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Electron-Electron Interaction in the Faraday Rotation

Yuji KATO* and Toshihiko ANDO**
(Received May 17, 1993)

It is shown that the electron-electron interaction has a little effect on the -
magneto-optical rotation, that is, the Frenkel exciton hardly contribute to the
Faraday effect. Furthermore, it means that the ‘anomalous magneto-optical disper-
sion at a helix-coil transition hardly occurs, being different from the result of natural
optical rotation. The magneto-optical rotatory power is presented in the case of the
Faraday and the Voigt configurations by making use of approximations as far as the
electron-electron interaction is negligibly small.

1. Introduction

The natural optical rotation and the Faraday effect (or magneto-optical rotation)
are very similar phenomena and there are, on the other hand, essentially different
features between them. In the previous papers,” a general theory of the Faraday
effect on the basis of the linear response theory for an external electromagnetic field
is developed. By making use of this theory the natural optical rotation and the
Faraday effect can be discussed from the same theoretical point of view. The genaral
expressions for the Faraday rotation®* hitherto obtained, however, are rather compli-
cated in comparison with those for the natural optical rotation and it seems that the
calculation for an actual molecule is very difficult, even by using approximations.

A helix-coil transition of polymers causes an anomalous dispersion in the natural
optical rotation. Moffitt® has theoretically investigated this phenomenon by making
use of the Frenkel exciton model for polymers. In the case of the Faraday effect, any
similar studies have not been done yet.

In the present paper, we investigate the effects of the electron-electron interaction
on the Faraday rotation in a polymer.

In sec. 2 it is proved by an approximate momentum conservation of the system
that in the case of the Faraday effect the anomalous dispersion hardly occurs at the
helix-coil transition in contrast with the case of the Moffitt theory in the natural
optical rotation. In order to derive this conclusion, it is not necessary for us to have
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the knowldge of the magneto-optical rotatory power of monomers composing a
polymer. In sec. 3 the total Hamiltonian of the system is presented in the general form.
In sec. 4 we obtain a chain of the equations for coupled Green functions of various
types. It has been proved that the electron-electron interaction has a little contribution
to the Faraday rotation. In sec. 5, in order to investigate the magneto-optical rotatory
dispersion we calculate the response function by using approximations in the cases of
the Faraday and the Voigt configurations. Section 6 is devoted to sammary and
discussion.

2. Formulation of the Faraday Rotation

In the previous paper,? a general formula for the Faraday effect was derived by
the same method as that for the natural optical rotation, using the linear response
theory.® The formula for the Faraday effect is represented by a response function
between total electric current and electric dipole moment operators of the system.

Let us take the direction of the propagation of an incident monochromatic light of
the angular frequency @ to be parallel to the z-axis in medium. Since the Faraday
effect is caused by the zeroth-order term in the wave-number of light, the Faraday
rotational angle ¢ (@) of the plane of polarized light per unit path length* is represent-
ed in the form?

H0) = pmoy [t e 0 AD, mOD, W

where #,(w) is the refractive index in the absence of a constant magnetic field and
S () and x(¢) are the operators for the total electric current and the total electric
dipole moment at time f, respectively. The triangular brackets denote the canonical
ensemble average under the total Hamiltonian. The symbol 8(¢) is defined by

1 for >0

H(t):{() for <9,

where V is the volume of the system and ¢ is the speed of light in vacuum.
The Faraday rotational angle ¢ (w) can be expressed in terms of the Fourier
component of a Green function:

Gl@) = ["dt e Gulr), @
where

Gaolt) = = -6 LALE), (). @

* The sense of rotation is defined so that positive ¢ corresponds to counterclockwise rotation as
seen by an observer against the z direction of propagation of the incident light.
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Substitution of egs. (2) and (8) into eq. (1) leads to

Hw) = m Golw). @

The system under consideration is a polymer composed of similar monomers in the
presence of a constant magnetic field H. The x component of the total electric current
operator and the y component of the total electric dipole moment operator at time ¢
are given by

