
     Journal of the Faculty of Engineering, Shinshu University, No.65, 1989 17
                       ･Se･[･lti({¥iXfl}kscS*ilee ee6s-"Ei'r

        An Algorithm for Solving Alive Situation

                     Puzzles in GO Game

              Yasushi FUWA,* Yatsuka NAKAMURA,**

                    and Yoshihiro KOSMSAKA"*"

                       (Received October 31, 1988)

    For the process of deciding whether the situation of stones in GO game is alive

  or not, an improved algorithm was devised, and a program for solving alive sit-

  uation puzzles in GO .crame was constructed with the algorithm and put into test

  uses. Conventional algorithms employ metheds based on pattern matchlng and

  require a lot of processing time and Iarge databases. A new algorithm first par-

  titions stones into groups and then analyze the sltuation. Every group enclosed

  by opposite stones is pruned, and if at !east one group remains, the situation is

  consrdered to be alive. The program has succeeded in solving alive situation puzzles

  reasonably rapidly.

                         1. Introduction

   In general, it is very dlthcuit to find efficient algorithms for playing

strategic games. A great progress in the art how to program a computer

to play a strategic game has been made since l955 when the first computer

chess program appeared2). In 1976 a Northwestern University chess pro-

gram named CHESS 4. 5 defeated several Experts and Class "A" players. This

program is based on the full width search by the MIN-MAX principle. But

there have been no such successful programs for GO game. The main reason

for it is that GO game has higher complexity than chess. Statistically, the

average of possible moves is 40 in chess, but 200 in GO. Moreover, the

anaiysis of static situatlons in GO game is more complicated and dithcult

than ik chess.i),3),4) Here, this paper presents a new simple algorithm for

recognizing alive groups of stones on the GO board, which has been succe-

ssfully applied to solving alive situation puzzles of GO game. In section

2, the notion of alive situation is explained. The algorithm is described in

section 3. In section 4, a program for solving Tsume GO with applications

of the algorithm and the possibility of speeding up the algoyithm are dis-

cussed.

 'S Assistant, Department of Information Engineering.

 :k'k Professor, Department of Information Englneering.

;S** Student of master course.



18 Y. FuwA Y. NAKAMuRA Y. KosmsAKA

                    2. AIRye situation

   In a GO game stones are placed on lntersections of horizontal and vertical

lines. Two stones are called steighbors if they are positioned on two neigh-

boring intersections. A set of stones of the sapae color on the GO board is

called a group if each stone X in the set has at least one neighbor in the

set and all the neighbors of the stone X belong to the same set. Thus, the

group ls a set of stones closed under the relation of neighborhood. A single

stone without neighbors is the minimal possible group. The boundary of

a group is composed of the stones of the group each of which has at least

one neighboring intersection unoccupied by stones of the same group. The

neighborhood of a stone in a boundary is all its vacant neighboring intersec-

tions. The Reighborhood ef a group is the union of the neighborhoods of

all stones in the boundary. The neighborhood of a group consisting of a

single vacant intersection is called the single interseetioR neighborhood of

the group. If a group has a single intersection neighborhood and the oppo-

nent now has the turn to play, the opponent can capture this group by plac-

ing his stone on this single vacant intersection. If this intersection is a single

intersection neighborhood of more than one group, all these groups are

captured. Naturally at most four groups can share a single intersection nei-

ghborhood. The group is said to be surrounded if there are no intersections

in its neighborhood.

   The black stones in Figs. 1 (A) (B) form one group, and in Fig. 1 <C)

there are two black and two white groups. The basic form of capture is the

capture of one stone (Fig. 2). A capture of a group of three stones is shown

in Fig. 3.

   Consider the situation shown in Fig. 4. The white stones form one group

and its neighborhood consists of two intersections. Assume that a black

stone has been placed on one of them (triangular mark in Fig. 4). The white

group cannot be captured because there still remains one vacant intersection

in its neighborhood. The black stone has become a group with no neighbo-

        tiglttL.I,

        (A') (B)

'

v'

F
         (c)
Fig. 1 Relation of stones.

ttsiiiliilil,il

  (A)- (B)
Fig. 2 Capture of

i
l
i
l
i
E
l   (c)

one stone.



