
Joumal of the Faculty of Engineering, Shinshu University, No. 74, 1994

                dee･lslJk<tlftlll¥gKkEer eg74Eg-

13

        The Theory of Refractive Index

in the Presence of a Constant Magnetic Field
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(Received October 5, 1993)

      The theory of refractive index in the presence of a constant magnetic field is

   developed on the basis of the first principle, i.e. of a standpoint of the microscopic

   Maxwell equations. The formula for refractive index is exDressed in terms of a

   correlation function of the spatial Fourier components of total electric current by no

   use of the dielectric constant and the magnetic permeability explicitly. The lowest-

   order term in the wave-number of light of the refractive index is independent of the

   constant magnetic field and has similar features with the leading term of the Faraday

   rotational ang}e as far as one considers the terms up to the first order in the constant

   magnetic field. Effects of the constant magnetic field on the refractive index are

   caused by the first-order terms in the wave-number of light.

                             1. IRtrodaction

   Refractive index is one of the familiar optical constants and a number of theoreti-

ca} investigations are done in various substances.i) In the preseRce of a constant

magnetic field, however, a few investigati'ons of the refractive index and the dielectric

constant are also done.2) In the conveRtional formulations, the theories have been on

the basis of the Maxwell equations in terms of the electric field strength, the electric

flux density, the magnetic field strength and the magnetic flux density. Then, the

dielectric constant and the magnetic permeability have been discussed. On the other

hand we have developed the general theory of the Faraday effect on the basis of the

microscopic Maxwell ea-uations coRstantly in terms of the e}ectric field strength aRd

the magnetic flux density.3) In this formulation, the Faraday rotation including the

natural oDtical rotation is derived directly by no use of the dielectric constant and the

magnetic permeability.

    The formulation of refractive index in the presence of the constant inagnetic field

may be carried out by the simi'lar fashion to that of the Faraday rotation in the

previous p. aper.3} By this formulation one may discuss not only the refractive index of

substa.nce in the constant magnetic field but also the relations between the refractive

index and the Faraday rotational angle. Although the phenomena of the refractive
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index in the presence of the constant inagnetic field, the Faraday effect and the natural

optical activity have different features between them, these phenomena can be discuss-

ed from the same theoretical point of view by our unified theory of optical constants.3)

   In the present paper, we develop the theory of refractive index in the presence of

a constant magnetic field and discuss the relations between the refractive index and the

Faraday rotational angle.

   In sec. 2 a formula for the refractive index in the presence of the constant magntic

field is derived and is expressed in terms of the Green functions. In sec. 3 Hamiltonian

of the system and the total electric current are given. In sec. 4 the lowest-order terms

in the wave-number of light are derived and the equations for the Green functions are

obtained. Relations between the refractive index and the Faraday rotational angle are

also presented. In sec. 5 the effects of the first order in the wave-number on the

refractive index are discussed. Summary and discussion are given in the last section.

2. Ferinulation of Refractive Index

   In a previous paper3) a general theory of the Faraday effect has been developed on

the basis of a standpoint of the microscopic Maxwell equations and of the first

principle by no use of the conventional formulae. The general formula for the Faraday

rotation encompasses that for the natural optical rotation and, furthermore, a formula

for refractive index in the presence of a constant magnetic field has been able to derive

by our similar method3) from the same theoretical point of view.

   Let us take the direction of propagation of an incident monochromatic light with

the angular frequency to to be parallel to the 2-axis in medium. The refractive index

n(cic)) in the presence of a constant magnetic field ff and the Faraday rotational angle

¢(to) of the plane of polarized light per unit lenght" (i.e. the magneto-optical rotatory

power) are expressed in terms of a correlation function of the spatial Fourier compo-

nents of total electric current, that is3)

     n(cv) ==(1- 52 QD(qo, cv))i'2 (1)
and

     ip(ct)) =-2,.h(,,) QN(qo, co), (2)
where qo= to/c, c is the speed of Iight in vacuum,

     (?,(q, co) -- 4'rV`V ,[1!]dt erm"tit o(t) ,C"d/a<.gil(cz, t).s :(-q, ihA)>, (3)

     QN(q, co) == 4tr`O ,[:dt e-itu` 0(t) .CPdR<,A(q, t)A(-q, ihA)>･ (4)

 ' The sense of rotation is defined so that positive ip corresponds to counterclockwise rotation as

seen by an observer against the z direction of propagation of the incident light.
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The symbol e(t) is defined by

     e(t) -(8 igr, i>.g

and

     B- klT.

