Journal of the Faculty of Engineering, Shinshu University, No. 74, 1994 1
EMNAELESNE #7455

Electron-Electron Interaction in Natural Optical Rotation
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Effects of the electron-electron interaction on the natural optical rotation are
investigated by a general formula for the Faraday effect expressed in terms of a
correlation function of the spatial Fourier components of total electric current. It is
proved that, in general, the electron-electron interaction is effective on the natural
optical rotation in contrast with that on the Faraday rotation. Furthermore, it is
shown as natural and preferable result that calculation of the natural optical rotation
is quite complicated in contrast with that of the Faraday rotation, whereas in
conventional formula the calculation of the natural optical rotation is easier than that
of the Faraday rotation. The electron-electron interactions for the three-dimensional
harmonic-oscillator model are also discussed.

1. Introduction

A number of theoretical investigations of natural optical activity has been made
from various viewpoints and by various methods.’™® The natural optical activity has
been able to investigate on the basis of an exciton model and successful results have
been obtained by Moffitt,* Moffitt et al.,* Ando,® Kato et al.,*® Natori,'” and Kato and
Ando.'*'® Thus, it may be expected that the validity of the exciton model is obtained
by making use of a general formula for the Faraday effect'® encompassing the natural
optical activity.

Since excitons originate in the electron-electron interactions, it is required for us
calculating effects of the electron-electron interaction on the natural optical rotation.

In the present péper, the electron-electron interactions in the natural optical
rotation are investigated and calculations also in a harmonic oscillator model are
carried out. It is shown that, in general, the electron-electron interaction is effective on
the natural optical rotation in contrast with that on the Faraday rotation.

In sec. 2 the natural optical rotation expressed in terms of the Green functions is
formulated from the general formula for the Faraday effect on the basis of the first
principle. In sec. 3 the equations for the Green functions are calculated without any
model and the electron-electron interactions are discussed. In sec. 4 by making use of
a harmonic oscillator model the electron-electron interactions are discussed. Finally in
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sec. 5, summary and discussion are given.
2. Formulation of Natural Optical Rotation

In a previous paper'® the theory of the Faraday effect was developed and a general
formula for the Faraday rotation including the formula for the natural optical rotation
has been derived. By making use of this formula the natural optical rotation can be
investigated from the same theoretical point of view as in the case of the Faraday
effect. The formula for the Faraday rotation in the absence of a constant magnetic
field becomes a formula for the natural optical rotation.

The Faraday rotational angle ¢x(@) of the plane of polarized light per unit path
length* for an incident monochromatic light with the angular frequency @ propagating
to the z-axis in medium is of the form'®

o i
de(w) = m@m(%, w), »
where ¢go=w/c, ¢ is the speed of light in vaccum, n:(w) denotes the refractive index in
the presence of the constant magnetic field H. The expression Qur(g, w) is represented
by

o )
Quela, ) =22 ["az e 6(1) ["arAla, £), A—g, 1), @
where
1 for >0
o(1)= { 0 for ¢<0,
_ L
B=%r

expression (g, t) is the spatial Fourier component of electric current density opera-
tor in the presence of H, £ Boltzmann’s constant, 7 the absolute temperature and V'
is the volume of the system. The angular brackets denote the canonical ensemble
average under the total Hamiltonian.

When the constant magnetic field A =0, the quantity £ (g, ¢) becomes the spatial
Fourier component of electric current density operator j(g, ¢) expressed as

ia, =35 Aexp(iq  r() bl ) + pDexplia- r)}, 3)

where ¢ is the charge of an electron, m the mass of the electron and r{¢) and p{¢) the
co-ordinate and momentum operators of the 7th electron at time ¢, respectively. The
natural optical rotational angle ¢(w) reduces to

* The sense of rotation is defined so that positive ¢r corresponds to counterclockwise rotation as
seen by an observer against the z direction of propagation of the incident light.
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_ i
$w) = m@n(%, ), @
where n(w) is the refractive index in the absence of H and the off-diagonal component
(g, w) of the current correlation function is given by

g, © 47””] df eet 9(t)fd/1<1x(q, 1), i(—aq, inA)). 5)

When Ow(g, o) is expanded to the first order in the wave-number ¢ of light, the formula
for the natural optical rotation is expressed in terms of the Green function Gu(g, t)
defined by

Gl = =00 Lia, 1), 10, O, O)

where p(g, t) is the spatial Fourier component of the electric dipole moment operator.

