Journal of the Faculty of Engineering, Shinshu University, No.65, 1989 17
BN 655

An Algorithm for Solving Alive Situation
Puzzles in GO Game

Yasushi Fuwa,* Yatsuka NAKAMURA, **
and Yoshihiro Kosuisaga®**
(Received October 31, 1988)

For the process of deciding whether the situation of stones in GO game is alive
or not, an improved algorithm was devised, and a program for solving alive sit-
uation puzzles in GO game was constructed with the algorithm and put into test
uses. Conventional algorithms employ methods based on pattern matching and
require a lot of processing time and large databases. A new algorithm first par-
titions stones into groups and then analyze the situation. Every group enclosed
by opposite stones is pruned, and if at least one group remains, the situation is
considered to be alive. The program has succeeded in solving alive situation puzzles
reasonably rapidly.

1. Introduction

In general, it is very difficult to find efficient algorithms for playing
strategic games. A great progress in the art how to program a computer
to play a strategic game has been made since 1955 when the first computer
chess program appeared®. In 1976 a Northwestern University chess pro-
gram named CHESS 4.5 defeated several Experts and Class “A” players. This
program is based on the full width search by the MIN-MAX principle. But
there have been no such successful programs for GO game. The main reason
for it is that GO game has higher complexity than chess. Statistically, the
average of possible moves is 40 in chess, but 200 in GO. Moreover, the
analysis of static situations in GO game is more complicated and difficult
than in chess. 34 Here, this paper presents a new simple algorithm for
recognizing alive groups of stones on the GO board, which has been succe-
ssfully applied to solving alive situation puzzles of GO game. In section
2, the notion of alive situation is explained. The algorithm is described in
section 3. In section 4, a program for solving Tsume GO with applications
of the algorithm and the possibility of speeding up the algorithm are dis-
cussed.

* Assistant, Department of Information Engineering.
Professor, Department of Information Engineering.
% Student of master course.

18 Y. Fuwa Y. NAKAMURA Y. KOSHISAKA

2. Alive situation

In a GO game stones are placed on intersections of horizontal and vertical
lines. Two stones are called neighbers if they are positioned on two neigh-
boring intersections. A set of stones of the same color on the GO board is
called a group if each stone X in the set has at least one neighbor in the
set and all the neighbors of the stone X belong to the same set. Thus, the
group is a set of stones closed under the relation of neighborhood. A single
stone without neighbors is the minimal possible group. The boundary of
a group is composed of the stones of the group each of which has at least
one neighboring intersection unoccupied by stones of the same group. The
neighborhood of a stone in a boundary is all its vacant neighboring intersec-
tions. The neighborhood of a group is the union of the neighborhoods of
all stones in the boundary. The neighborhood of a group consisting of a
single vacant intersection is called the single intersection neighborhood of
the group. If a group has a single intersection neighborhood and the oppo-
nent now has the turn to play, the opponent can ecapture this group by plac-
ing his stone on this single vacant intersection. If this intersection is a single
intersection neighborhood of more than one group, all these groups are
captured. Naturally at most four groups can share a single intersection nei-
ghborhood. The group is said to be surrounded if there are no intersections
in its neighborhood.

The black stones in Figs. 1 (A) (B) form one group, and in Fig. 1 (C)
there are two black and two white groups. The basic form of capture is the
capture of one stone (Fig.2). A capture of a group of three stones is shown
in Fig. 3.

Consider the situation shown in Fig.4. The white stones form one group
and its neighborhood consists of two intersections. Assume that a black
stone has been placed on one of them (triangular mark in Fig.4). The white
group cannot be captured because there still remains one vacant intersection
in its neighborhood. The black stone has become a group with no neighbo-

50 Ten 1o

L] | 7
T T [P
(AD (B) C)

Fig. 1 Relation of stones. Fig. 2 Capture of one stone.

An Algorithm for Solving Alive Situation Puzzles in GO Game 19

||
i
(a) (B) (c) Ay (B)

Fig. 3 Capture of stones. Fig. 4 Alive situation.

rhood on the board. To avoid this strange situation, the rules of GO game
do not allow this move, and thus such a group of white stones can never

be captured. We will call such a group alive.
Now consider the situation shown in Fig. 5(A). The white stones form
two groups. Assume that a black stone has

been placed on intersection (1). Although

it is placed on an intersection entirely sur-
rounded by white stones, it is alive because
the effect of this move leads to the capture
of the white group of three stones. These
white groups are not alive because they

(A) (@:D)

Fig. 5 Not-alive situation.

can be captured as shown in Fig.5 (B)

The intersection in the neighborhood of a group will be called the eye
of the group if it is surrounded by stones of the group’s color. Eyes can
be shared by groups. The eye of an alive group will be called the perfect
eye if it is surrounded by stones of only this group or if it is shared with
only alive groups. The eye which is not perfect will be called the imperfeet
eye. It is easy to understand that the alive group should have at least two
perfect eyes.

