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Optical Rotalion by a Free Eleclron
on an Oriented Helix

Yuji KaTo* and Toshihiko ANDO**
(Received October 26, 1987)

The refractive index and optical rotation for a model of free electrons on an oriented
helix are investigated on the basis of the first principle, that is, the linear response
theory without using the conventional formula. Calculation is made by the method of
second quantization under the periodic boundary condition. Expressions for the refrac-
tive index and the optical rotation are obtained which are exact for the helicoidal model

of arbitrary size relative to the wavelength of incident light.

1. Introduction

The rotation of linearly polarized microwaves by a system of macroscopic
helices was measured thirty years ago. To account for the experimental re-
sult a number of theoretical investigations of optical activity of a free electron
on a helix have been made by the perturbation theoryz® and the quantum the-
ory of radiation field.3®

Tinoco and Woody2 and Leuliette-Devin et al.® calculated the optical ro-
tation of an oriented helix with dimensions small compared to the wavelength
of polarized light and obtained expressions by using exact wave functions. While
Tobias et al., Balazs et al.¥ and Moore and Tinoco® obtained expressions for
the rotation of a long helicoidal model with dimensions comparable to the wave-
length. Furthermore, Tinoco and Woody,? Balazs et al.,# Moore and Tinoco®
and Leuliette-Devin et al.® derived expressions for optical rotation by using
one-dimensional wave functions of an electron in a box.

In our previous papers,”® a general formula for the Faraday rotation in-
cluding the natural optical rotation was derived based on the microséopic Max-
well equation and the optical and the magnetic rotatory dispersion of an ori-
ented long helical polymer by an exciton model were obtained.

In the present paper, we calculate the refractive index and natural optical
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rotation for an oriented helicoidal orbital model by applying our theory.7® We
limit ourselves to the model which consists of an electron free to move on a
long helix.

In sec. 2 we give a description of electric current density of the system,
in terms of the second quantization operator, which is induced by an incident
polarized light. The periodic boundary condition of the system is used. In sec.
3 formulae for the refractive index and the optical rotation are derived in
terms of the current correlation function. In sec. 4 we obtain the correlation
function in terms of Green functions. Final section 5 is devoted to summary

and discussion.
2. Electric Current Density

The system under cosideration is an electron on an oriented right-handed
helix of N turns described by the following equations including the azimuth 6:
x = pcosf = psiné z—iﬁ (1)
xr=p h) Yy = o s - 27 ’
where p is the radius and d is the pitch (the distance between successive turns)
of the helix. If s is the length along the helix curve, one can obtain the rela-
tion

z=ssing, (2>

where

tana =

ETs (3)
The Hamiltonian ¥ of an electron constrained to move on this helix is
given by

B2 02
== e (4

For an integral number N of turns, solutions of the eigenvalue equation to eq.
(4) are

. )
— . olks 7
©.(s) \/NDe 1 b= __2_11 \
" ND , (5)
e(k) = kZm J l=0, £1, +2, /

where use has been made of the periodic boundary condition
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0:(8) = (s + ND)
d . (6)

sin o

The orthogonal components of the electric current density j(r) are written
as

7.(8) = — j(s) cos a sin @ 1
7,(8) = 7(s) cos « cos @ (7
7:(8) = j(&) sin & j

Since the electric current density operator of the system is
i) = 2 51 G — 17 + PG — )]
J = o . e+ [y i)

where e and m are the electric charge and mass of electron, respectively, one
can express 7.(s) as

il

. eh . 2ms "
7.(8) = ~ mcos a sm—D— }__J; ,;_? fdsigokr (s5)

) 2 2
X [o(s—si)%_— 05~ si)]gok(si)ak:?ak

= — —N% %eos a sinz—g—s— Zk sz‘_, (k + RB)ett-2sy ,1q, (8)
and, similarly, 7,(s) as
en 27 ,
7, () = Wﬁ 5o ——CO0S a cos——D— 3 Z} (B + R )eit-isg g, 9

where a, and a,' are the annihilation and creation operator for the electron with
the wave-number %, respectively, and use has been made of the following rela-
tion obtained by egs. (1), (2) and (6):