The system under consideration is a polymer composed of similar monomers in the
absence of the constant magnetic field. By making use of eq. (3) and by substituting eq.
(5) into eq. (4), the natural optical rotational angle ¢(w) can be expressed in terms of
the Fourier components G..{w) of the Green functions G..(#)(xv=xy and yx) in the
form

H(0) =~ B (Gol0) — Gonl @) @
where

Gﬂu(w)=[:dl‘ e Gu(t)  (pv=xy, yx) ®
with

Gl 1) = = 0D S 2 puin( 1), 0. ®

Here r:,(¢) is the co-ordinate operator of the ith electron in the #th monomer at time
t and g(t) the electric dipole moment operator at time ¢, that is

w()= %Z{‘.erm(z‘). )

The Hamiltonian # of the system under consideration is expressed as

# =S8t oalr)} + - ES T

i

+ % 33 ZZ}Z Van(Fin—"2m), (D
where v,(r:x) is the interaction between the ith electron in the »th monomer and the
nucleus in the same nth monomer, v,(r,,—r;») the interaction between the ith and the
jth electrons in the same #th monomer and Vy,(r:;,,—r;=) is the interaction between the
ith electron in the nth monomer and the jth electron in the mth monomer.The
interactions between the 7th electron in the »th monomer and the nucleus in the other
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mth monomer (m==#) are neglected.
3. Green Functions

In order to obtain the Fourier components Gu.(w) of the Green functions, it is
necessary for us to have equations of the Green functions Gu..(#)(gr=xy and yx).
Differentiating eq. (9) with respect to time £, we have an equation

—%%;(f)z —%9(¢)<[[;ziziﬂ(t>mm<t>, #], 10)]). (12)

By making use of Hamiltonian (11) the equation of the Green function G..(#) becomes

_hdGu(t) k1

G + GE(1) + 5 GE(t) + 5 GE(2),

i dt 1 m
(pv=xy, vx) 13
where
G = = 0D A2 D0in D), 1O, (10
GE(8) = — L0 Tz ) pronvnlrn( D), O], (15)

GE(1) = = 10D A ET T (D)~ 2D puintil ra )= Pl D), (0D, A6)

G/fti(f) = — %H(f) <[%§Z;(2m(t)_Zjn(t)xp#m Vnm(rin(t)_ rjm(t)))) ﬂV(O)]>
an

and it appears four new Green functions Gi(t), Gi(t), G(t), GE(t). It should be
noted that eq. (13) contains the electron-electron interactions in the Green functions
GB(#) and G(t) defined by egs. (16) and (17), respectively. It states that, as is shown
in the previous paper'™ the eleciron-electron interactions have a little effect on the
Faraday effect,whereas these interactions are effective on the natural optical activity.

Furthermore, when we take the time derivative of GIL(#), GE(t), GE(8), Gi(¢)
defined by egs. (14)-(17), we obtain the equations of these Green functions as follows

_ B dGR(t) _

T GEIE) + GEXe) + GEX8) + GEHt) + GEX (), (a8
_RdGE() _ _nr 1 Gy G Gz Gz
L AGEW _ 2 L gy -2 L g —oL oo L o, av
711 det<t) - /jl 1 GEI() — G22(4) — —— G2%(1) _E 1 G234(i) (20)
_h deu(f) /2 T GR2(f) — = (28 G
. e G () — (1) G () — Gi(t), 2D
(W—‘—xy, yx)

where
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GE() = = -0 IS Drantantn rin 1)), 10)D, 22)
GH() = = - 0(1) S Dronton(ra D) 1), 100D, (23)
GIB(D) = = -0 (ZZ Duintn(ran D)) pan( ), (O], @0
GHAt) = — 4 0(8) S Dranbantirin 1) = rin D), 200D, (25)
GHE) = —--0(0) (ST Db Vinlrin )= ), 0D, 26)
GBAD) = — 0 AZEZ e pubunbunvnlra 1)), 0D, @
GE(D) = = L0 (S S an(O puntunonral ) pwn D), 1O, 28

