfti.5(t), as)

     -4. dGSe,(t) - -II.l-iliGzy(t)--il.l--hGzL3(t)- ,'. Gzei(t)--jZ-Gzz2(t), (ig)

       fa dGi?(t) rm h1     MT' dt - ww -i"--m Gft3vi(t)- 21. G23u2(t)--h GR3u3(t)-4･ mjli' Gft3.`(t), (2e)

       h dG2`u(t) m h 1     - T･ dt - - T･ -ii7 GftZi(t) - 21. GZi2(t) - -ili- Gfti3(t) - j?. --in G2z4(t), (21)

                                                      (pay :: xy, yx)

where
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GZL'(t) =: - il}-e(t) <[]ll] :i.](P"tnPzinvn(rtn(t))), ptv(O)]>,

GZiv2(t) == ww -ili-0(t)<[]llll¥(Pztnvn(rin(t)))P#m(t), Ltu(O)]>,

G2i.3(t) = nv te(t)<[:lll¥, (Pknvn(rtn(t)))Pgtn(t), Ltv(O)]>,

(]ZL`(t) = --ill"0(t)<[:ll]i21.l.ll](P"tnPzinvA(rtn(t)-nin(t)))･ Ltu(O)]>･

             'GZiu5(t) == - t6'(t) <[:llll illll ii.]:il.](PAinPzin I2;zm(rin(t)- jl,'m(t))), ,ttv(O)]>,

GZ2ui(t)"= ma -fr0(t)<[ ]>i];.(ztn(t)P#znP"'tnP"'tnvn(rzn(t))), ptu(O)]>,

GR2v2(t) = ww tO(t)<[]ll]i2i.l:5,I(2tn(t)P"tnPpt'tnvn(rin(t)))Pp'in(t), ptv(O)]>,

GZgi(t) =--ilxe(t)<[ ]>l.l.lll.](P",nPzin(vA(rzn(t)-)"tirt(t))

     + vA(or:)'n(t)-rin(t)))), sLu(O)l>)

GZe2(t) = - t0(t) <[]ill ]E}.l ];. (zm(t) - 2:in(t))

     × (P"inP"finPtttin(vA(rin(t)- jl)'n(t)) + vA(rj'n(t)- rin(t)))), ptv(e)]>,

GZi3(t) z - -il7e(t) <[]ill] ¥,.lll] pu, (ztn(t) - kn(t))

     ×

(22)

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

         (PstinP"'in(VA( ,"in(t)" r:,'n(t)) + VA( T:,'n(t)- rin(t))))Ppt'in(t), liu(O)]>,

                                         (31)
   GZi`(t) == - -ll-0(t)<[:ll] Z.l.] ](p"tn(v£(rtn(t) im rtin(t))

        ÷VS( il,'n(t) nv rin(t))))Pzin(t), ptu(O)]>, (32)
   GZ`ui(t) = - -ill-e(t) <[ iil.lli,ili I.l¥(PpttnPztn( lx;im( r!n(t)- xim(t))

        +V"Inn(jt,･m(t)-rin(t)))), Ltu(e)]>, (33)
   GR`.2(t) == - -;ll-0(t) <[ I .llll] :i] i;ll pu, (2in(t) - &m(t))

        × (P"inP"'inPpt'in( V;im(rin(t)- T:)'m(t)) + lil,m(ll)'m(t)- rin(t)))), itiv(O)]>,

                                         (34)
   G2`v3( t) = : - -ill-0(t) <[¥.lll] ;i] :i] ;I,l(2zn(t) - ani(t))

        ×(P"inP#'in(I2;im(rin(t)-,1,'m(t))÷ l'ltn(il,'m(t)-rin(t))))P"'in(t), tiv(O)]>, (35)

   Gft`u`(t) = - -iilnv0(t) <[lll. ll] i2i] ]Ii](P"tn( l!;im(rtn(t) rm r:,m(t))

        + llinn(ll)'m(t)-rin(t))))Pzin(t), Ltu(O)]>･ (36)

Here two imporr' ant results have beeR found out. The first place, eqs. (18), (20) and (21)



have the terms depending on the electron-electron interactions, while only eq. (19) has

no term depending on them. This implies that the phenomenon of the natural optical

rotation has close connection with the electron-electron interactions. The second place,

there is Ro constant term in the equations (13), (18)-(21) for the Green fuRctions. In

order to solve these simultaneous equations for the Green functions it is necessary for

us to have the equations for the Green functions defined by eqs. (22)-(36). The constant

terms appear from the equations of the Green functions defined by eqs. (28), (31), (35),

which have the commutators for the same Cartesian components of the momentum and

the electric dipole moment operators, i.e. [pxin, ptx] and [Pyin, pty]･

   For example, we take the time derivative of G22.2(t) defined by eq. (28), we can

write down the equation of the Green function in the form

     - 4. dGgY,2(t) -= -li.IAii2c,6(t) - ,i. G2eii(t) - -iltzG2ei2(t) - -ii.l- -jtiG£ei3(t)