The aim in GO game is to secure territory and to surround as many
vacant intersections as possible at the end of game. The territory is the
region of GO board completely enclosed with groups which are alive The-
refore, the ability to determine which groups are alive is of basic importance
for the success in GO game.

3. Algorithm

The function of this algorithm is to analyze the static situation on the
GO board. It can determine whether or not there is at least one group alive
on the board according to our preceding criterion that a group is alive if
it has at least two perfect eyes. The algorithm (see Fig.6) first partitions
all stones of a given color into groups and marks all eyes of these groups.
Then it makes sequentially analyses of all the groups with respect to the

20 Y. FUwA Y. NAKAMURA Y. KOSHISAKA

Alive(plate,color)
{
captured = TRUE;
set_of_groups = divide_into_groups{piate,stone);
while((captured==TRUE) && not_empty(set_of_groups)) |
mark_all_eye(plate,color);
group = first_of(set_of_groups);
captured = FALSE;
while(not_empty(group)) |
if(count_eye(plate,group)<2) {
remove_from{set_of_groups.,group);
remove_eyes(plate,group);
captured = TRUE;
}
} group = next_of(group);
if(not_empty(set_of_groups))
return{ is_alive);
else
return(is_not_alive };

Fig. 6 Algorithm.

number of their eyes. If a group does not have at least two eyes, it is
pruned from the board. If at least one group has been pruned from the
board, analysis of all the remaining groups is repeated. The algorithm ends
if no groups can be pruned. If at least one group has remained on the board,
it may be concluded that on the board there is at least one group with two
perfect eyes, and so the result of analysis is that the situation of the stones
of the given color on the board is alive.

It will be explained how the algorithm recognizes alive groups in the
simple examples shown in Figs.7, 8, and 9. Suppose that the stones on the

[} set_of.groups

GLEL

set_of_zroups ST T el
;5 ‘ el SR Tl S ET
TSP ST (T] S e €T 16 [o}—>{Ri16 o} R3]
s> (B)

Fig. 7 Process to solution. Fig. 8 Process to solution.

An Algorithm for Solving Alive Situation Puzzles in GO Game 21

figures are only the ones on the board and
1 that we are to analyze the situation of the

® white stones. For the white stones in Fig.
7, the algorithm will find only one group

5 and its two eyes, so the analysis ends with
an affirmative answer after the first itera-

tion since there are no groups with less

than two eyes. The group is alive and so
is the situation of white stones. For the

white stones in Fig. 8, the algorithm will

find two groups and their two eyes. As in

the preceding case, the analysis ends with

Ce0 8
%0’

[} set_of_groups (E)>

et 17
! 16

L;{;EW_;; G Lt LS SFTIE 7 71 set_of groups

(D) F)

Fig. 9 Process to solution.

an affirmative answer after the first iteration. For the stones in Fig. 9, the
algorithm will find two groups, but the group of three stones is found to
have only one eye. Therefore. in the first iteration, this group and its eye
(see Fig.9 (B)) is pruned from the board and in the second iteration the
group of seven stones is found to have only one eye. Thus, it is removed
too, and the algorithm ends with a negative answer because no white groups
have remained on the board.

4. Application

This algorithm applies to a program for solving alive situation puzzles
in GO game. This puzzle is called “Tsume GO” in Japanese. “Tsume GO” is
an element of GO game which appears anytime and anywhere on the GO
board in course of game. The program which uses this algorithm and inclu-
des other functions adopt the MIN-MAX principle. To analyze a game, the

22 Y. Fuwa Y. NAkKAMURA Y. KOSHISAKA

MIN-MAX principle makes a game tree. The game tree indicates the process
of the game. Fig.10 shows a sample of game tree to analyze the puzzle. Each
point indicates a situation, and each line indicates a move. In this case, the
best move for white, i. e., the answer for the puzzle, corresponds to the
bold line, because as a result of this move the white player may expect that
white stones are alive after all. This method is called the full width search by
the MIN-MAX principle, and it requires so much time as not to be feasible.
We have tried to speed up the analysis. For this purpose, the authors use
three methods, i. e., the alpha-befa pruning method, the secondary search
method, and the register method which registers all situations, evaluations,
and a part of game tree in memory. An example of alpha-beta pruning is
shown in Fig.11l. The broken lines which indicate moves of situation are not