GE() = = 500D IZT S pronbiin (0K run(£) = 130(1))

+ oirn(D) = (D)), 00D, 29)
G = — 0TI zun(1) = 2(1))

X (anbusinpresn 0 ron(£) = P D)+ vilrsn( )= rin D)), O], 30D
GE(E) = =5 0() ZTTTNzun() — 2n(1))

X (uinbwin 08l D)= 150(D) + Ui D)= P D) purin ), 2 O)D),

@D
() = = 08 (SZZ Duan 3l ran£) = rnl )
+ 0r(rn(8) = 1)) Daen(2), 160)]), (32)
GO = = O EER S Duantran Vi rin 1) = vin( )
+ Vanlrsn( )= il D)), (0, (33)

G = = 56D (STZT D z() — 20m(1)

X (Puinp#’inp#’in( Vnm(rin(t)“ rjm(f)) + an(rjm(f)_ rm(z‘)))), /ly(O)D,
34

OB OUMPHHHACHORERG)

X ristein Vi) =1in2) + Vol )= rin D)) 8), 10D, (35)
GH(1) = = 50D IRZ T puanl Vanl ()= r3n(1))

+ Vinlrsm(£) = rin ))psn( ), 1O)])- 36)

Here two important results have been found out. The first place, egs. (18), (20) and (21)
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have the terms depending on the electron-electron interactions, while only eq. (19) has
no term depending on them. This implies that the phenomenon of the natural optical
rotation has close connection with the electron-electron interactions. The second place,
there is no constant term in the equations (13), (18)-(21) for the Green functions. In
order to solve these simultaneous equations for the Green functions it is necessary for
us to have the equations for the Green functions defined by egs. (22)-(36). The constant
terms appear from the equations of the Green functions defined by egs. (28), (31), (35),
which have the commutators for the same Cartesian components of the momentum and
the electric dipole moment operators, 1.e. [prm, ] and [pym, ).

For example, we take the time derivative of GZ%(t) defined by eq. (28), we can
write down the equation of the Green function in the form

_ dGZZZ(f) - Gan Gz 1 G
T NeQé‘(z‘) ()= (1) =5, GE*()

G (¢) + GE™(t) +5 G”w(f), (ny=xy, ) (3D
where N is the number of electrons of the system and
Ci= <”%'/* ;Z (Zinpxinpyinvn<rin))>, (38)

G (0) = — 40 A ST TS 2l it snvrntorntnFin(D)

+ 22 puintrcinrinon ral O} puri ), 1A O)D), 39
3212(t) == """'9(1‘) <[2222(21n(t>ﬁ#1n1># rinDur ann(rm(t)))p# m(t)ﬁu m(t) ﬂu(o)]
(40)

3213“) - Lﬁ(ﬂ <[ZEZ(p#inp#’invn(rin(l‘)))p#’in(f)ljzin(t)r /«‘V(O)D) 4D

(1) = = +-0(0) TZ T zinl ) it intn i D) puistn(rin D)), (00D,
42
GEX() = = +0() ST IH zin ) rintreinn(rin( )
— (2inl ) brmbresmOn(Fin ODY Dwinvi(rin(2) — 1:a(£))), (O], (43)
CAOEERITONP DI I (CHOVIIIEACH )

- (ij( t)pw‘mjht’jmvm(rjm(t»)}(p#’in Vnm(rin(t) - rjm(l‘)», /11/(0)]>- 49
(W, v'=x, v, 2)
Here eq. (37) contains the constant C;. Similarly, the constant terms derived from egs.

(31) and (35) can be obtained in the similar form as in egs. (38)-(44). Thus, these
calculations suggest a more complicated behavior.
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Even if any approximation is made, in order to obtain the solution to the equa-
tions, twenty simultaneous equations for the Green functions defined by egs. (9), (14)-
(17), (22)-(36) at least ought to be solved. Since this calculation is very complicated and
is very difficult to solve, we confine ourselves to considering the three-dimensional
oscillator model in the next section. In contrast with the Faraday rotation seen in the
previous paper,'” it should be noted that the calculation of the natural optical rotation
is in general more complicated. This result is preferable and reasonable, because the
natural optical rotation originates in the first-order terms in the wave-number ¢ of
light, whereas the Faraday rotation in the zeroth-order terms in ¢.

