Convex Functions and *G*-Rearrangements on Intervals

by

Yūji Sakai*†

(Received May 31, 1989)

Two problems are dealt with : (1) Is a rearrangement of a convex function on $I \equiv (0, a)$ always a convex function ?; (2) Is it possible to give conditions for (1), if necessary ?

A new concept called generators on Lebesgue space is first introduced and the equimeasurable rearrangement f^{\uparrow} of a function f with respect to a generator is defined, resulting generalization of the decreasing rearrangement f^* of f. Then the transmission function of a generator is defined, and the relation between the convexities of functions f and f^{\uparrow} is studied. It is proved that f^* is convex whenever f is convex on I. Conditions for generators are obtained which make f^{\uparrow} convex whenever f is convex.

1. Notations and Preliminaries

Throughout this paper, assume $a \in (0, \infty)$, let $X \equiv \{(0, a), \mathcal{B}, m\}$ be Lebesgue measure space on $I \equiv (0, a)$, and denote by \mathcal{M} the set of all real valued measurable functions on X. A function f on an interval $K \subset \mathbb{R} \equiv$ $(-\infty, \infty)$ is convex if and only if f satisfies the inequality

 $f(\alpha x + (1-\alpha) y) \leq \alpha f(x) + (1-\alpha) f(y), \quad x, y, \in K, 0 \leq \alpha \leq 1.$

If f is a convex function on K, then $K_{\lambda} \equiv \{x: f(x) \leq \lambda\} \subset K$ is a convex set for each $\lambda \in \mathbb{R}$, that is, K_{λ} is an interval or empty set, and f is continuous on any open intervals contained in K. Moreover, g is a concave function on K if and only if -g(x) is convex on K.

Generalizing the "Stratus" of Takeuchi³⁾ and the "Family \mathscr{F} " of Crowe and Zweibel, ²⁾ we give the following definition:

DEFINITION 1. Assign a set $B(s) \in \mathcal{B}$ to each $s \in [0, a]$. If a family

^{*} Professor, Department of Applied Science, Faculty of Engineering, Shinshu University.

[†] Supported in part by the Grant-in-Aid for Scientific Research (No. 01540175), Ministry of Education, Science and Culture.

of sets

 $\mathscr{G} \equiv \{B(s): 0 \leq s \leq a\}$

satisfies the following two conditions 1° and 2° , then we call \mathscr{G} a generator on X:

1° $B(s) \subset B(s')$ whenever $0 \le s < s' \le a$, and B(a)=I. 2° m(B(s)) = s for every $0 \le s \le a$.

Moreover, to each $f \in \mathscr{M}$ assign a measurable function

$$f^{(x)} \equiv \sup \{s: x \in B(d_f(s))\},\$$

where $d_f(t) \equiv m(\{x: f(x) > t\})$ is the distribution function of f. We call f^{\wedge} the equimeasurable rearrangement of f on X with respect to a generator \mathscr{G} (in short, \mathscr{G} -rearrangement of f).

It is well known that $d_f(t)$ is a decreasing and right continuous function of $t \in \mathbb{R}$ and that functions f and f^{\wedge} satisfy $d_f = d_f^{\wedge}$. Such a pair of functions g and h having the same distribution function is said to be *equimeasurable* to each other (in symbols, $g \sim h$). Put B(s) = (0, s), $0 \leq s \leq a$. Then it follows that

$$f^{(x)} = \sup \{t: d_f(t) > x\} \equiv f^*(x).$$

The above function f^* is the well known decreasing rearrangement of f, which is continuous from the right and decreasing on I. (See Chong and Rice¹⁾ for details.)

2. Convex Functions and G-Rearrangements

PROPOSITION 2. Let $\mathscr{G} = \{B(s): 0 \leq s \leq a\}$ be a generator on X. Then, \mathscr{G} -rearrangement f^{\wedge} of $f \in \mathscr{M}$ satisfies the following 1° and 2°.

1° $\{x: f^{(x)} > s\} = B(d_f(s)) m-a.e., hence f^{(x)} - f.$

2° If $0 \leq s < s' \leq a$, $y \in B(s)$ and $x \in B(s') \cap B(s)^c$, then $f^{(x)} \leq f^{(y)}$. Further, any functions $f^{(x)} \in \mathscr{M}$ satisfying the above 1° and 2° coincide with the \mathscr{G} -rearrangement of f m-a.e.