         An Algorithm for Solving AHve Situation Puzzles in GO Game 19

       Xsi9 eci ,[ ce

      (A) (B) (C) (A) (B)
      Fig.3 Capture of stones. Fig.4 AIive situation.

rhood on the board. To avoid this strange situation, the rules of GO game

do not allow this move, and thus such a group of white stones can never

be captured. We will call such a group alive.

   Now consider the situation shown in Fig. 5(A). The white stones form

                             two groups. Assume that a blacl< stone has
za

     HX
         x  - . fl
   lt  ew i' ,iri

      (A)

   Fig. 5 Not-alive

   The' '
of the group lf it

be shared by

eye if it is

only alive groups.

eye. It is easy to

perfect eyes.

   The aim in

vacant

region ef GO

refore, the ''

for the success '

   The function

GO board. It can

on the board

it has at Ieast

all stones of a '

Then it makes

l

          rx
            I
         t ?Cii
        -+ra
            (B)

          sltuatlon.

 Intersectlon ln

          is

      groups. The

   surrounded by

          The

        GO game
lntersectlons as

      board

   ability to

        in GO

         of this

      according to

       two
       given color

       the

     surrounded

          stoRes

       eye
  understand

          is

       possible

    completely

     determine

      game.

        algorithm

 determine

          our
    perfect

          into

sequentially

    been placed on intersection (1).' Although

    it is placed on an intersection entirely sur-

    rounded by white stones, it is alive because

    the effect of this move leads to the capture

    of the white group of three stones. These

    white groups are not alive because they

    can be captured as shown in Flg.5 (B)

neighborhood of a group will be calied the eye

     by stones of the group's color. Eyes can

eye of an alive group wlll be cailed the perfect

     of only this group or if it is shared with

which is not perfect will be called the imperfeet

  that the alive group should have at least two

 to secure territory and to surround as many

     at the end of game. The territory is the

    enclosed with groups which are alive The-

   which groups are alive is of basic lmportance

3. AIgoritkrrt

       is to analyze the static situation on the

whether or not there is at least one group alive

    preceding criterion that a group is allve if

eyes. The algoritlim (see Fig.6) first partitlons

    groups and marks ail eyes of these groups.

analyses of all the groups witk respect to the



20 Y. FuNrerA Y. NAKAMURA Y. KOSHISAKA

Alive(plate,color)
{

     captured = TRUE;
     set-ofmgroups = divide-into-groups<piate,stone>;
     while< (captured==TRUE) && notdeempty(setmofwwgroups) ) {
          markneali-eye(piate,color);
          group = first-of(setmef-groups);
          captured = FALSE;
          whi-le{ not-empty(group) ) (
               if( count-eye<plate,group}<2 ) {
                    removewwfrom(setwnof-groups,group);
                    remove.eyes(plate,group);
                    captured = TRUE;
               }
               group = nextNof(group);
          }
     if( not-empty(setwwof-groups) )
          return{ isnvaiive );
     else
          return( is.not-alive );

Fig. 6 Algorithm.

number of their eyes. If a group does not have at ieast two eyes, it is

pruned from the beard. If at least one group has been pruned from the

board, analysis of all the remaining groups is repeated. The algorithm ends

if no groups can be pruned. If at least one group has remained on the board,

it may be concluded that on the board there is at least one group with two

perfect eyes, and so the result of analysis is that the situation of the stones

of the glven color on the board is alive.

   It will be explained how the algorithm recognizes alive groups in the

simple examples shown in Figs.7, 8, and 9. Suppose that the stones on the

N O P Q E S T

(A).

IS

le

17

]6

I5

la

13

NOPQRST

?.,,il'VLg'tL',,,,,,.-......ntdi-

          (B)
Fig. 7 Process to solutioii.

IIII-

I
e
e
i  iI.IIIIww.rm.

  I

   fyg
p
a
.

nv

teei

  (A>

a
s
  l

t

 [!] set.of.groups
epm-".-T7TT.rfp17

19

18

i7

Ifi

t5

14

IS

ercElwwtsrrmN-wtr

          (B>

Fig. 8 Process to solution.