Expression .S(q, t) is the spatiai Fourier component of totai electric current operator

at time t in the preseRce of H, k Boltzmann's constant, T the absolute temperature

and V is the voiume of the system. The triangular brackets denote the canonical

ensemble average under the total Hamiltonian.

   As far as the Faraday rotation, the natural optical rotation and the refractive

index are discussed, it is enough to consider terms up to the first order in the

wave-number q of the light. The formula (3) is expanded up to the first order in q and

is rewritten in the terms of the GreeR function as

                 47z'ia)     (?D(q, cD) = -                     7(q){G..(q, w)+Gew(q, to)}, (5)                  V

where 7(q) is an operator which has the value of 1/2 and 1 when it operates to the

zeroth-order term and the first-order term in q, respectively. The Fourier component

G.,(q, to) of the Green function G..(q, t) is defined by

     Gu"(q, tu) == le.e.dt e'ito'G,.(q, t), . (6)

where

     G"pt(q, 't) me"--l}-o(t)<[.gfl(q, t), ptg(o, o)]> (7)

with the spatial Fourier component x£(q, t) of the electric dipole moment operator at

tlme t.

   The system under consideration is a polymer composed of similar monomers in the

presence of the constant magnetic field. The spatial Fourier component of the total

electric current operator at time t is expressed in the form

     f(q, t) rc :lll>i.]-li-{exp(iq'rin(t)),,f'(rin, t) + ,,f'(ri., t)exp(iq･ ri.(t))}, (s)

where rin(t) is the co-ordinate operator of the ith electron in the nth monomer in the

polymer at time t. When eq. (8) is expanded up to the first order in q, the expression

f(q, t) becomes

     .e'(q, t) == ."'(t)+tq:ll]¥. {zi.(t).P'(rin, t)+ .K(rin, t)zin(t)}･ (9)

By makiRg use of eqs. (6), (7), (9) the formula OD(q, w) is expressed in terms of the

Green functions, that is
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     Q,(q, w) == - 2trW 1:dt eumiwt{[G..(t) + G.,(t)] + 2iq[ {z,.(t) + fiz,(t)]}

                 2zico             = - v {[ Gxx( w) + Grv( tu)] + 2iq[ f51 x( co) -l- {lly( w)]},

where

     Gllpt(t)= - "illnt0(t)<[.4t(t), pm(O)]>,

     flZt"(t) : ve -il-0(t)<[:lll]2;.]zin(t),f'ft(rin(t)), y"(O)]>,

     it(t) :22erin(t)
           ni

and e is the charge of an electron.

   Thus a formula for the refractive index n(to) is found to be

     {n( to)}2 =( i + tt' [G..(w) + G.( co)]) " (- 4y'ic [ z.(tu) + gz,(ca)]]･

The first and the second curly-bracket terms on the right-hand side of

(10)

(11)

(12)

(13)

(14)

                                                                 (15)

                                                            eq. (15) are

derived from the zeroth and the first order in the wave-number q of light, respectively.

                            3. Hamiltonian

   The Hamiltonian M of the system is expressed as

     M == ¥¥. { 21. (pin --[;-A(rin))2 + vn(rin)}

         +-li-¥]2I.l.pu. v£(rin-jt,'n)+-ili- l.l;l]:;. ]ii.] l4im(rinww )1)'m), (16)

where m is the mass of the electron, pi. the momentum operator of the ith electron

in the nth monomer in the polymer and A(ri.) is the vector potential satisfying the

eauatlon

     rotinA(rin) == fl･ (17)
The expression v.(ri.) is the interaction between the ith electron in the nth monomer

and.the nucleus in the nth monomer, vA(ri.- iz)･.) the interaction between the ith and

the ]'th electrons in the same nth monomer and 14,.(ri. - Tl･m) is the interaction between

the ith electron in the nth monomer and the ith electron in the mth monomer.

