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A Theory of Finite Topology and Image Processing

Yatsuka NAKAMURA®, Yasushi FUuwa*™* and Hiroshi IMURA®**
(Recetved May 31, 1991)

By borrowing the concept of a neighbourhood from the theory of topological space
in continuous cases and extending it to a discrete case such as a space of lattice points,
we have defined such concepts as boundaries, closures, interiors, isolated points, and
connected points as in the case of continuity. By associating each of these concepts with
the various processes in image processing, we have shown examples of them using actual
data. Also, if we consider these processes as transformations, we can obtain a number of
topological transformations. By examining combinations of these transformations, we
show how to reduce them into a single transformation.

We have also introduced concepts for speeding up neighbourhood calculations using
a new concept called SDM.

1. Introduction

Topological geometry and the more generalized topological space theory or the
theory of general topologies based on set theory can be said to be geometries for
continuous spaces. For example, the continuity of a function can be defined by using
the concept of a neighbourhood as described in the theory of general topologies.

However, in recent years, it is common for a space to be divided into a lattice
or grid and treated as a discrete space to facilitate processing with a computer.
In former theories of topology, discrete spaces were merely taken as sets of points.
Therefore, all points were considered isolated points. However, even though spaces
are divided, there is an adjacency relationship between points and there can be
many types of entire space structures.

In the field of image processing, the concept of a neighbourhood, or processing
template, is gaining use in the cases of lattice point spaces as well. However, this
concept of a neighbourhood is different from that mentioned above in regards to a
topology and as of yet has not been given any mathematical basis.

The authors have constructed a topology theory for the cases of discrete spaces
and have given it the name of Finite Topology. Along with the presentation of a

* Professor, Department of Information Engineering.
** Assistant, Department of Information Engineering.
*** Student of master course.



12 Yatsuka NAKAMURA, Yasushi Fuwa and Hiroshi IMURA

A Aa

Figure 1: Example of a boundary.

few additional concepts, we would like to test the validity of this theory based on
actual image data. Finally, we examine the relationship between neighbourhood
processing and logical operations as well as the relationship with calculation time.

2. Finite Topology Concepts and Neighbourhoods

Let X be a general set. If a subset U(z) of X is determined for each element z
in X, we call the pair (X, U(-)) a finite topological space. The subset U(z) is called
a neighbourhood of . In most cases, we assume z € U(xz) (in this case, we call
X filled), but it is not necessary in all cases. U(z) is interpreted as a set of points
neighbouring to .

Using this notion of a neighbourhood, we can define many concepts.
Definition (Boundary). A boundary A? of a subset A of X is defined as:
A’ ={z:U(e)NA# ¢ and U(z) N A® # ¢},
where A° is the complement of 4 and ¢ is the empty set.
In the field of image processing, the process of obtaining A? from A is called an
extraction of the outline of A, which is shown in Figure 1.

We can divide A? into the following two parts - an inner boundary A% and an
outer boundary A% which are defined as:

A% = AN A% and A% = A°n A®.

Of course, we see from these definitions that 4% = A% U A%,
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Definition (Interior). An interior A* of a subset A of X is defined as:
Al={z: 2 e A= U(z) C A}.
In image processing, the process of obtaining A‘ is called a contraction of A.

Definition (Closure). A closure A® of a subset A of X is defined as:
A ={z:Ux)NA+# ¢}

This concept is referred to as “expansion” in image processing.

Definition (Isolated Points). A set of isolated points A° of a subset A of X is
defined as:

A ={z:zcAand (U(z)\2)N A =¢}.

A point in A4° is referred to as “noise” in image processing. Conversely, we define
a continuous part A" of A as A" = A\ A®, which can also be written as:

A" ={z:z € Aand (U(z)\2)N A #£ ¢}.

A" is called a “noise elimination” of A in image processing,.

Definition (Inflation). An inflation A of a subset A of X is defined as:

A={e:@yedzeU@)= ] Uw.
yEA

This concept seems similar to “closure”, but they do not always coincide. We
present the following definition.

Definition (Symmetry). A neighbourhood U(:) of a finite topological space
(X,U(-)) is called symmetric if and only if:

For all z,y € X,y € U(z) implies ¢ € U(y).

The neighbourhoods (a), (b), and (c) shown in Figure 2 are symmetric, but
neighbourhoods (d), (¢), and (f) are not.

By using the concept of symmetricity, we can give the following lemma.

Lemma 2.1. If a neighbourhood U(:) is symmetric, then for all subsets A:

AY = Af,
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Figure 2: Symmetricity of Neighbourhoods.

