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A Theory of Finite Topology and Image Processing
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                (Received May 31, 1991)

    By borrowing the concept of a neighbourhood from the theory of topo}ogical space

in continuous cases and extending it to a discrete case such as a space ef }attice poiitts,

we have deflRed such concepts as boundaries, closures, interiors, isolated points, and

connected points as in the case of contiRuity. By associating each of these concepts w!th

the various processes in image processing, we have shown examples of them using actual

data. Also, if we consider these processes as transformations, we can obtain a number of

topological traRsformations. By examining combinatioRs of'these transformatiens, we

show how to reduce them into a single transformation.

   We have also introduced concepts foT speeding up neighbeurhood calculatiens using

a Rew coRcept called SDM.

1. Introduction

   'Ibpo}ogicai geometry and the more generalized topological space theory or £he

theory of general topologies based on set theory can be said to be geometries for

contiRuous spaces. For example, the continuity of a function can be defined by using

tke coRcept of a neighbourhood as described in the theory of general topologies.

   llowever, in recent years, it is common for a space to be divided into a !attice

or grid and treated as a discrete space to facilitate processing with a computer.

In former theories of topology, discrete spaces were merely taken as sets of points.

Therefbre, all points were considered isolated points. However, even though spaces

are divided, there is an adjacency relationship between points and there can be

many types of entire space structures.

   In the field of image processing, the eoncept of a neighbourhood, or processing

template, is gaining use in the cases of lattice point spaces as well. ffowever, this

concep£ of a neighbourhood is difEbrent from that mentioned above in regards to a

topology and as of yet has not been given any mathematical basis.

   The authors have constructed a topology theory for the cases of discrete spaces

and have given it the name of Finite Topology. Along with the presentation of a
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A
Flgure 1: Example of a boundary.

Aa

few additional concepts, we would like to test the validity of this theory based on

actual image data. FiRally, we examine the relationship between neighbourhood

processlng and Iog2cal operations as wei} as the relationship with calculation tirne.

         2. Finite Topoiogy Concepts and Neighbourhoods

   Let X be a general set. If a subset U(x) of X is determined for eaeh element =

iR X, we call the pair (X, U(･)) a finite topological space. The subset U(x) is called

a neighbourhood of x. In mose cases, we assume x E U(x) (in this case, we call

X filled), but it is not necessary in all cases. U(x) is interpreted as a set of points

lleighbouring to x.

   Using this notion of a neighbourhood, we can define many concepts.

Definition (Beundary). A boundary Aa of a subset A of X is defined as:

               Aa = {x : U(x) fi A# ip and U(x) n Ae ; ip},

where Ae is the complement of A and ip is the empty set.

   In the field of image processing, the process of obtaining AO from A is cal}ed an

extraction of the out}ine of A, which is shown in Figure 1.

   We can divide Ae into the fbllowing two parts - aR inner boundary AO{ and aR

outer boundary Aeo which are defined as:

                   Aei = AnAO and Aeo = fscnAa.

Ofcouyse, we see from these definitions that Aa = Aat u Aeo.
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Definition (Xnterior). An interior Ai ofa subset A ofX is defined as:

                     A' = {x : x G A => U(x) g A.}.

   In image proeessing, the process of obtaining Ai is called a contraction of A.

Definklon (Closure). A closure Ab of a subset A of X is defined as:

                        Ab = {x : U(x) nA# ip}･

   This concept is referred to as "expansion" in image processing.

Definition (Isolated Points). A set of isolated points AS ofa subset A ofX is

defined as:

                 AS ={x:xGAand (U(x)Xx)nA=ip}･

   A poiRt in u`IS is referred to as "noise" in image processing. Conversely, we define

a con£inuou$ par£ An of A as An = AN AS, which can a}so be written as:

                 An = {x :x E A and (l7(x)Xx) fi A4 ip}-

An is called a "noise elimination" of A in image processing.

Definition (gnflation). An inflation Af ofa subset A of X is defined as:

               Af : {x : (]y)(y E A,xE U(y))} = U U(y)･

                                             yGA

   This concept seeiins similar to "closllre", but they do Bot a}ways coincide. We

present the fo11owing definition.