A0 =-LZ5 prn(t) ~ £ Aulra(1)) | ®
and
() = 2133 ps(rant)), ©®

respectively, where e is the charge of an electron, m the mass of the electron, ry, and
Pin the co-ordinate and the momentum of the ¢th electron in the »th monomer in the
polymer, respectively, and A(r,) is the vector potential satisfying the equation

rotmdA(ry) = H. <P,
3. Hamiltonian

The total Hamiltonian 7 of the system is expressed as

# = B85 (b = L A + vari) |+ SRS )

(i%J)

‘\L"é“‘zzzlz Vnm(rin"“l'jm) + ;%}va(rm), (8)

" Gemy ” (nemy
where v,(r;,) is the interaction between the 7th electron in the nth monomer and the
nucleus in the nth monomer, v,(r;,— ;) the interaction between the 7th and the jth
electrons in the same nth monomer and Vo (r;»—r;») is the interaction between the
ith electron in the xnth monomer and the jth electron in the mth monomer. The last
term v, (r;») on the right-hand side of eq. (8) denotes the interaction between the ith
electron in the nth monomer and the nucleus in the mth monomer.

4. Green Functions

Let us a be an angle between the directions of the constant magnetic field H and
the z-axis. We may assume without loss of generality that the x, ¥ and z components
of the constant magnetic field H are Hsina, 0 and Hcosa, respectively. In calculating
the Green function G.,(#), we take the time derivative of eq. (3) and can obtain the
equation



4 Yuji KaTo and Toshihiko ANDO

2 4GlD) L o) LA, 2, ml0)D. ©

By making use of the expression for Hamiltonian (8) and eq. (7),
i N _e € 4 .
LA, 1= = 3 (/W) X H)x - S 1)

+ SIS Prim valralt)). am
W nm 3
(nsm)
Under the assumption that the interaction v,(r;,) (n+m) between the electron in a
monomer and the nucleus in the other monomer is negligibly small in comparison with
the interaction v,(r;,) between the electron in a monomer and the nucleus in the same
monomer, the last term on the right-hand side of eq. (10) can be neglected and eq. (9)

reduces to
_.%Z. ng;<t) = hil)z ny(f) “f‘””szchy(t); an

where @, = eHcosa/mc, G,,(t) and a new Green function G, (¢) are given by

Gl 1) = =L OUAD, O | a»
and
GiA8) = =5 6 (D (pain varin D)), (00D (13)

If we take the time derivative of G,,(¢) on the right-hand side of eq. (12) in order
to obtain G, (1), it appears Green functions defined by

Galt) = =5 OO LAL), (O a0
and
(1) = = 8(1) [ZZ (bn valran 1)), 1(O)]) (15)
and we obtain an equation for G, (#)
_h dGy(t) _ B Ne* haw: _ hax | e
i dt 1 wm o(2) + i Gx(2) i Go(t) + mny<t)y ae

where N is the number of electrons in the system and w, = eH sina/mc. Similarly, the
equation for Green function G,,(£) is derived in the form

— 2 4ClD) _ R ) 1€ Guy), an

where

G0 = — L 0O T (n vl D), (O, a®
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Furthermore, by differentiating eqs. (13), (15) and (18) with respect to time ¢, the
following equations for GL,(¢) (v=x, v, z) are found to be

SBAGHD - Lgay - Lont),  (v=xy,2 19
where

GE(1) = =55 6() IS T (Brin prin s on(ran D)), 16O 20)
and

GE(1) = = 6() (T EZ (Buon buin va(rin(£))) (), (O] @D

In this way, if we take the series of the time derivative for these Green functions, we
obtain the coupled equations for the Green functions of various types. Since the terms
Buin V2(ri())) (v = x, v, 2) in egs. (13), (15) and (18), however, are commutable
with the parts of the electron-electron interactions va(ri— 1) and V,,(ri—r;,) in
the Hamiltonian  given by eq. (8), all the equations (i.e. eqs. (11D, (16), (17, (19))
for the Green functions obtained in this way do not involve the Green functions for “the
electron-electron interaction and the electric dipole moment” response.