'->LZP!rm5

,.-ew



       N,ign
            cc>

       N soL.of.areu[,s
      -v      C:-urmhn,x,-".Ln'-1;'i-.'{ILI::"tiiZE!]--- -)-{?rlSnz]

                (D)

                      Fig. 9 Process to solution.

an afarmative answer after the first iteration. For

algorithm will find two groups, but the group of

have only one eye. Therefore. in the first iteration,

(see Fig.9 (B)) is pruned from the board and in

group of seven stones is found to have only one

too, ancl the algorithm ends with a negative answer

have remained on the board.

                        4. Applieation

   This aigorithm applies to a program for

in GO game. This puzzle is cailed "Tsttme GO" in

an element of GO game which appears anytime

board in course of game. The program which uses

des other functions adopt the MIN-MAX principle.

     An Algorithm for Solving AHve Situation Puzzles in GO Game 21

                        figures are oRly the ones on the board and
 No y, Qns 'r
             ig that we are to analyze the skuation of the
itllliill.'Sll,tl'//'x･ts/･-/S'lisi/iij1'i'i'iILi.,h/iie/6,{,FSg:e{S,i/f:Fe,,S,,gi,:'i:h,W,meil,az,ij'/ksniien/tlln//,/li'11'S,E.

      <,x)                        than two eyes. The group is alive and so
  [/"] sct-of-sroups is the situation of wliite stones･ For the
('i Lt'.tlaTii'r-:L'E/!-LzllLtti"'mi'L--- -.･ijFpT･ -!

                        white stones in Fig. 8, the algorithm wiil
C'.th" !uari,--.irwt' /･-{iim---.･ifpm , find two groups and thelr two eyes･ As in

          (B)                        the preceding case, the analysis ends with

    NOPQRS 'V

1,k",Yts,ki ,T･esieei±ri,*iT-NiL

    the

    three

    the

    eye.

solving alive situation puzzies

    Japanese. "Tsume GO" is

   and anywhere oR the GO
    this algorithm and inclu-

     To anaiyze a game, the

"tit"Meeitnvi3

    <E)

IZ] Set.Of.8reur,t,

    <1:>

  stones in Fig. 9, the

    stones is found to

 this group and its eye

   second iteration the

   Thus, it is removed

because no white groups



22 Y. FuwA Y. NAKAMuRA Y. KosHIsAKA

MIN-MAX principle makes a game tree. The game tree indicates the process

of the game. Fig. Ie shows a sampie of game tree to analyze the puzzle. Each

poinS indicates a situation, and each line indicates a move. In this case, the

best move for white, i. e., the answer for the puzzle, corresponds to the

bold line, because as a result of this move the white player may expect that

white stones are alive after all. Thls method is called the full width search by

the MIN-MAX principle, and it requires so much tlme as not to be feasible.

We have tried to speed up the analysis. For this purpose, the authors use

three methods, i. e., the alpha-beta pruning method, the seeondary search

method, and the register meehod which registers all skuations, evaluations,

aRd a part of game tree in memory. An example of alpha-beta pruning is

shown in Fig. 11. The broken lines which indicate moves of situation are not

    ag¥hkiX;x,",S//ebe,E ig.e6,l/31Ililli.eg,:･z.ie,Qg

    ECt!CC!!!ECEE-C.=-.fEEE c te ccc    -==-M=.-"- tr-i---H-- = == ===    noooooonnnceoanaOeOO Oig Sttuation rr :: ;SX O@ Siiuation
    se to tt tt c7 ta le caMVi ee Ld t" ca L} ts CI C7- ca mm nm :}    vpnm==pa i:pvp=a=avva un MOVe v =" vvp mu- Xove    --nnon.o--""noo.oHHHo - oo ---    l, i'xx z-g;igg ii g.' s'g". ".ag, g' z- g.' zs' i' g, z.'

        Fig. le Game tree. Fig. 11 A!pha-beta pruning.

searched actually. The number of moves to be searched actually is decreased

from 51 to 19 by this method. An example of secondary search is shown in

Fig.12. We decide the level of boundary, and this method searches such a

situation as has an evaluation of depth less than the boundary. No results

of thls searching gives the best move, and then a deeper situation is

searched. The number of moves to be searched is decreased from 51 to 16

by alpha-beta pruning combined with this method. An example of register

method is shown in Fig.13. This method is such that all situations, and

eva}uations and a part of game tree above some Ievel are registered and

that if the same situation as has been registered before is found, the asso-

ciated evaluation and part of game tree are copied from memory. In this

case, when the situa£ion of move (E:l)-(G:1)-(D:1) is searched, the same
situation (D:1)-(G:1)-(E:1) which has been searched before is found, and

thus the evaluation and the part of game tree are copied.