Definition (Symmetry). A neighbourhood U(･) of a finite topologica} space

(X, U(･)) is ca}}ed symmettt'c if and on}y if:

                For all x,y e X,y G U(x) implies x if U(y).

   The neighbourhoods (a), (b), and (c) shown in Figure 2 are symrnetric, but

neighbourhoods (d), (e), and (f) are not.

   By using the concept of symmetricity, we can give the fo}lowing lemma.

Lemma 2.1. If a neighbourhood U(･) is symmetyic, then fbr all subsets A:

                               Ab = Af.
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             U(x) U(x) U(x)

              e

             (a) (b) (c)

             U(x) U(x) U(x)
          di EP

             (d) (e) (f)
               Figure 2: Symmetricity of Neighbourhoods.

Proo£ Let us look at the fbllowing fbrmu}ae.

         xE Af o for some yE A,xE U(y)

                o for some yE A,yE U(x) (by symmetricity)

                o U(x) fi A#¢
                e xE Ab.

Thus, we get the result.

                                                          Q.E.D.

   The following two definitions are analogies of very popular concepts of openness

aitd c}osedness in continuous topologies.

Definitien (Open Set). A subset G of X is open }f and only if:

                             G =. Gi.

Definition (Closed Set). A subset F of X is ctosed if and only if:

                             F .,, .pib.

   We present here a second type of closure aRd inte:ior.

e e

e
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        Figure 3: A is connected by neighbourhood Ub, but not by Us.

Definition (gclosure and finterior). An iclosure Afb and aR finterior Afi

of a subset A of X is defined as:

                    Afb = A{F : Ag F, F is closed},

                     Af` = U{G : G S A, G is open}.

   We can show that an gclosure is gotten by a repetition of an ordinary closure

(see Lemma 2.1 in Reference [1]) and an finterior is gotten by a repetition of an

ordinary interior.

                  'Definkion (Connected Set). A subset A of X is connected, if and only if, fbr

any B, C in X:

        A =Bu C,B# ip,C# ip, and BnC == ¢ implies Bb nC# ip.

   This concept coincides with the usual intuitive concept of connectivity. In Fig-

ure 3, the image A is conneeted by the neighbourhood Ug, but not by the neigh-

bourhood Ug.

   For connectivity, we present the fbllowing theorem.

Theorem 2.1. Let X be fi11ed and finite (i.e., containing only a finite number of

points). Then, a subset A of X is connected if and only if fbr every x E A:

                     (･ ･ ･ (({x}b fi A)b n A)b ･ ･ ･)b ? A.

That is, by a finite process of taking closures of A, A is covered.
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Proo£ >) We assume that fbr some xE A:

                (･ ･ ･ (({x}b n A)b n A)b ･ ･ ･)b 2 A.

For convenience, we denote an intersection of A and an n--th closure as Ph(== PSpti fi

A, Pi = {x}b fi A). As X is finlte, we can assume that P.+i : Pn. If we let

                 B : Ph,C =AXB(= AX ,lh),

then BUC=BU(AXB) :AUB ut A and C#¢ (as ,l)h 2A). Since X is fi}led,
xE Pn. Hence, xE B = Ph # ip. BnC= ip is c}ear. Bllt,

              Bb Ac= e9 nC= Iih fi (AX Ph) = ip･

Therefore, X is not connected.

K= ) Lek B and C be noB-void subsets of A such that BnC rm- ip and Bb fi C : ¢.

[l]heR, there exists an element x in B, and we can construct a set Ph as a procedure

described previously and Ph+i = 4F?i･

  Let us show that (BbnA)bnC= ip. If the left hand side is not empty, there

exists some element z in it such that:

                   z e C and z e (Bb n A)b.

Thus, U(z) n Bb nA # ip, wheye Bb n .`1 = Bb n (B u c) : (Bb fi B) u (Bb fi c) :

BuBbnC. Hence, U(z)nBb fiC pt ip (as BnU(z) == ip is clear), whicheontradicts

with BbnC : ip. Thus, we caB set B == BbnA. If .F2 g BbnA, then Pt+i g BbnA

because:

             jPt- :Pf>nAg(BbA.4)bnA=BbnA.