   We may assume without loss of generality that the x, y and z components of the

constant magnetic field fl are ffsinev, O, Hcosa, respectively, by an introduction of an

angle a between the directions of H and the z-axis. The expression f can be written

as

     A=-£}Px+-Scagy, (ls)
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     .4w-iSl;py--iliL(cagx-wxz), (ig)

     A=-iS}-pz--S-wxy, (2o)
where

     tu... eHsinev and ca.meHcosev. (2i)
           mc                            mc

    4. Refraetive Index Caused by the Lowest Order in the Wave-Number

   As far as one investigates only the lowest-order terms in the wave-number q of the

light in eq. (15), the expression for the refractive index no(w) takes the form

                 27ri     {ne(tu)}2= 1 +                    {Gxx(to)+Gew(ca)}･ (22)                 ko

   A successive calculation of the Green function G..(t) defined by eq. (l2) leads the

coupled equations for the Green functions of various types of the form

                                       e       h dGxx(t) ww IVfae2                            h toz     -T' dt - im 6(t)- i Gex(t)+HmGkx(t),

     --i.l- d(IIIi(t) : h9･ " Gxx(t) - h?･ " Gzx(t) -t" -iSi- G"x(t)･

     -.Zi.l- dGaxt(t) == h[l.ix G,.(t) +-;ili GLx(t)･

     ww li.i- dG,ptif(t) - - ,i. GzL(t) - -l;- Gze(t),

     --4.- dG,"2L,(t) -: - ,k Gfi}i(t) --l;- Gn2(t),

     - 4. dGdp22ut<t) = ZtsI.h.e2 c..6(t) - -il; Gft2"(t) - Gg2.2(t) -- -iili- G£2.3(t)

                 + 2e. G2e4(t) + 2e. G£zo-(t),

                                         (pa =x, y, z, u=:x, y)

where N is the Rumber of electrons in £he system and

     G..(t) :- -i0(t)<[.gfl(t), pt.(O)]>,

     Ghu(t) = ww :ll-e(t)<[:i >i.](p"invn(rin(t))), ptu(o)]>,

     GZL(t) == -tO(t)<[ ll]mp. ]l;,l(P"inPpt'inPpt'invn(rin(t))), 1]tu(O)]>,

     GZ2u(t) = - -ll-0(t)<[:i,l¥. ;,1(P"inP"'invn(rin(t))),7"ft'in(t), ubl(O)]>,

     G£iui(t) = - -fr0(t)<[:II ]2i.I]]i;,1: l.l(P"inP"'in-D"'inPv'inPv'invn(rin(t))), uu(O)]>,

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)

(31)

(32)

(33)
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G£'u2

Cptu

G£2v'

(t)

 :<

(t)

     GE2v2(t)

             + i X(PllinPinVn(rin(t))))'oVfn(t), ttu(O)]>, (37)

     Gfi2u3(t) = - Jil70(t)<[ ]¥pu, (PpmPpt'!nvn(rm(t)))(P"'tnvn(rtn(t))), yu(O)]>, (38)

     G22v`(t) = me -ill-e(t) <[:l] ¥.] l Ii, {(P"inP"'tnvn(rtn(t))) - (PpJnPpt'JnVn( r:in(t)))}

             ×(P"rinvA(rin(t)-T:,'n(t))), ptu(O)]>, (39)
     G£2u5(t) = - -ill-0(t)<[]Iil.llll]:li.];.I;, {(PAinP"'invn(rin(t))) ww (PAJ'nP"'jnVn(n)'n(t)))}

             ×(Pg'in lX:rm(rin(t) ma il,'nt(l))), Ltu(O)]>･ (40)

The equations for the Green function G,,(t) are also obtained by a similar fashion as

is demonstrated above, that is

     -"l?.- dGdsw,(`) - tlNi.h.e2 6(t) + h: z G.,(t) - h9･ X Gzy(t) +-iS; G"y(t)･ (41)

     --i.i- dGdxyt(t) =-h9.zG,.(t)+-il)- Gb(t), (42)

     ww Jli.l- dGiyt(t) == h?.xG.(t)+-Sll- Gb(t) (43)

and eqs. (26)-(28). As it is seen in eqs. (23)-(28), effects of the electron-eiectron interac-

tion appear for the first time only in G2k`(t) and Gfi2.5(t) on the right-hand side of eq.

(28), which are defined by eqs. (39) and (40) with terms of the form (P"tinvA( ri. - }1,･n)) and

(P"Jin lxitm(ri. - r:,･m)), respectjvely. Such a fact can be found also in a set of equations for

the Green functions in the case of the Faraday effect and equations (26)-(28) are

completly the sarr}e ones as those derived for the Faraday effect.`) This implies that

there is hardly effects of the electron-electron interaction on the refractive index and

these effects on the refractive index are the same as those on the Faraday rotational

angle.

