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    For the process of deciding whether the situation of stones in GO game is alive

  or not, an improved algorithm was devised, and a program for solving alive sit-

  uation puzzles in GO .crame was constructed with the algorithm and put into test

  uses. Conventional algorithms employ metheds based on pattern matchlng and

  require a lot of processing time and Iarge databases. A new algorithm first par-

  titions stones into groups and then analyze the sltuation. Every group enclosed

  by opposite stones is pruned, and if at !east one group remains, the situation is

  consrdered to be alive. The program has succeeded in solving alive situation puzzles

  reasonably rapidly.

                         1. Introduction

   In general, it is very dlthcuit to find efficient algorithms for playing

strategic games. A great progress in the art how to program a computer

to play a strategic game has been made since l955 when the first computer

chess program appeared2). In 1976 a Northwestern University chess pro-

gram named CHESS 4. 5 defeated several Experts and Class "A" players. This

program is based on the full width search by the MIN-MAX principle. But

there have been no such successful programs for GO game. The main reason

for it is that GO game has higher complexity than chess. Statistically, the

average of possible moves is 40 in chess, but 200 in GO. Moreover, the

anaiysis of static situatlons in GO game is more complicated and dithcult

than ik chess.i),3),4) Here, this paper presents a new simple algorithm for

recognizing alive groups of stones on the GO board, which has been succe-

ssfully applied to solving alive situation puzzles of GO game. In section

2, the notion of alive situation is explained. The algorithm is described in

section 3. In section 4, a program for solving Tsume GO with applications

of the algorithm and the possibility of speeding up the algoyithm are dis-

cussed.
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                    2. AIRye situation

   In a GO game stones are placed on lntersections of horizontal and vertical

lines. Two stones are called steighbors if they are positioned on two neigh-

boring intersections. A set of stones of the sapae color on the GO board is

called a group if each stone X in the set has at least one neighbor in the

set and all the neighbors of the stone X belong to the same set. Thus, the

group ls a set of stones closed under the relation of neighborhood. A single

stone without neighbors is the minimal possible group. The boundary of

a group is composed of the stones of the group each of which has at least

one neighboring intersection unoccupied by stones of the same group. The

neighborhood of a stone in a boundary is all its vacant neighboring intersec-

tions. The Reighborhood ef a group is the union of the neighborhoods of

all stones in the boundary. The neighborhood of a group consisting of a

single vacant intersection is called the single interseetioR neighborhood of

the group. If a group has a single intersection neighborhood and the oppo-

nent now has the turn to play, the opponent can capture this group by plac-

ing his stone on this single vacant intersection. If this intersection is a single

intersection neighborhood of more than one group, all these groups are

captured. Naturally at most four groups can share a single intersection nei-

ghborhood. The group is said to be surrounded if there are no intersections

in its neighborhood.

   The black stones in Figs. 1 (A) (B) form one group, and in Fig. 1 <C)

there are two black and two white groups. The basic form of capture is the

capture of one stone (Fig. 2). A capture of a group of three stones is shown

in Fig. 3.

   Consider the situation shown in Fig. 4. The white stones form one group

and its neighborhood consists of two intersections. Assume that a black

stone has been placed on one of them (triangular mark in Fig. 4). The white

group cannot be captured because there still remains one vacant intersection

in its neighborhood. The black stone has become a group with no neighbo-
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      Fig.3 Capture of stones. Fig.4 AIive situation.

rhood on the board. To avoid this strange situation, the rules of GO game

do not allow this move, and thus such a group of white stones can never

be captured. We will call such a group alive.