Hove of ¥hite Hove of White

Hove of Black Hove of Black
Hove of V¥hite Hove of White
tiove of Black tf tove of Black
Nove of Vhite Hove of Chite

Hove of Flack Hove of Black

@ Situation O@® situation

Hove —= MHove

Fig. 10 Game tree. Fig, 11 Alpha-beta pruning.

searched actually. The number of moves to be searched actually is decreased
from 51 to 19 by this method. An example of secondary search is shown in
Fig.12. We decide the level of boundary, and this method searches such a
situation as has an evaluation of depth less than the boundary. No results
of this searching gives the best move, and then a deeper situation is
searched. The number of moves to be searched is decreased from 51 to 16
by alpha-beta pruning combined with this method. An example of register
method is shown in Fig.13. This method is such that all situations, and
evaluations and a part of game tree above some level are registered and
that if the same situation as has been registered before is found, the asso-
clated evaluation and part of game tree are copied from memory. In this
case, when the situation of move (E:1)—(G:1)—(D:1) is searched, the same
situation (D:1)—(G:1)—(E:1) which has been searched before is found, and
thus the evaluation and the part of game tree are copied.

An Algorith m for Solving Alive Situation Puzzles in GO Game 23

ABCDEFGHJIK

Y -
2 lod >
3 ===?—Y
b po699
[RRE R
CA) i1 /O\ g;';“**-mw 22 Hove of
/.\/) T Black
BTN /0:1151\4::1 "'“;;’ ‘:'
N, hite
A g ° LR 00 L
Move of Vhile Fiy G \1 Eil P.‘I Fﬁ/l G:\I Bl Black
; ac
¢ ® (e e o0 (o
Hove of Black DIYGI1 DIV FI) Fi1 EIl Gl Fit FI1 N
) Q C d) O Q White
Hove of White g1 L AR B 23 I “;T °£
. 2 ac
- Bound
oundary ® o 60 o0 o
Hove of Black E11 by Fil Eil EXl DI
<> ¢ Q Vhite
Hove of Vhite oit el £l Fh1 bi gL Hove of
. " - - ! Black
® 0 [® o
fove of Black 5 5 55 58 % 3 =
FE E
- R . -
= a
= e e e e o o
° O®@ situation 2 T2 Tz 8
s H H
. —— Hove
3 Copy
<8y
Fig. 12 Secondary search. Fig. 13 Register method.

Fig. 14 Results of execution.

The authors have installed this algorithm on a mini-super computer (CO-
NVEX Cl-XP) by the C language, and solved some problems of “Tsume GO”
game. Fig. 14 shows results of this execution. To solve the problems, Fig.14
(A) has needed 108 minutes, Figs.14 (B) and (C) two minutes, Fig.14 (D) 233
minutes, and Fig. 14 (E) 24 minutes.

24 Y. Fuwa Y. NAKAMURA Y. KOSHISAKA

5. Conclusions

This algorithm makes it possible to evaluate the situation of stones and
to solve alive situation puzzles within realistic time. It is possible to apply
the method to solving the GO game. The authors are investigating a hard-
ware of Parallel Processings that can execute this algorithm.

6. Acknowledgment

The authors would like to express our gratitude to Mr. Pavel Tvrdik
for reading the manuscript.

References

1) Reitman, W. & Wilcox, B., “Pattern recognition and pattern directed inference
in a program for playing GO”, in D. Waterman and F. Hayes-Roth (Eds.), Pattern-
directed inference Systems, New York Academic Press, pp.503-523 (1978).

2) Berliner, H., “A chronology of computer chess and its literature”, Artificial Intel-
ligence 10, 201-214 (1978).

3) Sanechika, Ohigashi, Mano, Sugawara & Torii, “Notes on Modelling and Imple-
mentation of the Human Player’s Decision Processes in the Game of GO”, Bul, of
ETL 45, 1-2 (1981).

4) Mano, Y., “An approach to Conquer Difficulties in Developing a GO Playing Pro-
gram”, Journal of Information Processing, Vol.7 (1984).