   When a few approximations for the simultaneous equations (23)-(28) and (41)--(43)

can be made, it becomes possible to solve the equations for the Green functions. Let us

make some approximations for GZL(t) and GZ2.(t) defined by eqs. (31) and (32), respec-

tively, as follows

                    Yuji KATo
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 ww 7T0(t)<[]Ill]¥. ii;.l;.(P"inPp'inPu'inPu'invn(rin(t)))2ilrin(t), stu(O)]>, (34)

nv
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v' :l] ¥ (PptznPu!nvn( getn))>, (3s)
    i
= - -iof0(t)<[¥;.l;l, ] l,](P"inP"'inPv'inVn(rin(t))),El'in(t)2Zx'in(t), ,uu(O)]>,

                                                     (36)

= - -ill-0(t) <[]Il l]2i.]( 2lm Z., (P"inP"'inP"'inpinvn(rin(t)))

    h tu



         The Theory of Refractive lndex in the Presence of a Magnetic Field 19

     GZL(t) t<2P"'inP"'in>Ghv(t) (44)
             st,

and

     GZ2v(t) `" Z<(P"inP"'inVn(rin))>GA'u(t)･ (45)
            "r

This approximation suggests that the electron-electron interaction can be neglected.

   From eq. (22), in the presence of H, the refractive index ne( ca) caused by the lowest

order in q becomes

               4nNh2e2 hW- <2Pi> [(hw ma <4P:> )2-D]2-E-HN

     {no(tu)}2 i- vin im (harm<4ph>)6+A(ha.<4ph>)` ' (46)

                                    +B(h.- <4P2> )2+c+ Ilb

where

     A,,. ww 3( <4ph> )2+<phv>, (47)
     B == 3( <4Pi2> )4 -2( <4P2> )2 <Piiiv> + -li-( <piltv> )2

         ww (( <P)ip.zv> )2 + ( <PcbmxV> )2 + ( <PxStyV> )2], (4s)

     c--( 2pa> )6.( lph> )` <phv>

         -( <4Ph> )2(-li( <PhV> )2 - (( <Py.¢'zv> )2 +( <pcb.xv> )2 +( <pcb.yv> )2)}

         +-5I7(<PhV> )3+2 <P)ip.xv> <pfi$xv> <p.£yv>

         m -ll <Phv> (( <PymPzv> )2 + ( <P.$.v> )2 ÷ ( <p.£.v> )2), (4g)

     D-=(<,"iii> )2-<f2.'>, (se)
     E.,, <PyPzV>+<PipXV>, (51)
           mm
     ,M, ,= 2eg. ke2(eH.s2nev )2(hto- <2Ph> )3, (s2)

     Hb =x ( ;}{I )2 (hca - <2P2> )2 (hw(hcv - <2Piii> )+ <Pi'iV> cos2a+ <Pj'liV> sin2cr].

                                                              (53)

Here use of abbreviations has been made, i.e.



     <P2> == <X P"tin Ppttin>, (54)            x!,

     <P2v> =Z<(P"tin P"'in vn(rin))>, (55)
            ptr

     <PgPvv> =: <(P"in Puin Vn(rin))>･ (56)
Expression (46) contains onlY the second-order terms in H with the first-order terms

missing. It should be noted that as far as we consider the terms up to the first order

in the constant magnetic field H, ･the refractive index no(w) caused by the zeroth order

in the wave-number q of light is independent of H and, therefore, the dispersion of

refractive index no(di) is the same one in the absence of H.

   The dispersion of the refractive index no(to) expressed by eq. (46) is very similar

to that of the Faraday rotation.`) This implies that there is a relation be't'ween the

refractive index no(to) and the Faraday rotational angle ip(to). The relations between

tbe Faraday rotation and the refractive index in the absence of ff has been proved in

general in our previous paper3) in the form

               eH     g5(cv) ==                     [{no(w, H:= e)}2-1]. (57)            4mc2no(ca)

This expression is concerned with the Becquerel formula.5)

             5. Effects of tke First Order iR the Wave-Nurnber

   Sjnce the constant magnetjc field fir is ineffective on the lowest-order terms in the

wave-number q of the refractive index, the effects of the constant magnetic field on the

refractive index are yielded from the first-order terms in q. The first-order terrns in q

are expressed in terms of the Fourier components of the Green functions {l4x(t) and

CIZ.(t) defined be eq. (l3), which are similar to the Green functions for the natural

optical rotation.6)

   An equation for the Green function {l51x(t) can be calculated by the fashion as is

seen in the preceding sectioR and may be written in the form

     --li.l- dCiZd:xt(t) - ZNI.h.e2 <z>6(t) - h9. z {iz.(t) --ii.l--l;- g}i.(t)