Therefore, we obtain the result:

                .P?. g Bb fi A == Bb fi (B U C) = B,

Le.,

                         jl)h 2 A.

                                                  Q.E.D.

  The fo}lowing facts are easlly derived:

  1..((Ac)i)c ,,, Ab,((Ac)b)c ,,, Ai.

  2. Aa .. Ab fi (Ac)6,(Ac)a ,,. Aa.
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  3. If x e AS, theR x ¢ (AX {x})b.

  4. If AS ; di, then A is not connected.

  5. If X is filled, then A g Ab, Ai c- A.

  6. If A is open, theR AC is elosed. Conversely, if A is closed, then Ae is open.

              3. Logic Functions and Neighbourhoods

   Let us assume that the nature or concept of a point x in a finite topological space

(X, U(･)) is represented by a combiRation of predicative functions of the fbl}owing

type:

                          P(x,yl,y2,･･･,Yn),

using qualifiers and logical operatioRs, where x E X and variables yi,y2,･･･,yn

move over U(x)() yi,y2,･･･,yn). In suchacase, we call the concept locaL

   For example, the definition of the boundary of A is written as:

               x E Aa <> (Myi)(Pi (x,yi)) A (]y2)(P2(x, y2)))

where P!(x,yi) = [yi G U(x)A yi E A] and I})(x,y2) = [y2 E U(x) A y2 ¢ A].

   The definition of the interior of A is written as:

                  x G At Q (Vyi)(R)(x,yi) # P!(X,Yi)),

where ,Fb(x, yD rr [yi E U(x)]. The closure of A is written as:

                       x G Ab <>･ (Byi)(P!(x,yi))･

Similarly,

               x G .ttlS o R,4 (x) A =(]y)(Pi (x, y) A "i"l]l, (m, y)),

                                          '
where RA(x) = [x e A] and Il,(x,y) = [x = y].

   Thus, "boundary", "interior", "closure", and "isolated points" are local con-

cepts.

   If U(x) is a finite set for all x E X, then the local concept is represented by a

propositional logic over U(x), i.e., by a formula of logica} eombinations of:

                   [x E A], [yi E A], [y2 E A],･･ ･, [yn E A],

where yi Tanges over U(x). Writing:

                      X : [x E A] and X= [yi E A],
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we see:
           x E Ae <> (Yl V Yi} V i ･ + V Y;,) A (-nl}'1 V -!Yli V - ･ ･ V --iM,).

   In such a manner, we can represent a local concept by a formula of propositlonal

logic over U(x).

   We can consider a topological concept more broadly by using propositioRal logic

formu}ae over U(x). For example, let us defiRe:

                        Ni(x) r [Card(U(x)) = i],

whereiisa number 1, 2,3,･･･. Clearly, IVI(x) can be represented by apropositional

logic formula if U(x) is finite. Let us define itli by

                    x G Ai <> [x E A] A .N4(x) V AIb(x).

   Then, Ai is a transformation ofA, a so-called "life game", where the neighbour--

hood U(x) is taken as Ug in Figure 2(b). Thus, the life game transfbrmation is also

a general topological concept.

           4. K-formulas and Neighbourhood Combinations

    By using operations of set theory and transfbrmations of topological concepts,

we can make complicated modifications to some given sets A,B,C,D,`･- , in fbl-

lowing manner:

                         (.iib u (BC)i)b n ca N Ds .

This type of formula was introduced by Kuratowski in a continuous case, so we call

such a formula a K-formula.

   A K-formula is usefu1 in rep?esenting a process of modification in image process-

ing in a simple way.

   [[bpological concepts depend on a neighbourhood U(m), so we write:

                         Ab<U>,AO<U>,Ai<U>,

for Ab, AO, and Ai, respectively. Other concepts are also written in this manner.

   We can change a neighbourhood as fbllows. For example, if we consider Ui(=),

 U2(x), Ub(x), and U4(x) as shown in Figure 4, then the set of extreme points Ae of

A is given as:

               Ae ,,, Aai<Ui> fi Aat<U2> n A6,<U3> n AOi<U4>.