                   + G£2.i`(t) + -l}-G£2.i5(t) + -l}-G22.i6(t), (pau=xy, yft) (37)

                                   '
where Ai is the number of electrons of the system and

     Ci = <wwAlr llll] ¥ (ztnPxmPytnvn(rm))>, (38)

     Gft2vii(t) = ww -ill-0(t)<[:l]¥, iil,]{lll,](zin(t)PptinPyinPv'inPv'invn(rin(t)))

             + 24(pginp"'inpzinvn(rin(t)))}py'in(t), ptu(o)]>, (3g)
                 i
     G22ui2(t) m - m;ll-0(t)<[:l]¥. ;, ll,](zin(t)P"inP"'inPu'invn(rin(t)))P"'in(t)Pu'in(t), yv(O)]>,

                                                                (40)

     G£2ui3(t) = - tO(t) <[]ill] ]21.liiil,](P"inPpt'invn(rin(t)))P"'in(t)Pzin(t), uy(O)]>, (41)

     G£2ui`(t) = - "ill"0(t) <[:ll] ]2i.];ll,l(2in(t)P"inPp'invn(rin(t)))(P"'invn(rin(t))), ptv(O)]>,

                                                                (42)

     G22vi5(t) rc - -ill-0(t) <[:ll] ;.l.l;.]7, {(zin(t)P"inPp'invn(rin(t)))

             - (&'n(t)P"jnP"'jnVn(r:,'n(t)))}(P"'inVA(rin(t) - ,1,'n(t))), Siu(O)]>, (43)

                i
     G£2u'6( t) = - -)T0(t) <[E.l;l] :Ii,I :II.] ]l;,]{(zin(t)PAinP"'inVn( rin(t)))

             - (2:)'m(t)P"j'mP"'J'mVm(il)'m(t)))}(P"'in iX;im(rin(t) ww r:,'m(t))), Ltu(O)]>･ (44)

                                                    (x,t, y' := x, y, z)

Here eq. (37) contains the constant Ci. Similarly, the constant terms derived from eqs.

(31) and (35) can be obtained in the similar form as in eqs. (38)-(44). Thus, these

calculations suggest a more complicated behavior.
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   Even if any approximation is made, in order to obtain the solutioR to the equa-

tions, twenty simultaneous equatioRs for the Green functioRs defined by eqs. (9), (14)-

(17), (22)-(36) at least ought to be solved. Since this calculation is very complicated and

is very difficult to solve, we confine ourselves to coRsidering the three-dimensional

oscillator model in the next section. In contrast with the Faraday rotation seen in the

previous paper,i7) it should be noted that the calculation of the Ratural optical rotation

is in generai more cornplicated. This result is preferable and reasonable, because the

natural optical rotation originates in the first-order terms in the wave-number q of

light, whereas the Faraday rotation in the zeroth-order terms iR q.

                      4. Harmonic Oscillator Model

   The natural optical rotation is observed only for a very special class of substances

(i. e. optically-active substances), while the Faraday rotation can be observed for all

substances without excepgion. The natural optical rotatory power in simple model was

studied on the basis of classical theory by KuhR,2) whose model was a system composed

of only two harmonic oscillators coupled each other, and a discussion of the physical

basis has been presented.

   Let us now consider a system composed of sirr}ilar monomers, which coRsists of

the three-dimensional harmonic oscillators of electrons. We introduce a more general-

ized coupiing potential between the oscillators in contrast with Kuhn's model

potential2} as the electron-electron interaction. Thus the Hamiltonian M of the system

under consideration is represented by

     X = ]ill,1]2i,I¥{ 21m p2"in + feA(ptin mm Min)2} + -lll-:lll ¥.. .](i.)kl(ptin - Min)( yjn - AC'n)

         + -li-:II#l]ll] 12;･ l :il･ ] v:".) le1 ( pt in - Min) ( yjm - A(i'm) ,

                                      (pt == x,y,z and M,N = X, Y,Z) (45)

where the eerm 2k.(pti. - Mi.)2 is the potential of the ith electron oscillator in the nth

             pt
monomer located at Rin(Xin, M･n, Zin), the term X fe1(ptin-Min)(yjn-AL･n) is the
                                          (apv)
in£eraction between the ith and the ith oscillators in the same nth monomer defined by