                  +-si} rk(t) -}-Szgc(t) +S {e 3,(t), (ss)

where

           1     <Z> "" <rmlv Z. lll,]2in>, (59)
     {l5'}L(t) =: - -jll- 6'(t) <[]ill] >i.] o4tin(t) ,Zlin(t)･ Ltu(O)]>･ (60)

     Cg7h2.(t) - - -;ij0(t) <[:ll] :l.]zin(t)(P"invn(rin(t))), gu(e)]>, (61)

     {l7}3u(t) =--ill-e(t)<[]Ill]i21.l.l;.Il(zin(t)-a)'n(t))(P"invh(rin(t)-x)･n(t))), yu(O)]>, (62)
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     zz(t) = - Jili- 6}(t) <[:lll.]lll]¥]Ii](2tn(t) nv Gm(t))(P"tn l';im(rtn(t)- )lim(t))), Ltv(O)]>-

                                                                (63)

The electron-electron interactions appear in the Green fuRctions c57}3.(t) and gli`.(t) on

the right-hand side of eq. (58) immediately. Thus it implies thatthe electron-electron

interactioR is effective on the refractive index caused by the first order in q in contrast

with that caused by the zeroth order in q. A successive calculation of SL(t), {nyl,(t),

{Y7L3.(t), EY7b`.(t) makes a set of the equations for {IZ,.(t), which is fairly complicated than

that for G..(t) calculated in the preceding section. Thus the calculation to solve the

simultaneous equations for the Green functions suggestes a rnore complicated behavior

even if the approximations are made and this calculation of the refractive index -is

similar to that of the natural optical rotation.

   Furthermore, the dispersion of refractive index caused by the first order in q is

very similar to that of the natural optical rotational angle as is seen in our previous

paper.6) Therefore, it becomes clear that tke dispersion of the refractive index caused

by the first order in q has a close connection with that of the natural optical rotation.

                       6. Summary and Diseussion

   The theory of refractive index in the presence of a constant magnetic field ff has

been developed on the basis of the same standpoint of the general theory of the

Faraday effect and the natural optical activity formulated, by Ro use of the conven-

tional formulae, by the method demonstrated in our previous paper.3) It has been

proved that the refractive index in the presence of H is closely connected with the

Faraday rotation and natural optical rotation.

   As far as we consider only the lowest-order terms in the wave-number q of light,

electron-electron interactions have a little effect on the refractive index no(w) in the

presence of ff being analogous to the case of the Faraday rotation. Thus effects of the

exciton model, which originates in the electron-electron interaction, are a little ones on

ne(di). Furthermore, the expression no(to) contains only the zeroth- and the second-

order terms in ll by neglect of the electron-electron interaction and then the refractive

iRdex no(to) given by eq. (46) comes to be independent of H as far as one considers the

terri}s up to the first order in H. Then there is a relaeion concerned with the Becquerel

formula between the refractive index and the Faraday rotation,5> which has been

proved in geneyal formerly by us.3)

   The effects of the first-order terms in the wave-Rumber q of light on the refractive

index have been also discussed. Since the calcuiations of Green functions defined by eq.

(13) are made by a similar fashion in the case of the natural optical rotation, the

electron-electron interactioR is effective on the refractive index beiRg analogous to the
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case of the natura} optical rotation as is shown in the previous paper.6> Furthermore,

it can be considered that the effects of the constant magnetic field H on the refractive

index originates in the first order iR q as far as one considers the terms up to the first

order in H.

   The electron-electron interaction between an electron in a monomer and the

nucleus in the other monomer is neglected in comparison with the interactions

vA(rin-n,･n) and lx;im(rin-r:,･.) in the Hamiltonian (16).

   In the present paper, the exciton-phonon interaction is also neglected. The exciton-

phonon interaction has a little effect on the natural optical rotation and the refractive

index in the absence of H as is proved in the previous paper.') This suggests to hold

still that the effects of the electron-phonon iRteraction is a little on the refractive index

in the presence of H.

    In conclusion, it should be noted that the refractive index in the presence of the

constant magnetic field can be discussed in similar fashion for the Faraday effect from

the same theoretical point of view by the general theory developed formerly by us.3) It

has been shown that, although the refractive index has different features from the

Faraday effect, however, these are in close connection each other and there is a

relation concerned with the Becquerel formula.5) Furthermore, the effects of the

electron-electron interaction on the refractive index in the presence of the constant

magnetic field have been investigated by our general theory3) just now.
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