Proof. The proof of the first paragraph is straightforward from the definition of f^{\uparrow} , while that of the second paragraph is not so hard and is therefore omitted.

2

PROPOSITION 3. Assume $f \in \mathcal{M}$ and put $c = \text{ess. inf} \{f(x): x \in I\}$. Then the following statements are true:

(i) If f is convex on I, then d_f is convex on $[c, \infty)$.

(ii) d_f is convex on $[c, \infty)$ if and only if f^* and f_* are convex on I, where $f_*(x) \equiv f^*(a-x)$ ($x \in I$) is the increasing rearrangement of f.

Proof. Proof of (i): Suppose f is convex on I, and c in the proposition is finite. It is true, in general, that g(x) is convex on I if and only if g(x)-c is convex on I. Further, $d_g(t)=d_{g-c}(t-c)$ on I and $(g-c)^*=g^*-c$. Therefore, considering the function $\{f(x)-c\}$, if necessary, we may suppose without loss of generality that $f(x)\geq 0$ on I and that c in the proposition is 0. Suppose now that $f(x)\geq 0$ and c=0. Then, there exist two non-negative convex functions f_1 and f_2 such that $f=f_1+f_2$, where f_1 is non-decreasing, f_2 is non-increasing, and ess. $\inf\{f_1(x): x \in I\} = \operatorname{ess.} \inf\{f_2(x): x \in I\} = 0$. But then, it follows that both d_{f_1} and d_{f_2} are convex on $[0, \infty)$ since convex functions f_1 and f_2 are monotone. Therefore, $d_f(t)=d_{f_1}(t)+d_{f_2}(t)$ is convex on $[0, \infty)$, which has completed the proof.

On the other hand, the statement (ii) is evident. Thus, the proof is completed.

DEFINITION 4. Let $\mathscr{G} = \{B(s): 0 \leq s \leq a\}$ be a generator on X. Define the transmission function t(x) of the generator \mathscr{G} by

$$t(x) = \inf \{s: x \in B(s), 0 \leq s \leq a\}.$$

It is easy to see that the transmission function t(x) satisfies

$$0 \leq t(x) \leq a$$
 for any $x \in I$.

LEMMA 5. Assume $f \in \mathcal{M}$ and put $c = \text{ess. inf} \{f(x): x \in I\}$. If d_f is continuous on $[c, \infty)$, then it is true that

 $t(x)=d_f(f^{(x)})$ for any $x \in I$ such that $f^{(x)}$ is finite.

Proof. It follows from the definition of f^{-} that there exists a $t_0 \in \mathbb{R}$ such that $f^{-}(x) - \varepsilon < t_0$ and $x \in B(d_f(t_0))$ for any $\varepsilon > 0$. Then, it follows from the definition of t(x) that

$$t(x) \leq d_f(t_0) \leq d_f(f^{(x)} - \varepsilon),$$

since $d_f(t)$ is non-increasing. Suppose now the continuity of d_f on $[c, \infty)$. Then, it follows from the above inequality that

$$t(x) \leq d_f(f^{(x)}), \quad x \in I.$$

Here, note that the assertion is clear if $d_f(f^{(x)})=0$, as seen from the above inequality. Therefore, it suffices to prove the assertion when $d_f(f^{(x)})>0$, which condition yields t(x)>0.

Suppose now that $0 \le t(x) \le d_f(f^{(x)})$, and $f^{(x)} \le f^{*}(t(x))$, with contradiction. Then, $x \notin B(d_f(f^{*}(t(x))))$ by the definition of $f^{(x)}$. Hence it follows that

$$(1) d_f(f^*(x)) < t(x),$$

by the definition of t(x). But, since d_f is continuous on $[c, \infty)$, it is true that $t(x)=d_f(f^*(t(x)))$, which is contradictory to (1). Thus, the assertion is true, which has completed the proof.

THEOREM 6. Let $\mathscr{G} = \{B(s): 0 \leq s \leq a\}$ be a generator on X such that $B(s) \in \mathscr{G}$ is concave for any $0 \leq s \leq a$ and that the transmission function t(x) is concave on I. Then,

 $f^{(x)}$ is convex on I whenever f(x) is convex on I.