      2 fe1(ptin ' Min)(yJ'n - IV)'n)

     (apu}
       == kl(yin - X'n)(;l)'n - L'n) + leS(2in nv Zin)(xjn - X,'n) + kS(xin ww Xin)(Yjn - Mn)

                                                                 (46)

and the term : fe1(ptin - Min)( uj. - A()･m) is the interaction between the ith oscillator in
           (Astu}
the nth monomer and the ith osci}iator in the mth moRomer defined by

      Z kl(ptin - Min)(Yjnt - Al[i'm)

     (A"u)



      == kl(yin - }'1'n)(zjm - l,'m) + feS(2in ww Zin)(xjm - X,'m) + kE(Xin ww Xin)(Yjm - Y}m)･

                                                      (47)

   From this Hamiltonian (45) the equatioR of the Green function G,.(t) defined by

eq. (9) can be expressed in the form of the simuZtaneous equatioRs for the Green

functions of various types by making a series of calculations as is shown in the

preceding section. The equations for the harmonic oscillator model become of the form

      in dGAv ii h i2 lh lh i4

where

  , dt( t) == - 4' -in G"u( t) + 2T' kp Gptv( t) + -2un -i･ -Gh3v(t) + -ii- T･ G"u( t)･ (48)

- -li.l dGSL,(t) =- 2-l?. - k.GzLi(t) + 2-li.l-k.GzL2(t) + -}- -li.IGzL3(t) + -li- -li.l-GftL4(t)

           +-} 4. GzLs(t) ,-e-1?.-GzL6(t), (4g)

--
li.l dGSe,(`) -= -li.l- ,i. G,.(t)--li.l- ,i. GzL2(t), (so)

-4. dGSZ,(t) .= -4. thGRL4(t)-4. -illiGz?i(t)-4. ihGzi2(t), (si)

-4. dGai,(t) == --ll.}-jl7GzL6(t)--li.l-ilifGzii(t)-4･ -jliG£i2(t), (s2)

G"u(t)=:; ww uill-0(t)<[:llli2i]ztn(t)P"tn(t), ptv(O)]>, (53)

GiL(t) == --ilmO(t)<[]Il]:2i]P"tn(t)Pztn(t)･ Ltu(O)]>･ (54)

Ghe(t) == - ';lint0(t) <[¥¥2tn(t)(pttn(t) - Mtn)･ ptu(O)]>･ (55)

Ghi(t) == - mill-0(t) <[:ll] ¥pu{feLzjn(t)(ytn(t) - AJIn)

      +feL2in(t)(&'n(t) ww Z,'n)}, Ltu(O)]>, (56)
Gh`u(t) == ww ill-0(t)<[ .lill:l]llil{kS&m(t)(uzn(t) - Nzn)

      +fegzin(t)(&･m(t)-Zl,-m)}, si.(O)]>, (57)
GZLi(t) == --ill-e(t) <[:l] :l](zm(t) r Z,n)ppt,n(t), xiu(O)]>, (58)

GZL2(t) == ' rmill-0(t) <[:i]¥(ptin(t) - Min)Pzin(t), pu(O)]>, (59)

GZL3(t) == - -illun0(t)<[¥>ll.]l l{lefi(vJn(t) - iV)n) -F kL(sijn(t) - Min)}P"tn(t)･ Jiu(O)]>･

                                                  (60)
GZL`(t) = - rml}-0(t)<[ ]i .1;.]{kg(&n(t) - ljn) -i- kL(vjn(t) ww IV)n)}Pztn(t), Liu(e)]>,

                                                  (61)
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     GRL5(t) = - -ill-0(t)<[:]lllllil]¥. :i.l{kl(yjm(t) - AL'm) + feL(xijm ww M,'m)}P"in(t), stu(O)]>,

                                                           (62)

     GZL6(t) = - -il}H0(t) <[;ll.llll] :Iil :i]{kL(ant(t) - am) + kS( u,m - ALm)}p.,n(t), pt.(O)]>,

                                                           (63)

     GR9i(t)=-tO(t)<[:llli2I.l.l;.]{leS&'n(t)Puin(t), xtv(e)]>, (64)

                        '     GZZ2(t) == -:ll-0(t)<[:ll]>l.l. i,]legzin(t)Pkin(t), ptv(O)]>, (65)

    . GZi'(t) =: --ill-0(t)<[¥l]ll];Ii.I]ii.]{kL2:,'m(t)Puin(t)･ Ltv(O)]>･ (66)