Proof. Let us look at the following formulae.

e Al

t ¢ 49

Thus, we get the result.

for some y € A,z € U(y)

for some y € A,y € U(z) (by symmetricity)
U()nA# ¢

z e Ab.

Q.E.D.

The following two definitions are analogies of very popular concepts of openness

and closedness in continuous topologies.

Definition (Open Set). A subset G of X is open if and only if:

G =G

Definition (Closed Set). A subset F of X is closed if and only if:

F = F?.

We present here a second type of closure and interior.



A Theory of Finite Topology and Image Processing 15

A Uy

Figure 3: A is connected by neighbourhood Ug, but not by Us.

Definition (f-closure and f-interior). An fclosure A® and an finterior Af:
of a subset A of X is defined as:

Al = ﬂ{F :ACFE,F is closed},

Al = U{G G C A, G is open}.

We can show that an f-closure is gotten by a repetition of an ordinary closure

(see Lemma 2.1 in Reference [1]) and an f-interior is gotten by a repetition of an
ordinary interior.

Definition (Connected Set). A subset A of X is connected, if and only if, for
any B, C in X:

A=BUC,B+#¢,C# ¢, and BNC = ¢ implies BENC # ¢.

This concept coincides with the usual intuitive concept of connectivity. In Fig-

ure 3, the image A is connected by the neighbourhood Uy, but not by the neigh-
bourhood Us.

For connectivity, we present the following theorem.

Theorem 2.1. Let X be filled and finite (i.e., containing only a finite number of
points). Then, a subset A of X is connected if and only if for every x € A:

(- ({z}nA)fnay. )24

That is, by a finite process of taking closures of A, A is covered.
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Proof. =) We assume that for some z € A:
({2 nA)’nay-)P 2 A

For convenience, we denote an intersection of A and an n-th closure as P,(= P! N

17—

A, Py = {z}* N A). As X is finite, we can assume that P,y = P,. If we let
B=P,,C= A\ B(= A\ P.),

then BUC = BU(A\B)= AUB = Aand C# ¢ (as P, 2 A). Since X is filled,
z € P, Hence,z € B= P, # ¢. BNC = ¢ is clear. But,

B'NC=PNnC=P,Nn(A\P,) =¢.
Therefore, X is not connected.
<) Let B and C be non-void subsets of A such that BN C = ¢ and B NC = ¢.
Then, there exists an element z in B, and we can construct a set P, as a procedure
described previously and Pn4q = P,.

Let us show that (B® N A)’ N C = ¢. If the left hand side is not empty, there
exists some element 2 in it such that:

2z €C and z € (B* N A).

Thus, U(z) N B* N A # ¢, where BPNA=B*N(BUC)=(B*NnB)U(B*'NC) =
BUBYNC. Hence, U(2)NB*NC # ¢ (as BNU(z) = ¢ is clear), which contradicts
with B®NC = ¢. Thus, we can set B = B'NA. If P C BN A, then P,y C B'NnA
because:

P =P'nAC(B ' nAYNnA=B"nA

Therefore, we obtain the result:
P,CB'NnA=B"n(BUC) =B,

le.,

P, 2 A
Q.E.D.
The following facts are easily derived:
L ((49)° = 45, (4" = 4°

2. A% = AP N (A%)P, (A%)° = A°.
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3. Ifz € A%, then 2 & (A\ {z})°.

4. If A® #£ ¢, then A is not connected.

5. If X is filled, then A C A%, A' C A.

6. If A is open, then A is closed. Conversely, if A is closed, then A° is open.
3. Logic Functions and Neighbourhoods

Let us assume that the nature or concept of a point z in a finite topological space
(X,U(+)) is represented by a combination of predicative functions of the following
type:

P(z,y1,92, ", ¥n),

using qualifiers and logical operations, where £ € X and variables y1,92,- -, yn
move over U(z)(3 y1,¥2, -+, Yn). In such a case, we call the concept local
For example, the definition of the boundary of A is written as:

z € A% & () (Pi(z, 1)) A (Fy2)(Pa(z, 12)),

where Pi(z,y1) = [y1 € U(z) Ays € Al and Po(z,y2) = [y2 € U(z) Ay € A
The definition of the interior of A is written as:

S Ai <~ (Vyl)(PO(x)yl) = Pl(“")?ll))?
where Po(z,y1) = [y1 € U(z)]. The closure of A is written as:

z € A’ & (3y)(Pi(z,11)).

Similarly,
z € A® & Pa(z) A -(3y)(Pi(e, y)' A =Py (z,y)),

where P4(z) = [z € A] and Pe(z,y) = [z = y].
Thus, “boundary”, “interior”, “closure”, and “isolated points” are local con-
cepts.