If we take an assumption that Green functions GZ(#), GE(t), GE(), GE(D,
GZ(t) and G#(t) are represented in terms of the Green functions ny(t), Gyl 1),
Go(), GL(), GL(#) and GL(#), the Green function G,,(#) is the same solution that
we obtain in the case of no electron-electron interaction in the Hamiltonian (8) of the
system in the presence of the constant magnetic field H. Therefore, there is only the
intrinsic optical rotation in the case of the Faraday effect. v

In order to obtain the exact solution G, (¢) of the coupled equation for the Green
functions, it is necessary for us to find the equations for GZ1(¢) and GZ(¢) (v=x,v,2)
defined by egs. (20) and (21), respectively. By differentiating eqgs. (20) and (21) with
respect to time £, the equations for the Green functions G2.(#) and GZ(¢) are derived
being accompanied with the new type Green functions. The equation for GZL(#)
becomes

?i‘z J&Q — G — = GH1), (v==x, y, 2) 22)

where
GiNt) = — —9(t)<[ 5;2; (Duin Duin utin buein Duin Un(ran())), (O)),  (23)
GHA(t) = — —6(t)<[ S323% (uin Drein rein uin 0a(rin(£))) Jin(2), (O 24

and the equation for GZ(¢) can be expressed as

_ %i%-;@ L& (55 B oin 0a(rn))) 0(2)

321(t) 322<t)+ 323([,)_*_ 324(t)+ 325([,) (25)
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where

GEB() = — 3 8(0) ASETT (hin b buin (O S ) S ), O,

(26)
GEA1) = =5 0() IS | 532 (b buin i Doin v 1)
2 ann varal D) | + S0, (O, @

GE(t) = — *}; OC) [Z 22 (uin Dvin Va(rin ) (Drin val7:n(£))), 1(0) ), (28)

G%‘U) = ‘%“ 9“) <[%}Zl}§}g {(P#z’n Duin Un(rm(l‘))) - (p#jn Duin Un(rjn(t)))}
(i%5)

X (p#inv;z(riﬂ(t) - rjn(t)))y /ly(o)b, 29

Ggf,s(t) = _7,1-;' 9(l‘) <[;%Z;§ {(p#in Dvin Uﬂ(rin(t)» - (p#jn Duin Un(rjﬂ(t»)}

(n=+m)

X (Prin Van (ra(t) = rim(£))), 1:(0)]), )]

here a quantity e in eq. (27) denotes a vector whose components are eH sina/mc, 0,
eH cosa/mc, respectively, and use has been made of the relations between the constant
magnetic field H and the vector potential 4 given by

Ax=— —[2{—3/ cosa, €3D)
Ay = -IZi(x cosa — z sina), 32
A=Ay sina. | (33)

It should be noted that the electron-electron interactions appear for the first time
only in G2(#) and G¥(#) on the right-hand side of eq. (25), which are defined by egs.
(29) and (30) with terms of the form (Pumvn(rm—rin)) and (Pum Ven(Fm— rm)),
respectively. It seems to us that the electron-electron interaction has a little effect on
the Faraday effect as compared with that exerted by the interactions between the
electron and the nucleus in a monomer. Furthermore, the terms related to the
electron-electron interaction as seen in eqgs. (29) and (30) are of the form multiplied by
Quinprintn(rin)) = Duinpvimva(rin)). It states that the effects of the electron-electron
interaction depend on the curvatures of the potential from uncleus.
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5. Effects of the Intermonomeric Interaction

In the present section, the contribution of the electron-electron interaction to the
Faraday effect is investigated. It is necessary for us to obtain the Green function
Gy () by solving the coupled equations for the Green functions of various types. In
order to solve these simultaneous equations, the equations for Giit(¢), GE2(#), GEU(p),
GRE(1), G3B(t), GB(#), GI%(t) (v = x,y,z) are necessary for us and those equations
yield many Green functions of new types. Thus, such a successive calculation reaches
the simultaneous equations of the form as an infinite chain of coupled equations. To
investigate the effects of the electron-electron interaction, the calculations to solve the
coupled equations are made using the approximation by the decoupling method. For
approximate calculations the formula for the Faraday rotational angle ought to be of
the form, instead of eq. (1),

Ho) =y [ dte™ 00 KLAD), (O = LAD, 0D} GO

because of the loss of the antisymmetry property under interchange of x with y by
acceptance of the approximations.

