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The theory of refractive index in the presence of a constant magnetic field is
developed on the basis of the first principle, i.e. of a standpoint of the microscopic
Maxwell equations. The formula for refractive index is expressed in terms of a
correlation function of the spatial Fourier components of total electric current by no
use of the dielectric constant and the magnetic permeability explicitly. The lowest-
order term in the wave-number of light of the refractive index is independent of the
constant magnetic field and has similar features with the leading term of the Faraday
rotational angle as far as one considers the terms up to the first order in the constant
magnetic field. Effects of the constant magnetic field on the refractive index are
caused by the first-order terms in the wave-number of light.

1. Introduction

Refractive index is one of the familiar optical constants and a number of theoreti-
cal investigations are done in various substances.” In the presence of a constant
magnetic field, however, a few investigations of the refractive index and the dielectric
constant are also done.? In the conventional formulations, the theories have been on
the basis of the Maxwell equations in terms of the electric field strength, the electric
flux density, the magnetic field strength and the magnetic flux density. Then, the
dielectric constant and the magnetic permeability have been discussed. On the other
hand we have developed the general theory of the Faraday effect on the basis of the
microscopic Maxwell equations constantly in terms of the electric field strength and
the magnetic flux density.® In this formulation, the Faraday rotation including the
natural optical rotation is derived directly by no use of the dielectric constant and the
magnetic permeability.

The formulation of refractive index in the presence of the constant magnetic field
may be carried out by the similar fashion to that of the Faraday rotation in the
previous paper.® By this formulation one may discuss not only the refractive index of
substance in the constant magnetic field but also the relations between the refractive
index and the Faraday rotational angle. Although the phenomena of the refractive
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index in the presence of the constant magnetic field, the Faraday effect and the natural
optical activity have different features between them, these phenomena can be discuss-
ed from the same theoretical point of view by our unified theory of optical constants.®

In the present paper, we develop the theory of refractive index in the presence of
a constant magnetic field and discuss the relations between the refractive index and the
Faraday rotational angle.

In sec. 2 a formula for the refractive index in the presence of the constant magntic
field is derived and is expressed in terms of the Green functions. In sec. 3 Hamiltonian
of the system and the total electric current are given. In sec. 4 the lowest-order terms
in the wave-number of light are derived and the equations for the Green functions are
obtained. Relations between the refractive index and the Faraday rotational angle are
also presented. In sec. 5 the effects of the first order in the wave-number on the
refractive index are discussed. Summary and discussion are given in the last section.

2. Formulation of Refractive Index

In a previous paper® a general theory of the Faraday effect has been developed on
the basis of a standpoint of the microscopic Maxwell equations and of the first
principle by no use of the conventional formulae. The general formula for the Faraday
rotation encompasses that for the natural optical rotation and, furthermore, a formula
for refractive index in the presence of a constant magnetic field has been able to derive
by our similar method® from the same theoretical point of view.

Let us take the direction of propagation of an incident monochromatic light with
the angular frequency @ to be parallel to the z-axis in medium. The refractive index
n(w) in the presence of a constant magnetic field H and the Faraday rotational angle
#(w) of the plane of polarized light per unit lenght* (i.e. the magneto-optical rotatory
power) are expressed in terms of a correlation function of the spatial Fourier compo-
nents of total electric current, that is®

nw(w) = { 1 _EITQD(QOy w)}uz @)

and

#w) = ) (o, ), @

ZCam(a)

where go=w/c, ¢ is the speed of light in vacuum,

Qula, @) =EL [“ar e 0(e) [(ai<Ala, A= a, i), @

e, @ =18 ["ar e 6(1) (G (Aa, 1) A=, D). @

* The sense of rotation is defined so that positive ¢ corresponds to counterclockwise rotation as
seen by an observer against the z direction of propagation of the incident light.



The Theory of Refractive Index in the Presence of a Magnetic Field 15

The symbol §(¢) is defined by

1 for >0
6(t) =
(&) 0 for <0

and
__1
B=7T

Expression #(q, t) is the spatial Fourier component of total electric current operator
at time ¢ in the presence of H, £ Boltzmann’s constant, 7" the absolute temperature
and V is the volume of the system. The triangular brackets denote the canonical
ensemble average under the total Hamiltonian.