If U(z) is a finite set for all # € X, then the local concept is represented by a
propositional logic over U(z), i.e., by a formula of logical combinations of:

[z €Ay €Ay €Al [y € 4],
where y; ranges over U(z). Writing:

X=[z€Aland Y; = [y; € 4],
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we seel
€A% S (ViVYs V. VY ) A (=YL VoYa V-V aY,).

In such a manner, we can represent a local concept by a formula of propositional
logic over U(z).

We can consider a topological concept more broadly by using propositional logic
formulae over U(z). For example, let us define:

Ni(z) = [Card(U(2)) = 1],

where ¢ is a number 1,2,3,- - - . Clearly, N;(z) can be represented by a propositional
logic formula if U(z) is finite. Let us define A’ by

z € A & [z € A]A Ny(z) V N3(z).

Then, A' is a transformation of 4, a so-called “life game”, where the neighbour-
hood U(e) is taken as Uy in Figure 2(b). Thus, the life game transformation is also
a general topological concept.

4. K-formulas and Neighbourhood Combinations

By using operations of set theory and transformations of topological concepts,
we can make complicated modifications to some given sets A, B,C,D,--- | in fol-
lowing manner:

(4P U (B nc?\ D,
This type of formula was introduced by Kuratowski in a continuous case, so we call
such a formula a K-formula.
A K-formula is useful in representing a process of modification in image process-
ing in a simple way.
Topological concepts depend on a neighbourhood U(z), so we write:

Ab<U>,Aa<U>’Ai<U>,
for A%, A%, and A?, respectively. Other concepts are also written in this manner.
We can change a neighbourhood as follows. For example, if we consider U;(z),

Us(z), Us(z), and Us(z) as shown in Figure 4, then the set of extreme points A® of
A is given as:

A¢ = A8i<U1> nAax‘<Uz> mA3;<U3> nA8i<U4>

Figure 5 is an example of image processing used to obtain a set of extreme points,
which are called “corner points” in image processing.
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Figure 4: Neighbourhoods used to define extreme points.

A A°

Figure 5: Extreme points A° of original picture A.
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Let us look at the relationship between a logic formula and a K-formula. Let
©1 and @3 be logic formulae over the neighbourhoods U; and Us, respectively. The
topological concept A?*<Y1> is given by:

A(p1<U‘> = {:B : wl(m)ylyy% o ”yn)’ Yi S U]_((E) = 1;21 t '7n}-
Thus, by denoting U = U; U U,, we obtain:
A‘P1<U1> UA‘P2<U2> — A(¢1V<P2)<U>,
where ¢1 V @9 is a logic function generated by connecting ¢, and ¢, with the logical
or-operation.

Other operations of set theory can be transformed to logical combinations of

10gic functiOnS:
U U. PYiAp U
A<ﬂ1< 1> ] A‘P?< 2> A( 1 2)< >

(A<01<U1>)c — Aﬂ¢1<U1>,

ALP1<U1> \AW2<U2> — A(lm/\-'&,ﬂz)<U>'

A repetition of topological transformations becomes more complicated. Let us

consider the following case:
(A<P1<U1>)<P2<Uz>.

This we can represent as:
A(P<U>.

What is the relationship between ¢, ¢1, and @27 U, Uy, and Us? We can easily
see that:
For all z € X, U(z) = Uy(z)/<Vr>,

i.e., U is an inflation of U; with respect to the neighbourhood U;. To see the form

of ¢, let us assume that:
zc (A‘PI<U1>)<PQ<U2>.

Then:
(p2([y1 € A<V, [yo € AP <V2], o [y € AP <U2))

is true, where Uj(z) = {y1,¥2, ", Yn}. The following is then clear:
[1s € A<U>] & o1 ([ € 4}, (250 € A), -, [ € 4))

is true, where Us(y;) = {zgi),zgi),-'-,z%),-}. Clearly, U(z) = Uyer, (o) V2(y) =

{zgl), zgl), e Zgz)’ 252)’ . zﬁ,’,?} Then, z € (A¥1<V1>)92<U2> ig equivalent to:

For all y; € Us(z), putting Us(y;) = {z,(ci) ck=1,2,---,m;}
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U{z) U(z)!
(2) (b)

Figure 6: An inflation of U(x) given in (a) is shown as U(z)/ in (b). Taking a
closure twice by (a) is the same as taking a closure once by (b).

and u; = o1 ([2{Y € 4], [2{Y € 4], -, (2 € A)),
wa(uy, ug, -+, uy,) consists.