As far as we confine ourselves to treat no electron-electron interaction, which has
a little effect shown in the preceding section, we can obtain the approximate solution
by no use of eqgs. (29) and (30). Thus, to investigate the magneto-optical rotatory
dispersion we calculate the Green function G,,(f) by the approximations to simplify
the complicated Green functions in the cases of the Faraday and Voigt configurations.
5.1. The case of the divection of the incident light to be pavallel to the constant

magnetic field (Faraday configuration)

As the constant magnetic field is parallel to the z-axis (i.e. @ =0), wx=w,=0 and
w.= eH /mc. The simultaneous equations for the system under consideration are of the

form
_Ei ng;(t) _ h?)z Gol(1) +—%G}y(t), (35)
_% dGé;(’f) f‘ Ne® 54y + h“’z Gao(1) + -5 Gh(1), (36)
~2 4Gl _ L guiny Loy, @D
~ B dGlt) - Leany - Loge, @8
where

Gunl(8) = = - B LALE), 1 O)D), 39
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GhA1) = = 0D T (i vl ran ), 10D, 40)
Bt)=— % H(t) <[22% (P#in Duin Puin n( rin(f)»y /Jy(O)Dy 4D

GB(8) = =L 60 ST (b b o ) S 1), 100D,

— L 60 LTS oo 0aCrn D) i ), 50D (42)
(v, v=x,9, 2)

If we assume that GZL(#) and G#(¢) are expressed in terms of G,,(#) and Gi,(2),
we can obtain G.,(#) by solving the simultaneous equations given by eqs. (35)-(38).
Then, we approximate the Green functions G2(#) and GZ2(¢) defined by eqs. (41) and
(42) to the form

Gi(#) 2 (X puin buin Gin(t) (43
and
G%(” = <(pxin Duin Uﬂ("'in)»ny(t) + <(pyin Duin Un(rin)» ny(t), 44

(o, v=1x, y, 2)

respectively. Under these assumptions the rotational angle ¢ (w), which represents
the magneto-optical rotatory dispersion, can be written as

e
()= — 2aN# et H <hw— 2m ) 5
V' c*nol w) P\ oy (o) ey
e Kh‘”_fm) +( Z;: * Z;rz “Hzin))}
ey By 7 {pxtyvd 2
G T
where
(0%) = X buin Drin), (46)
(D20 = L(Dvin Duin Ua(1in))), 4D
<px Dy U> = <(pxin Dyin Un(rin))>~ (48

5. 2. The case of the divection of the incident light to be perpendicular to the constant
magnetic field (Voigt configuration)

. . .o /s
As the constant magnetic field is parallel to the x-axis (i.e. @« = ?), wx=eH /mc,

wy = w: = 0. The simultaneous equations are of the form
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7 dGu(t
_T%:i%m’ (49
% dGw(t) 7 Ne B
_ R G B NEt sy Rx oy G, G0
i di i m i m
7 dGalt)  Tws
_ B dG) _ Rex oy S o, GD)
1 dt 1 m
RAGWH 1 o 1.,
T 2w 2(8) ery(t), (52)
! 1 1
_2AG0) L ey~ Loa, 53
1 dt 2m e
2 1 1
—3 dGa(n) L A(t) ——GE(), (54)
1 dt 2m e

where Guy(2), Giy(8), G5(¢) (v=x, y, z) are defined by egs. (39), (40), (41), respec-
tively, and G2 (¢) is now defined by

G%(t) = “;; 0(t) <[;Zl]§ (f)m'n Duin Un(rin(t)))%tin(t): ﬂy(o)]> (55)
(t, v=2x,y, 2)

We now assume by the similar fashion in the case of the Faraday configuration
that GZ(#) is expressed as eq. (43) and GZ(¢) is now of the form

ﬁi(t) = % <(p/lin Duin Un(rin))> Gﬂy(t)- (56)