As far as the Faraday rotation, the natural optical rotation and the refractive
index are discussed, it is enough to consider terms up to the first order in the
wave-number ¢ of the light. The formula (3) is expanded up to the first order in ¢ and
is rewritten in the terms of the Green function as

e, ) = =L 1()(Gla, ) + Gola, W), ®

where y(g) is an operator which has the value of 1,2 and 1 when it operates to the
zeroth-order term and the first-order term in ¢, respectively. The Fourier component
Guu(q, w) of the Green function Gu.(q, t) is defined by

G##(Q» (U) = /::dt e_]th##(qy l‘), 6)

where

Gula, 1) == -L6) L Ala, 1), 0, 0] ™

with the spatial Fourier component (g, #) of the electric dipole moment operator at
time £.

The system under consideration is a polymer composed of similar monomers in the
presence of the constant magnetic field. The spatial Fourier component of the total
electric current operator at time f is expressed in the form

Fa, t)=E"IZ%{exp(iq-rm(t))J(rm, 1)+ F(rm, Hexplig: ru(1))}, @®

where r;(t) is the co-ordinate operator of the ith electron in the »nth monomer in the
polymer at time {. When eq. (8) is expanded up to the first order in ¢, the expression
J (g, t) becomes

S(a, )= S () + a5 ealt) S (rn, 1)+ F(rin, Dznl8)). ©®

By making use of egs. (6), (7), (9) the formula @Qu(q, @) is expressed in terms of the
Green functions, that is
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(g, 0) =~ 2L ("1 [ Gult) + Gl )] + 2ial G D) + (D]} A0

= 271-10) {[Gxx(CU) + ny((l))] + 21Q[Jxx(w) + /J(yy(w)]}J an

where
Gunl )= =2 0D LA, 0D, (12)
Gl 1) = = L0 AT 20) Ailral 1)), 1 O)D), (1)
w(t)= %}Zerm(t) 1s

and e is the charge of an electron.
Thus a formula for the refractive index »n(w) is found to be

(@ ={1+2Z Gl ) + Gol@))} +{ 32 Gl ) + G0)]}. ()

The first and the second curly-bracket terms on the right-hand side of eq. (15) are
derived from the zeroth and the first order in the wave-number ¢ of light, respectively.

3. Hamiltonian

The Hamiltonian 3 of the system is expressed as

# = SR (D=L A + valra)}
+%;Z]*szé(rin_rjn) +‘%_;i§212 Ve Fin = ¥in), (16

where m is the mass of the electron, p,, the momentum operator of the 7th electron
in the nth monomer in the polymer and A(r..) is the vector potential satisfying the
equation

I‘OtiﬂA()"m):H. (17)

The expression p,(r:) is the interaction between the 7th electron in the nth monomer
and. the nucleus in the nth monomer, v;(r,— r;z) the interaction between the ith and
the jth electrons in the same nth monomer and V,u(rx— rjx) i the interaction between
the ith electron in the nth monomer and the jth electron in the mth monomer.

We may assume without loss of generality that the x, ¥y and z components of the
constant magnetic field H are Hsina, 0, Hcosa, respectively, by an introduction of an
angle @ between the directions of H and the z-axis. The expression # can be written
as

%C:%px‘f"ze“(l)dh a8
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/y=—f¢—py——ze~(wzx — wxz), a9
o= p = S0, 20)
where
__ eHsina _ eHcosa
Wy =~ —mC and Wz = me (21)

4. Refractive Index Caused by the Lowest Order in the Wave-Number

As far as one investigates only the lowest-order terms in the wave-number ¢ of the
light in eq. (15), the expression for the refractive index ny(w) takes the form

(m(@)F = 1 + 3Gl ) + Gl @)} 22

A successive calculation of the Green function G.(#) defined by eq. (12) leads the
coupled equations for the Green functions of various types of the form

-2 dGX;“) - Nhe 5(1) — 22 Gyu(1) + -2 GL(1), 23)
h dex(f) ._.Zlﬁ _ hwsx e
b 4Gall) _ B0z () - B (1) 1€ L), (20
~ B dGalt) h‘”x Gl 1) + -2 GI(1), 25)
1
~ B dGuld) —Z—sz) ~L ez, 26)
Zil ngi(l‘) - GI(1) — - G32(¢), )
% G(/;l%(t) Nhe C}l./a(t) 321(t) 322(t)+ 323(t)
Gt )+ 525( 1), (28>.