An Algorith m for Solving Alive Situation Puzzles in GO Game

gN,Sl
w.ite/

"e
eig'i.s:e.

cr ct. ct tt nt ct ctcccc

========T=7=r"rrxrr-,--.iiililllXXX oe sitoation
====uts")--,..      g.klg. im ,,,,
      ::;

 Fig. 12 Secondary search.

 ABCDEFfiHJK
/13 reSllllijE

     (A) p:1 /-C)×1 E:'{------･-. .-. ??

     A/                XA
    E:I F:l g:1 D:IF:la:1  s( b XQ gf c) xQ
 F:: C:1         E:] F:i F:I S:1           s Jx bll aj pt eq pt op @ @
         F:1 E:'1 G:1 F:iO:I G:1 D:1 F:1                    F:1Ob"b         P6QO                    Q
a:s Fx        O:I E= E:I F:1                   'O:1 E:l-:         tt tt                    aj igaj tw        op tw pt ep t'
        e:l B:: F':I E:1                   S:1 D:1        "O ""                    OO
        D:I E:1 E:I F:1                   O:1 E:        /l r!                    Tl        tw @ ee tw                    tw dy
ccccccccccccccr==== tr m= tr == tr ==-t -t "t -t Lt -t -t -t -t rt -t -t -t -trF r- -- r- r" - e r- e- - e- " -ny r-OOh fi no ,? eeonoo"-t -t -t -t -t ft -t -t "t -t -t -t -t -t" tt t) 47 Ce t- tt en ca 4" te SS Ct "

cwnv""npan ts "ae: =, :=::g=::= =. goe{actaata n. ct==  n ea o n"         xv･
              Copy         (B)
   Fig. 13 Register method.

I#ove of

 Sl:ck

:Ieve of

 Vhite

novc of

 Black

nev,e of

 Vhite

,Eeve of

 Beack

nove of

 Uhltc

rlove ef

 glack

23

'

(A)@

4of(B)

1

44--

<D

6fo

4

6
(
c

)

o
p
･

o

8
i
4

-o
-ee

                                     @ tw

                     (D) (E)
                    Fig. 14 Results of execution.

   The authors have instalied this algorithm on a mini-super computer (CO-

NVEX CI-XP) by the C language, and solved some problems of "Tsume GO"

game. Fig. 14 shows results of this execution. To solve the problems, Fig. 14

(A) has needed 108 minutes, Figs.I4 (B) and (C) two minutes, Fig.14 (D) 233

minutes, and Fig. I4 (E) 24 minutes.



24 Y. FuwA Y. NAKAMuRA Y. KOSHISAKA

                           5. Conclusions

   This algorithm makes it possible to evaluate the situation of stones and

to solve alive situation puzzles within realistic time. It is possible to apply

the method to solving the GO game. The authors are investigating a hard-

ware of Paraliel Processings that can execute this algorithm.

                           6. Acknewledgment

   The authors would like to express our gratitude to Mr. Pavel Tvrdik

for reading the maRuscript

                              References

1) Reitman, Vgr. & Wilcox, B., `'Pattern recognition and pattern directed inference

  in a program for playing GO", in D. Waterman and F. Hayes-Roth (Eds.), Pattern-

  directed inference Systems, New York Academic Press, pp.503-523 (1978).

2) Berliner, H., "A chronology of computer chess and its literature", Artificial Intel-

  ligence le, 201-214 (1978).

3) Sanechika, Ohigashi, Mano, Sugawara & Torii, "Notes on Modelling and Imple-

  mentation of the Ruman PIayer's Decision Processes in the Garne of GO", Bul, of

  ETL 45, 1-2 (1981).

4) Mano, Y., "An approach to Conquer Dithculties in Developing a GO PIaying Pi'o-

  gram", fournal of Infbr}nation Processing, Vol.7 (19S4).