The above statement is also a logic function over U(z), so we write it as ¢ =
Py ® @1, and we call it a convolution of ¢, and 5.
Summing up the above, we get:

Theorem 4.1. For any two logic functions ¢; and g over Uy and Uy, respectively,
and for any subset A:
(A‘Pl <U1>)<P2<Uz> _ A‘P<U>,

where ¢ = 2 ® @1 and U(z) = Us(2)<Vr>(for all z € X).

Hence, we can easily see that:

(AP<U>)p<U> = Ar<UT>

3

where U/ is a neighbourhood given by each inflation of U(z). This situation is
explained in Figure 6.

5. Subspace Topology

Let (X,U(-)) be a finite topological space, and let Y be a subset of X. If we
set

Uy(z) =U(z)NY,
for ¢ € Y, then (Y,Uy(")) is also a finite topological space. We call such a space,

a subspace of X, a neighbourhood of which is a restriction of an original neigh-
bourhood to Y. A finite space of 2-dimensional lattice points {1,2,---,m} X
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{1,2,---,n} is a subspace of an infinite space consisting of 2-dimensional lattice
points {---,~1,0,1,2,-- -}? of some given neighbourhoods.
For subspaces, the validity of the following lemma is clear.

Lemma 5.1. Let (X,U(")) be a finite topological space and let A4 and Y be subsets
of X such that AC Y C X. Then, A is open in X implies that A4 is also openin Y
by the topology of a subspace.

Proof.
Forallz e A Uy(2)=U(z)NY C A
is clear, as U(z) C A.
Q.E.D.

For boundaries, the converse is true:

Lemma 5.2. Let (X,U(-)) be a finite topological space and let A and ¥ be subsets
of X such that AC Y C X. Then, for z € Y,z € A2<Ur> in Y (by the topology of
a subspace) implies x € A9<U>,

Proof. The result is shown as follows:
U)NADU@@NYNA=Uy(e)NA#¢

and
U)nA® 2 U(z)NY NA =Uy(x)N A® # ¢.

Q.E.D.

Thus, some concepts are hereditary from X to Y, and some from Y to X, while
others do not exhibit a hereditary nature.

6. Computation

In general, neighbourhood processing is a time-consuming task. For example,
we let the number of points in a neighbourhood U(z) be n(U) (each point z being
the same) and the number of points in set A be n(A). Then, if we calculate as usual
whether or not subset A is open, the number of times we must access each pixel is:

n(A) x n(U).
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U U, U,
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Figure 7: U is an inflation of U; and Us.

To obtain the closure of A, if we let U be a 3 x 3 neighbourhood as shown in
Figure 7(a), U; a 1 x 3 neighbourhood as shown in Figure 7(b), and Uz a 3 x 1
neighbourhood as shown in Figure 7(c), we can treat it as two levels:

APSU> _ (go<Ur>)o<Us> (1)
Then, the processing on the right-hand side becomes:
n(AP<U>) x n(Us) + n(A) x n(U1) = n(A) x 3 + n(4) x 3 = 6n(A),
and the processing on the left-hand side becomes:
n(A*<Y>) = n(A) x n(U) = 9n(A).

In the case of (1) calculating with the right-hand side results in a fewer number of
access times.

Estimated calculation loads vary according to the restrictions of hardware and
software. If the hardware is well designed, parallel processing becomes possible using
pipeline processing. As a concept for economizing calculation loads, we introduce
the following Stacking and Driving Machine (SDM). In SDM, if we have some
neighbourhood U(z) = {y1,¥2, -, Yn}, we let u; = [z; € A] and assign the following
two types of mapping:

v:(un,up,ccr,un) > yiorO,
6:(ulyu2r"'yun) [ — yil;yiz;"':yimc_:U(x)'

We call § a stack mapping and 4 a drive mapping. 0 is a special character for
indicating a stop condition.
The neighbourhood preoessing using (6,7) is given as follows.

1. Perform processing pertaining to U(zo).
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2. Place the points §(U(o)) in a LIFO (stack).
3. Set zg := v(U(z0)). If zo is not 0, go to step 1.

4. Pull point y; from the LIFO, set 2y := y; and go to step 1.
If the LIFO is empty, stop.

If (6,7) are selected carefully, the task of obtaining A% or A/ or determining
whether or not A is connected becomes easy.

7. Conclusion

We have extended the concept of a neighbourhood so that it can be applied
to discrete cases such as a space of lattice points. Based on this work, we have
formalized the methods of image processing used thus far. We also introduced a
new concept called SDM for neighbourhood calculations.

Finally, we would like to express gratitude to Ms. P. Kawamoto for her assistance
with the English translation.
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