(£=x, v, 2, v=x,)

where N is the number of electrons in the system and

Gl 1) = =0 LA, 0D, 29
GAuE) = = L0 TZS BN, O, 30
GI) = = 0D AET T Duntwinbuintn rn ), 20D, 3D
GE(D) = = 60 (S S Duentreanteral ) il 1), 10)D, @)

311(” —_— w@(t) <[2222(p#zn7j,wmbp mf)u mpu mUn(rm(lL))) ,Uu(O)] (33)
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312(” - "—H(L‘)<[ 2 2 (pﬂz’np#’iﬂﬁwinpwinvn(rin(t)))daﬂ’in(t): ﬂv<0>]>) 3y

i

Cow =33 ZZ (pranbuintal ), (35)
GE(1) = — -0 ST TS Duonprinbsiavn (D) S D S 0), 100D,
(36)
GE(1) = —+0) (Z S5 buinbrntapintn(rn 1)
29 D ron(ral ) Sl D), 00D @

Gi(t) = l<9(t)<[ZZ§Z(ZJanbmnvn(rm(l‘)))(l)wnvn(hn(l‘))), w0)), G
GENt) =~ _‘9(t> <[2222{(15#mp# mUnFin(1))) — (p#jnpﬂ’jnvn(rjn(t)))}

X (Dt ra(t) — vin(2))), 100)]), (39
3250) = - "“0(t) <[22222{(1)uml)# mUn( rzn(t))) (pujnp#’jnvn<rjn(t)))}
(p#'iﬂ ert(rz'n(f) - rfﬂt(f)»: ﬂU(O)}>- (40)

The equations for the Green function G,(¢) are also obtained by a similar fashion as
is demonstrated above, that is

71@ dGé;(” Nhe 8(t) + h“’z Gu(t) — h‘i"" Ga(t) +—Gh(1), 4D
M% ng;(t) = h?”z Gyw(2) +~7%G:’cy(l‘), (42)

and eqs. (26)-(28). As it is seen in eqs. (23)-(28), effects of the electron-electron interac-
tion appear for the first time only in G3'(¢) and G¥(¢) on the right-hand side of eq.
(28), which are defined by egs. (39) and (40) with terms of the form (pu mvi(rm—r;n)) and
(purin Vamren— rim)), respectively. Such a fact can be found also in a set of equations for
the Green functions in the case of the Faraday effect and equations (26)-(28) are
completly the same ones as those derived for the Faraday effect.” This implies that
there is hardly effects of the electron-electron interaction on the refractive index and
these effects on the refractive index are the same as those on the Faraday rotational
angle.

When a few approximations for the simultaneous equations (23)-(28) and (41)~(43)
can be made, it becomes possible to solve the equations for the Green functions. Let us
make some approximations for GZL(¢) and GZ(¢#) defined by egs. (31) and (32), respec-
tively, as follows
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;2”1/(L¢> = <;p#’inpﬂ’in> G;lw(t) <44)
and
(1) = 2 (Duinbr invn(rin))) Gueo1). (45)

This approximation suggests that the electron-electron interaction can be neglected.
From eq. (22), in the presence of H, the refractive index n¢w) caused by the lowest
order in ¢ becomes

()= 1 — 4TI ho — <2p;> [<hw‘@)Z~DT-E~HN

Vin ho <hw <p2>> +A<h %)A T
+B(no—L2Y + C 4 Hy
where
A==3 m>> £ o)
e )
{( <pyf;v> >2 <<pszv>> <<pxpyv> >} 8
o= ()42
(BT (22 (2
+2_17 <1):;> >3 49 <1)y£;v> <pz£;v> <px7z;iyu>
_ é <z>;f << <z>y;>:v> >2 +< <pz£:v> >2 +< <pxﬁlyv> >2> (19
Dz(%f‘%ly (50)
Ee <15yfij> 4 <pzizv>’ 5D
e B (22 o 2
t= (LY (50~ L2V [no (o — S22 ) + S22 gt B2 iz |
(563

Here use of abbreviations has been made, i.e.
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%) =2} pwin Durin), Gy
<P2?)> = ; <(Pwm ﬁ#’in Un(”'in))>, <55>
{pupov) = <(p/‘z'n Duin U Fin)))- (56)

Expression (46) contains only the second-order terms in H with the first-order terms
missing. It should be noted that as far as we consider the terms up to the first order
in the constant magnetic field H, the refractive index n¢(w) caused by the zeroth order
in the wave-number ¢ of light is independent of H and, therefore, the dispersion of
refractive index no(w) is the same one in the absence of H.