4. Harmonic Oscillator Model

The natural optical rotation is observed only for a very special class of substances
(i. e. optically-active substances), while the Faraday rotation can be observed for all
substances without exception. The natural optical rotatory power in simple model was
studied on the basis of classical theory by Kuhn,? whose model was a system composed
of only two harmonic oscillators coupled each other, and a discussion of the physical
basis has been presented.

Let us now consider a system composed of similar monomers, which consists of
the three-dimensional harmonic oscillators of electrons. We introduce a more general-
ized coupling potential between the oscillators in contrast with Kuhn's model
potential? as the electron-electron interaction. Thus the Hamiltonian s of the system
under consideration is represented by

H = 222{71_173117: + k#(ﬂin“Min>2} + %’222 Z k/{(/lin"Min)(an_]an)
noion 4l noTE; (Amv)

+ %;$%}Zi:zj}(“‘2wkj(ﬂin - Mz‘n)( Yim— ]ij)y
(u=x,y,z and M,N=X,Y,Z) (45)
where the term 3 k.(z:n — M:)? is the potential of the 7th electron oscillator in the #nth
i
monomer located at R (X, Yin, Zin), the term (;)k;(ﬂm — M) (vin — Ni) is the
ay
interaction between the 7th and the jth oscillators in the same #th monomer defined by
2 k/{(/lin - Mz‘n)(an - ]vm)
e
= k;c(yin - Kn)(zjn - Zjn) + ka/l(zin e Zin)(xjn - )(m) + k,;(x}'n e Xin)(yjn - Kn)
(46)
and the term (g})kﬁ(um — Mu)(vsm — Nin) is the interaction between the 7th oscillator in

the nth monomer and the sth oscillator in the mth monomer defined by

2 k;(/lm - Mz'n)(’/jm - Mm)
(Apv)
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= kalc(yz'n - Yin)(Z;‘m - ij) + k,\’l(zin - Zm)(xjm - Xﬂﬂ) =+ k.;.(xin - Xm)()’jm - ij)

47

From this Hamiltonian (45) the equation of the Green function G.(¢) defined by
eq. (9) can be expressed in the form of the simultaneous equations for the Green

functions of various types by making a series of calculations as is shown in the

preceding section. The equations for the harmonic oscillator model become of the form

~BACull) 1 Louy 1ol + e +if?—G}a<t>, 48)
— dGé‘;(t) P kG ) + 22 G () + LG + 5 e
% GIE(D) + 5 2 Gape), (49
~RhdGa) _ b Lg B L, (50)
~BdGalt) _ _h Logy B Llompy R Lom, 5D
~BAG) _ T Ly o R L) - 2 Lo, 52)
where
Gl £) = = 0D AT D2 pun 1), O], (53)
G(D) = = 50D (ST Dpean( ), 1O, (54)
() = =10 (S DD pn( 1) = M), 00D, (55)
G0 = — S0 IS Z S izinl ) vinl 1) ~ N
+ Kz 1) = Zih, 00D, (56)
GI() = = 0D (ST T kizin(D)vin(2) = Ni)
+ kizil ) (zim(8) — Zim)}, 1)), (5B7)
GO = = L0 AT znl) — Zi) ), 100D, (58)
GE(1) = — 0 AZE e D) — Min)en 1), 5(O)D), (59

Gt = — 0O A SIS s un(£) = Non) + Bilin() — M)} ), 500D,

(60)

Ga(t) = _'—0(t)<[222{ku(zm(t) Zin) + kvin(t) = Nia)} pzin(t), 12(0)]),

(61)
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215(5) = %9(1() <[%§Z;{kﬁ( ij(f> - Mm) =+ k:’z(ﬂjm - Mjm)}ﬁ#in(f)) /lu(o)]>:

62)