Moreover, it is true that

 $f^{(x)}=f^{*}(t(x)), x \in I, with a convention <math>f^{*}(a)=f^{*}(a-0).$

Proof. First we claim that $f^{(x)} \le \infty$ ($x \in I$). Suppose $f^{(x)} = \infty$ for some $x \in I$, with contradiction. Then, there exists a sequence $\{s_n\}$ such that $s_n \uparrow \infty$ and $x \in B(d_f(s_n))$ for any natural numbers n. But, then $m(B(d_f(s_n))) = d_f(s_n) \to 0$, on our letting $n \to \infty$, which is contradictory to the assumption that B(s) is concave for any $0 \le s \le a$.

Suppose now that f is convex. Then it follows that d_f is convex and hence continuous on (ess. $\inf\{f(x): x \in I\}, \infty$), by Proposition 3. Therefore, it follows from Lemma 5 that

(2)
$$t(x) = d_f(f^{(x)}) \text{ for any } x \in I.$$

Hence $f^{*}(t(x)) = f^{*}(d_{f}(f^{(x)})) = f^{(x)}(x)$, that is,

(3)
$$f^{(x)}=f^{*}(t(x))$$
 for any $x \in I$.

Then, (3) yields the assertion that $f^{(x)}$ is a convex function on *I*, since t(x) is a concave function on *I* and $f^{*}(x)$ is a non-increasing convex function on *I*, by Proposition 3. Thus the proof is completed.

THEOREM 7. Let $\mathscr{G} = \{B(s): 0 \leq s \leq a\}$ be a generator on X such that B(s) is concave for every $0 \leq s \leq a$, and denote by t(x) the transmission function of \mathscr{G} .

Then, t(x) is concave on I if and only if $B(s)=(0, ps] \cup (a-(1-p)s, a)$ m-a.e. for some $p \in [0, 1]$. Moreover, if t(x) is concave, then we can write down t(x)as follows:

- (i) If p=0, then t(x)=a-x.
- (ii) If p=1, then t(x)=x.
- (iii) If $p \neq 0$, 1, then

$$t(x) = \begin{cases} x/p & (0 < x < pa) \\ (x-a)/(p-1) & (pa \le x < a). \end{cases}$$

Proof. The proof is so easy to be omitted.

THEOREM 8. Let $\mathscr{G} = \{B(s): 0 \leq s \leq a\}$ be a generator on X. Then the following statements (i) and (ii) are equivalent to each other.

- (i) $f^{(x)}$ is convex on I whenever f(x) is convex on I.
- (ii) $B(s)=(0, ps] \cup (a-(1-p)s, a) m-a. e.$ for some $0 \le p \le 1$.

Proof. Put f(x)=x. Then f(x) is a convex function on I such that $f^{(x)} \sim x$. Suppose (i), and then it results in only the following three cases:

C-1
$$f^{(x)} = \begin{cases} a - x/p & (0 < x \le pa) \\ (x - pa)/(1 - p) & (pa < x < a) \end{cases}$$

for some $0 \leq p \leq 1$.

C-2 $f^{(x)}=x \text{ on } I.$ C-3 $f^{(x)}=a-x \text{ on } I.$

Then, it follows that $B(s)=(0, ps] \cup (a-(1-p)s, a)$ m-a.e. for some $0 \le p \le 1$, by Proposition 2.

Further, if B(s) is defined as above, then t(x) is concave, and then, by Theorem 7, it follows that $f^{(x)}$ is convex on I whenever f(x) is convex on I. Thus the proof is completed.

References

- K. M. CHONG and N. M. RICE, "Equimeasurable Rearrangements of Functions," Queen's Papers in Pure and Applied Mathematics, No. 28, (1971).
- (2) J. A. CROWE and J. A. ZWEIBEL, "Rearrangements of Functions," Journal of Functional Analysis, 66, 432-438 (1986).
- (3) Yukio TAKEUCHI, "A New Rearrangement and the Theorem of Hardy-Littlewood-Pólya," Journal of the Faculty of Engineering, Shinshu University, 41, 1-21 (1976).