     Gk`.2<t) =---#-e(t)<[1 l.illl]Z] lkLz,.(t)p.,.(t), ptv(e)]>･ (67)

   As these eqs. (48)-(52) have no coRstant term, we ought to contintte calcuiating the

Green functions Gft3,i(t) and Gft`,i(t) defined by eqs. (64) and (66), respectively, from

which produce the constant terms. The equation of GZ3.i(t) is found to be

     - Jli.l dGgg,i(t) =, -1?.- AJi,ksc,6(t) - 4. -IliifesGnii(t)

                 + 2ji･lkvleEG£3v'2(t) +t4･ kSG2ii3(t) +S'li･ -kEGE3vi`(t), (68)

where

     Ci w<nyAlr ]ill] Z. l.l;.]2ij'n>･ (69)

     Gfi3vii(t)=--ill-0(t)<[;lllEI.l.1;.]Pvjn(t)Pzin(t), ptu(e)]>･ (70)

     GR3u'2(t) :m-ill-0(t)<[:ll >I.i.]l;.]&'n(t)(yin(t)-AX}n), xiv(e)]>) (71)

     GE3vi3(t) = -#0(t)<[:lll¥.lli];Il,l21i'n(t){fefi(an(t) - Ln) + fe2(ptm(t) pt Min)}, pty(O)]>,

                                                           (72)

     G£gi4(t) == - -ill-e(t)<[:;Il.;;¥. :l.l :l.l], &･t.(t){lea(K,･.(t) - a･m)

             +kE(ptin(t) ma Min)}, ptu(O)]>･ (73)
Simiiarly, the equation of Ga`.i(t) is presented in the simiiar form.

   Thus, when the Green fuRctions of new types induced from the equations of the

Green functions defined by eqs. (58)-(67) are expressed in terms of the Green function

defined by eqs. (53)-(67) by approximations, the Fourier component of G..(t) can be

obtaiRed in principle by solving fifteen simultaneous equations composed of eqs. (48)-

(52) and of the equatioRs of the Green functions defined by eqs. (58)-(67). Even if any

such approximation for the harmonic osciilator modei is made, the calculations for



solving these simultaneous equations are still quite complicated.

                       5. Sgininary and Diseussien

   The formulation of the natural optical rotatioR has been made from the general

formula for the Faraday effect derived by usi6) formerly. By making use of this

formula for the Faraday effect, the natural optical activity can be investigated from

the same point of view as in the case of the Faraday effect.

   In the previous paper,i7> it has been shown that the electron-electron interaction

has a little effect in general on the Faraday rotation and is ineffective exactly in the

harmonic oscillator model. In the present paper, it is proved that the electron-electron

interaction is effective on the natural optical activity. It implies that the natural optical

rotation can be successfully discussed by the Frenkel exciton model which originates

in the electron-electron interaction. Since the Frenkel exciton model plays an essential

role in the anomalous rotational dispersion for the natural optica} rotation as it has

been shown by Mofiltt`) and Mothtt et al.,5) the electron-electron interaction is very

important for the natural optical rotation in contrast with that for the Faraday

rotatlon.

   In the previous paperi3) it has been proved that the electron-phonon interaction has

a little effect on the natural optical rotation. In the present paper, the electron-phonon

interaction and the interaction between the electron in a monomer and the nucleus in

the other monomer are neglected as it is seen in eqs. (11) and (45). These interactions

have been also neglected in MofRtt's work`} on the anomalous rotational dispersion at

the helix-coil transition in the natural optical rotation.

   One of the important results obtained by us is that calculations of the natural

optical rotation is in general quite complicated in comparison with those of the

Faraday rotation. This is an inevitable result from the fact that the natural optical

rotation is caused by the first-order terms in the wave-number q of light, whereas the

Faraday rotation by the zeroth-order terms in q. Even if the simple system, for

example a harmonic oscillator model, is considered, the calculation of the natural

optical rotation is still complicated in contrast with that of the Faraday rotation as is

demonstrated in the preceding section. The natural optical rotation is caused by the

terms more higher-order in q than the terms causing the Faraday rotation, nevertheless

there is an unexpected result in conventional theories that the calculatioR of the

natural optical rotation is easier than that of the Faraday rotation.

   Finally, it should be noted that the various efifects oR the natural optical activity

and the Faraday effect can be discussed from the same point of view for both the

phenomena by a general formula for the Faraday effect, which is derived on the basis

of the first principle and constantly from the microscopic viewpoints by us.i6> Thus, a

comparison between both the phenomena can be precisely made by our formula.
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