Figure 5 is an example of image processing used to obtain a set of extreme points,

 which are called "corner points" in image processing.
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Ui(x)

[[m

U2 (x) U3(x) U4(x)

e e

Figure 4: Neighbourhoods used to define extreme poiRts.
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   Let us look at the relationship between a logic formula and a K-formula. Let

gi and g2 be logic fbrmulae over the neighbourhoods Ui and Ub, respectively. The

topological concept A9i<Ui> is given by:

       AP'<U'> = {x :gi(x,yi,y2,･･･,yn), yi E Ui(x) : i= 1,2,･･･,n}･

   Thus, by denoting U = Ui U U2, we obtain:

                   A9i<Ui> u Aq2<U2> = A(epiV92)<U>,

 where gi Vg2 is a logic function generated by connecting gi and g2 with the logica}

 or-operatlon.

   Other operations of set theory can be transformed to logical combinations of

 logic functions:

                    A9i<Ui> n A92<U2> = A(9iA92)<U>,

                        (A91<Ul>)C = AH91<Ul>,

                   A.epi<U;> X AP2<U2> . A(PiATg2)<U>.

   A repetition of topological transfbrmations becomes more eomplicated. Let us

 consider the foIIowing case:

                           (A91<Ui>)P2<U2>.

 This we can represent as:

                                AP<U>.

   What is the relationship between g, qi, and g2? U, Ui, and U2? We can easily

 see that:

                    For aU x E X, U(x) = U2(x)f<Ui>,

 i.e., U is an infiation of Ul] with respect to the neighbourhood Ui. 'Ib see the form

 of p, Iet us assume that:

                         x E (APi<Ui >)g2<U2>.

Then:
           (g2([yl E AP'<Ui>], [y2 E A9'<Ui>], ･ .., [y. E APi<Ui>])

is true, where Ui(x) = {yi,y2,･･･,y.}. The fb}lowing is then c}ear:

           [yi G APi<U"] e vai({zii) E A], [zSi) G A], ` ･ ･, [zS'),. G A])

 is true, w}}ere U2(yi) = {zSi),xSi),･･･,zll':l･}･ Clearly) U(x) = UyEu,(.) U2(y) =

 {z9),zEi),･･･,zi2),zS2),･･･,zSi".)}. Then, x E (Agi<Ui>)P2<U2> is equivalent to:

          .l7'or all yi E Ui(x), patting U2(yi) = {z£i) : k : 1,2,･･･,mi}
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                   (a) (b)
Figure 6: An infiation of U(x) given in (a) is shown as U(x)f in (b). rlbking a

closure twice by (a) is the same as taking a closure once by (b).

             and ui = qi([zSi) E A], [xSi) e A],･･･, [zSl'll. G A]),

                      92(Ul,U2,･･･}Un) cOnSists.

   The above staternent is also a logic fuRction over U(x), so we write it as p ==

g2 op gi, and we call it a convolution of gi and g2.

   Summing up the above, we get:

Theorem 4.1. For any two logic functions gi and g2 over Ui and U2, respectively,

and fbr any subset A:

                     (APi<Ui>)P2<U2> . .`IP<U>,

where g =: g2 (E9 gi and U(x) : U2(x)f<Ui>(for all x E X).

   Hence, we can easily see that:

                       (Ab<U>)b<U> ., Ab<Uf>,

where Uf is a neighbourhood given by each inflation of U(x). This situation is

explained in Figure 6.

                      5. SubspaceTopo}ogy

    Let (X, U(･)) be a finite topological space, and let Y be a subset of X. If we

set

                          Uy (x) = U(x) nX

fbr x E Y, then (Yl Uy(･)) is also a finite topological space. We call such a space,

a subspace of X, a neighbourhood of which is a restriction of an original neigh-

bourhood to Y. A finite space of 2-dimeRsional lattice points {1,2,･･･,m} ×



22 Yatsuka NAKAMuRA, Yasushi FuwA and Hiroshi lMuRA

 {1,2,･･･,n} is a subspace of an infinite space consisting of 2-dimensional }attice

points {･･･,-1,O, 1,2,･･･}2 of some given neighbourhoods.