The calculations of egs. (49)-(54) under these approximations lead to the rotational
angle ¢ (w) which is slightly more complicated in comparison with that in the case of
the Faraday configuration, that is

(P")\2

_ uNREH K<h“’_ zfn>
A= S | Py Py e P

(ha)— >+A<hw— m>+B<hw—4m)+C
where
g Spebs v>’ (58)
m

a=-3( ZZZ )+ <p;v>, (59)
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(%) s P\ PP BPo) e
B:3< 4pm ) _2< 4pm ) Zjmv +%_< pmv >
_{( <pyizv> >2+<<pzixv> >2+<<px:;y?/> >2} 60

oo < » >6 N < 07 >4 (PPv)

dm
(P \2 (PP v)\e2 (Dyp2v) \2 (Depxv) \2 (Dxbyv) \2
G o () + (= = (00 )
+L< P’ >3+2<1)y17zU> (babxv) PxD>0)

27

4m m

m m m m

1 P0) ryovbzv) \e [ Dzbxv) N2 /DDy V) \2
_3 m << m >+< m >+< m >> (6L
and use has been made of
1
(5509 = (B50) = (o) = (8 0) =5~ uin P ) ©)

6. Summary and Discussion

It has been seen that the Frenkel exciton, which originates in the electron-electron
interaction, has a little effect on the Faraday rotation. If we calculate the Faraday
rotation by using the conventional formula,®® instead of our general one, it seems to
be very difficult to prove that the Frenkel exciton has a little effect on the Faraday
rotation. The validity of our results is clear by the reason that eq. (1) is given by the
response functions of the total currents and the total electric dipole moments. It is an
unexpected result that the Frenkel exciton has a little effect on the Faraday rotation
in contrast with playing the essential role of the Frenkel exciton for the anomalous
dispersion in the natural optical rotation.

In the present paper, we have neglected the electron-phonon interaction and the
interaction between the electron in a monomer and the nucleus in the other monomer
as it has been seen in eq. (11). These effects have been neglected in Moffitt’s work®
on the anomalous dispersion at the helix-coil transition in the natural optical rotation.

In the case of the helical homopolymers composed of the DNA-bases, it seems that
the Frenkel exciton model is accepted. Although the theoretical result by Deutsche”
has shown that the anomalous dispersion is not observed in the helical polymer which
is exposed to the light travelling parallel to the helical axis, his result is not experimen-
tally confirmed as far as we know.®
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Although our results seem to be trivial, it is very important that the results are
exact in regard to the intermonomeric interaction in the polymer. If we write eq. (1)
using the representation in which the total Hamiltonian of the system is diagonalized
and if we calculate it by the first order perturbation with respect to the intermonomeric
interaction, we may obtain the term corresponding to that of the anomalous dispersion
in natural optical rotation, in particular, in the case of the helical polymer oriented
perpendicular to the direction of the propagation of light. The formulae for anomalous
dispersion given theoretically by Moffitt® are calculated by means of a perturbation of
the intermonomeric interaction.

One of the important differences between the Faraday effect and the natural
optical rotation is that the former is caused by the zeroth-order term in the wave-
number g of light, whereas the latter by the first-order term in ¢. If we take account
of the first order in ¢, the formula for the natural optical rotation also will be
expressed by the response functions of the total currents and any other physical
quantities (for example, magnetic moments or electric quadrupole moments).? More
presisely speaking, we suspect that the differences of our result in the Faraday effect
and Moffitt’s one in the natural optical rotation do not originate in the difference of ¢
dependence on two phenonena as far as the anomalous dispersion is discussed.

Finally, the expressions for magneto-optical rotatory dispersion are presented by
making use of the approximations, in the case of the Faraday and the Voigt
configurations, when the effects of the electron-electron interaction are negligibly
small. These approximations that the complicated Green functions are replaced by the
simple one are somewhat ambiguous, because there is no first principle of the decou-
pling method for the Green functions. The expressions for the magneto-optical rota-
tory dispersion obtained by these approximations, however, can be considered to be
reasonable.
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