The dispersion of the refractive index no(w) expressed by eq. (46) is very similar
to that of the Faraday rotation.® This implies that there is a relation between the
refractive index n¢(w) and the Faraday rotational angle ¢#(w). The relations between
the Faraday rotation and the refractive index in the absence of H has been proved in
general in our previous paper® in the form

#w)= Hnolw, H=0)*— 1] (57

eH
dmctno(w)

This expression is concerned with the Becquerel formula.”
5. Effects of the First Order in the Wave-Number

Since the constant magnetic field H is ineffective on the lowest-order terms in the
wave-number g of the refractive index, the effects of the constant magnetic field on the
refractive index are yielded from the first-order terms in ¢. The first-order terms in ¢
are expressed in terms of the Fourier components of the Green functions %.(¢) and
%.(t) defined be eq. (13), which are similar to the Green functions for the natural
optical rotation.®

An equation for the Green function %.(¢) can be calculated by the fashion as is
seen in the preceding section and may be written in the form

& 2 5
~ 2 4%lt) _ NRE () sy~ 2 () - 2L )

i de i
+-C GE(1) + 1 B0 + 5 D), (58)
where
(2y = (5 S5z, (59)
GE) = = 0TI S £) S ), 100D, 60)
GUD) = = 0O AZD (D) Duantn( ), 10D, 6D

Git) =~ %e(r) 222 (2l 8) = 2 ON printiran £) = 7)), 11(0)]), (62)
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g}ﬁ/(l‘) = - %a(t) <[ Z?(Zln(” —ij(t))(p#in Vnm(rin(t)_ rjm(t)))’ /lu(o)]>

(63)

n=m

The electron-electron interactions appear in the Green functions 43,(¢) and %%.(¢) on
the right-hand side of eq. (58) immediately. Thus it implies that the electron-electron
interaction is effective on the refractive index caused by the first order in ¢ in contrast
with that caused by the zeroth order in g. A successive calculation of 4i.(¢), G2(1),
G3(1), 94(+) makes a set of the equations for %.,(¢), which is fairly complicated than
that for Gu(¢) calculated in the preceding section. Thus the calculation to solve the
simultaneous equations for the Green functions suggestes a more complicated behavior
even if the approximations are made and this calculation of the refractive index is
similar to that of the natural optical rotation.

Furthermore, the dispersion of refractive index caused by the first order in ¢ is
very similar to that of the natural optical rotational angle as is seen in our previous
paper.® Therefore, it becomes clear that the dispersion of the refractive index caused
by the first order in ¢ has a close connection with that of the natural optical rotation.

6. Summary and Discussion

The theory of refractive index in the presence of a constant magnetic field H has
been developed on the basis of the same standpoint of the general theory of the
Faraday effect and the natural optical activity formulated, by no use of the conven-
tional formulae, by the method demonstrated in our previous paper.® It has been
proved that the refractive index in the presence of H is closely connected with the
Faraday rotation and natural optical rotation.

As far as we consider only the lowest-order terms in the wave-number ¢ of light,
electron-electron interactions have a little effect on the refractive index no{w) in the
presence of H being analogous to the case of the Faraday rotation. Thus effects of the
exciton model, which originates in the electron-electron interaction, are a little ones on
now). Furthermore, the expression 7n¢(w) contains only the zeroth- and the second-
order terms in H by neglect of the electron-electron interaction and then the refractive
index now) given by eq. (46) comes to be independent of H as far as one considers the
terms up to the first order in H. Then there is a relation concerned with the Becquerel
formula between the refractive index and the Faraday rotation,® which has been
proved in general formerly by us.®

The effects of the first-order terms in the wave-number ¢ of light on the refractive
index have been also discussed. Since the calculations of Green functions defined by eq.
(13) are made by a similar fashion in the case of the natural optical rotation, the
electron-electron interaction is effective on the refractive index being analogous to the
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case of the natural optical rotation as is shown in the previous paper.? Furthermore,
it can be considered that the effects of the constant magnetic field H on the refractive
index originates in the first order in ¢ as far as one considers the terms up to the first
order in H.

The electron-electron interaction between an electron in a monomer and the
nucleus in the other monomer is neglected in comparison with the interactions
Vi Fin—Tn) and Vi(rin—rim) in the Hamiltonian (16).

In the present paper, the exciton-phonon interaction is also neglected. The exciton-
phonon interaction has a little effect on the natural optical rotation and the refractive
index in the absence of H as is proved in the previous paper.” This suggests to hold
still that the effects of the electron-phonon interaction is a little on the refractive index
in the presence of H.

In conclusion, it should be noted that the refractive index in the presence of the
constant magnetic field can be discussed in similar fashion for the Faraday effect from
the same theoretical point of view by the general theory developed formerly by us.® It
has been shown that, although the refractive index has different features from the
Faraday effect, however, these are in close connection each other and there is a
relation concerned with the Becquerel formula.® Furthermore, the effects of the
electron-electron interaction on the refractive index in the presence of the constant
magnetic field have been investigated by our general theory® just now.
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