   For subspaces, the validity of the fbllowing }emma is clear.

 Eemma 5.1. Let (X, U(･)) be a finite topo}ogical space and let A and Y be subsets

ofX such that Ag Y Cm X. Then, A is open in X implies that A is also opeR in Y

 by the topo}ogy of a subspace.

Proo£

                   For all x G A, Uy (x) = U(x) fi Y g A

 is clear, as U(x) g A.

                                                               Q.E.D.

   For boundaries, the converse is true:

 Lemma 5.2. Let (X, U(･)) be a finite topological space and Iet A and Y be subsets

ofX such that A E!; Y {;I X. Thexx, for x E YI x E Aa<UV> in Y (by the topology of

 a subspace) implies x G Aa<U>.

Proe£ The result is shown as fbllows:

                 U(x) fi A 2 U(x) fi Y nA -- Uy(x) fi A iE di

 and

               U(x) n AC ? U(x) nY ft AC = Uy(x) n AC # ip.

                                                               Q.E.D.

   Thus, some concepts are heyeditary from X to Y, and some from Y to X, whi}e

 others do not exhibit a hereditary nature.

                           6. Computation

    IR general, neighbourhood processing is a time-consuming task. For example,

 we let the nurnber of points in a neighbourhood U(x) be n(U) (each point x being

 the same) and the number of points in set A be n(A). Then, if we calculate as usual

 whether er not subset A is opeR, the number of times we must access each pixel is:

                             n(A) × n(U).
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              (a) (b) (c)
                 Figure 7: U is an infiation of Ui and U2.

   'Ib obtain the closure of A, if we let U be a 3 × 3 neighbourhood as shown in

Figure 7(a), Ui a 1 × 3 neighbourhood as shown in Figure 7(b), and U2 a 3 × 1
neighbourhood as shown in Figure 7(c), we can tTeat it as two levels:

                       Ab<U> ., (Ab<Ui>)b<U2>. (1)

Then, the processing on the right-hand side becomes:

      n(Ab`Ui') × n(U2) + n(A) × n(Ui) x n(A) × 3 + n(A) × 3 -- 6n(A),

and the processing on the left-hand side becomes:

                    n(Ab`U>)= n(A) × n(U) :9n(A).

In the case of (1) calculating with the right-hand side results in a fewer number of

access kmes.

   Estimated calculation loads vary according to the restrictions of hardware aRd

software. If the hardware is well designed, parallel processing becomes possib}e using

pipeline processing. As a concept for economizing calculation loads, we introduee

the fo11owing Stacking and Driving Machine (SDM). In SDM, if we have some

neighbourhood U(x) = {yi, y2, ･ ･ ･ , y.}, we let ui = [zi E A] and assign the fo}lowing

two types of mapping:

             7:(Ul,U2,'''}Un) R Yi Or O,

              6:(ui,u2,･･･,un) - yii,yi2,･･･,yimgU(x)･

We call 6 a stack mapping and 7 a drive mapping. O is a special character for

indicating a stop condition.

   The neighbourhood prcoessing using (6,7) is given as fb}lows.

  1. Perform processing pertaining to U(xe).
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   2. Place the points 6(U(xo)) in a LIFO (stack).

   3. Set xo := 7(U(xo)). Ifxo is not O, go to step 1.

   4. Pull point yi fkrom the LIFO, set xo : = yi and go to step 1.

     If the LIFO is empty, stop.

   If (6, 7) are seiected carefully, the task of obtaining Aa or Afb or determining

whether or itot A is connected becomes easy.

                             7. Conclusion

    We have extended the cencept ofa neighbourhood so that it can be applied

to discrete cases such as a space of lattice points. Based on this work, we have

formalized the methods of image processing used thus far. We also introduced a

new concept ca}led SDM for neighbourhood calculations.

   Finally, we would like to express gratitude to Ms. P, Kawamoto for her assistance

with the English translation.
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