   Now consider the situation shown in Fig. 5(A). The white stones form

                             two groups. Assume that a blacl< stone has
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    been placed on intersection (1).' Although

    it is placed on an intersection entirely sur-

    rounded by white stones, it is alive because

    the effect of this move leads to the capture

    of the white group of three stones. These

    white groups are not alive because they

    can be captured as shown in Flg.5 (B)

neighborhood of a group will be calied the eye

     by stones of the group's color. Eyes can
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Alive(plate,color)
{

     captured = TRUE;
     set-ofmgroups = divide-into-groups<piate,stone>;
     while< (captured==TRUE) && notdeempty(setmofwwgroups) ) {
          markneali-eye(piate,color);
          group = first-of(setmef-groups);
          captured = FALSE;
          whi-le{ not-empty(group) ) (
               if( count-eye<plate,group}<2 ) {
                    removewwfrom(setwnof-groups,group);
                    remove.eyes(plate,group);
                    captured = TRUE;
               }
               group = nextNof(group);
          }
     if( not-empty(setwwof-groups) )
          return{ isnvaiive );
     else
          return( is.not-alive );

Fig. 6 Algorithm.

number of their eyes. If a group does not have at ieast two eyes, it is

pruned from the beard. If at least one group has been pruned from the

board, analysis of all the remaining groups is repeated. The algorithm ends

if no groups can be pruned. If at least one group has remained on the board,

it may be concluded that on the board there is at least one group with two

perfect eyes, and so the result of analysis is that the situation of the stones

of the glven color on the board is alive.

   It will be explained how the algorithm recognizes alive groups in the

simple examples shown in Figs.7, 8, and 9. Suppose that the stones on the
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                      Fig. 9 Process to solution.

an afarmative answer after the first iteration. For

algorithm will find two groups, but the group of

have only one eye. Therefore. in the first iteration,

(see Fig.9 (B)) is pruned from the board and in

group of seven stones is found to have only one

too, ancl the algorithm ends with a negative answer

have remained on the board.

                        4. Applieation

   This aigorithm applies to a program for

in GO game. This puzzle is cailed "Tsttme GO" in

an element of GO game which appears anytime

board in course of game. The program which uses

des other functions adopt the MIN-MAX principle.
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MIN-MAX principle makes a game tree. The game tree indicates the process

of the game. Fig. Ie shows a sampie of game tree to analyze the puzzle. Each

poinS indicates a situation, and each line indicates a move. In this case, the

best move for white, i. e., the answer for the puzzle, corresponds to the

bold line, because as a result of this move the white player may expect that

white stones are alive after all. Thls method is called the full width search by

the MIN-MAX principle, and it requires so much tlme as not to be feasible.

We have tried to speed up the analysis. For this purpose, the authors use

three methods, i. e., the alpha-beta pruning method, the seeondary search

method, and the register meehod which registers all skuations, evaluations,

aRd a part of game tree in memory. An example of alpha-beta pruning is

shown in Fig. 11. The broken lines which indicate moves of situation are not
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        Fig. le Game tree. Fig. 11 A!pha-beta pruning.

searched actually. The number of moves to be searched actually is decreased

from 51 to 19 by this method. An example of secondary search is shown in

Fig.12. We decide the level of boundary, and this method searches such a

situation as has an evaluation of depth less than the boundary. No results

of thls searching gives the best move, and then a deeper situation is

searched. The number of moves to be searched is decreased from 51 to 16

by alpha-beta pruning combined with this method. An example of register

method is shown in Fig.13. This method is such that all situations, and

eva}uations and a part of game tree above some Ievel are registered and

that if the same situation as has been registered before is found, the asso-

ciated evaluation and part of game tree are copied from memory. In this

case, when the situa£ion of move (E:l)-(G:1)-(D:1) is searched, the same
situation (D:1)-(G:1)-(E:1) which has been searched before is found, and

thus the evaluation and the part of game tree are copied.
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   The authors have instalied this algorithm on a mini-super computer (CO-

NVEX CI-XP) by the C language, and solved some problems of "Tsume GO"

game. Fig. 14 shows results of this execution. To solve the problems, Fig. 14

(A) has needed 108 minutes, Figs.I4 (B) and (C) two minutes, Fig.14 (D) 233

minutes, and Fig. I4 (E) 24 minutes.
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                           5. Conclusions

   This algorithm makes it possible to evaluate the situation of stones and

to solve alive situation puzzles within realistic time. It is possible to apply

the method to solving the GO game. The authors are investigating a hard-

ware of Paraliel Processings that can execute this algorithm.
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