GE(t)=— "‘5(t) <[2222{ku(2m(l‘) Zim) + kivin — Nim)} pain(t), 1(0)],
63)
Gilt) = — —9(zf)<[222{kzz,n(t)pm(t) w0, 64
GE(1) = — SO (TSR KDt D), 1(OD, ()
GH1) = = -6 (ZE TS izon(Dpun( ), 10D, 66)
GH(E) = — 0 (T TTHzupent), 1O, o

As these egs. (48)-(52) have no constant term, we ought to continue calculating the
Green functions GZM¢) and GZ(¢) defined by eqs. (64) and (66), respectively, from
which produce the constant terms. The equation of GZ}(¢) is found to be

-2 dG;(” L New.cior) - L)
z—kukzcm(z) + %Tszsm(t) +1 —sz““(t), (68)
where
Ci= (50T, (69
GBIy = — —H(t)<[2L2pm(t)pzm(t) w0, 70
Gt = — —0(t)<[22422]n(t)(Vzn(t) Nin)y 11(0)]), “Y
G (8) = — —49(15) <[ZZ§LZZJ AN kil 2in(8) — Zin) + B pan(2) — Min)}, 10(0)1),

72
GEM(t) = ——5(t)<[2222221 n(EN kil 25m(£) — Zim)

+ kil pen(t) = Min)}, p(0)D)- 73
Similarly, the equation of GZ{¢) is presented in the similar form.

Thus, when the Green functions of new types induced from the equations of the
Green functions defined by eqgs. (58)-(67) are expressed in terms of the Green function
defined by egs. (63)-(67) by approximations, the Fourier component of G..(#) can be
obtained in principle by solving fifteen simultaneous equations composed of egs. (48)-
(52) and of the equations of the Green functions defined by egs. (58)-(67). Even if any
such approximation for the harmonic oscillator model is made, the calculations for
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solving these simultaneous equations are still quite complicated.

5. Summary and Discussion

The formulation of the natural optical rotation has been made from the general
formula for the Faraday effect derived by us'® formerly. By making use of this
formula for the Faraday effect, the natural optical activity can be investigated from
the same point of view as in the case of the Faraday effect.

In the previous paper,'” it has been shown that the electron-electron interaction
has a little effect in general on the Faraday rotation and is ineffective exactly in the
harmonic oscillator model. In the present paper, it is proved that the electron-electron
interaction is effective on the natural optical activity. It implies that the natural optical
rotation can be successfully discussed by the Frenkel exciton model which originates
in the electron-electron interaction. Since the Frenkel exciton model plays an essential
role in the anomalous rotational dispersion for the natural optical rotation as it has
been shown by Moffitt* and Moffitt et al.,¥ the electron-electron interaction is very
important for the natural optical rotation in contrast with that for the Faraday
rotation.

In the previous paper'® it has been proved that the electron-phonon interaction has
a little effect on the natural optical rotation. In the present paper, the electron-phonon
interaction and the interaction between the electron in a monomer and the nucleus in
the other monomer are neglected as it is seen in egs. (11) and (45). These interactions
have been also neglected in Moffitt’s work® on the anomalous rotational dispersion at
the helix-coil transition in the natural optical rotation.

One of the important results obtained by us is that calculations of the natural
optical rotation is in general quite complicated in comparison with those of the
Faraday rotation. This is an inevitable result from the fact that the natural optical
rotation is caused by the first-order terms in the wave-number ¢ of light, whereas the
Faraday rotation by the zeroth-order terms in ¢g. Even if the simple system, for
example a harmonic oscillator model, is considered, the calculation of the natural
optical rotation is still complicated in contrast with that of the Faraday rotation as is
demonstrated in the preceding section. The natural optical rotation is caused by the
terms more higher-order in ¢ than the terms causing the Faraday rotation, nevertheless
there is an unexpected result in conventional theories that the calculation of the
natural optical rotation is easier than that of the Faraday rotation.

Finally, it should be noted that the various effects on the natural optical activity
and the Faraday effect can be discussed from the same point of view for hoth the
phenomena by a general formula for the Faraday effect, which is derived on the basis
of the first principle and constantly from the microscopic viewpoints by us.'® Thus, a
comparison between both the phenomena can be precisely made by our formula.
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