27 2z sin « 2
§ = —8,

dfT T4 D

6 =

Thus, the Fourier transforms of the electric current density operator of
the system are represented in terms of a, and a,t by the second quantization
as

e = [dseiesiy(s) = [dseiwaizj (s)

. ek d e
! 2m cosa 3 [(k ZDq D) k+ qu ;3 ~D e
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d T
— el e =T
<k+ 5D D) Apsdo-2e a"} (10)

and
. en d
= —— t
(@) =5, cos e K DIt D> i o

d T
+ (b g ﬁ)aw%q—%”“’]' a

3. Formulation of Optical Rotation

The basic equations for refractive index and optical rotation are given from
Maxwell’s equations in terms of the current correlation functions @p(q, ) and

Qula, @79 by
05— gt + 5 1Qod D FiQUG.s @)]=0, a2

where go=w/c, ¢ is the speed of light in vaccum and the upper (lower) sign
corresponds to left (right) circularly polarized light with frequency w. The re-
fractive index n and the rotational angle ¢ of the plane of polarization per unit
path length* are defined by

_g-t+ g+
=T 1
. a3
_ 4-—4a+
$="3 J

By making use of eq. (12) for the wave-numbers ¢. the refractive index n(w)
and the rotational angle ¢(w) reduce to®

[n(e) s~ T8l _p —~QD<q0, w)]

2q,
&’ . 14
QN (qOJ G)) J

Let us take the direction of propagation of an incident monochromatic light
of frequency o to be parallel to the z-axis. The correlation functions @p(g, @)
and @x(q, w) are expressed in terms of the spatial Fourier transform j{g, )
of the electric current density operator in the forms? 9

$lo) =~ ch( ) @

2wiw

(g, o) = fldte-iwtﬁ(t) f : 2

* The sense of rotation is defined so that positive ¢ corresponds to counterclockwise ro-
tation as seen by an observer against the direction of propagation of the incident light.
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x {ja, DI~ g, D + 5 g, D~ q, B> 15

and

2riw

Qe ) = == dteoo) [ az

% G(q, D= ¢ 1) — g, Dj(— ¢, 1rD), e

where V is the volume of the system, 6(¢) the step function, p=(k7)-! and
the triangular bracket represents the canonical average of the physical quantity
2, that is,

Tr[exp(— B#)E2]
Trlexp(— p#d] -~

The Hamiltonian (4) of the system can be written by the use of the second
quantization technique as

> =

2 s(k)ak’fak an

Substitution of egs. (10) and (11) into egs. (15) and (16) leads to

@ ) = = “F ) 1= ()]

“k“deD“ SE - ZdD - )

X§kz'[ (rr S+ ) - ey
o e 3l 5

b+ Sg-22) — ety
xG(k+—g—q——Zg,k;k’——g—q+%t~,k’;w)J (18

and

QN(q,wD— 4?0)(2 )[ ( )2]
5)

[( 757 <_2Dq o)

| e Lo B

X 252
I 4
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><G<k+—g—q+%r, k;k’——dD—q~—2—g, k’;w)

[+ 550- B - 357+ 5)

Ze-B)-

e(k +

a2 a2 l
XG(k—F““D“C]—’—“DE,k;k/-"ﬁq+_§,k,;w>J: a9

where G(k,, ks ks, ki o) denotes the Green function for electrons, that is,

Glhiy ks b o 0) = [ dtemietGlhy, by by B3 D) (20)

with
Gl b by b ) = 202 (D20, 2T Oan @D @D
In egs. (18) and (19), the relation

coste =1 — (—(1—>2

is used.
4. Green Funections

To calculate Green functions, one first considers an equation for a,fa, and
thus the equation

-2
i

@) = [eGh) — e(k) a0 22

is obtained by the use of Hamiltonian (17). By differentiating eq. (21) with
respect to time f, the equation of Green function

72 d
-7 EG(kn ky s ke, Ry 1) = — 0(D[0nman ar) —0relanar)]

+ Le(hy) — e(RDIGCky, ks by, Ry s 1) (23)
is derived from eq. (22). The exact solution of this equation is transformed by
eq. (20) to

f(kx) - f(kz)
ho — [e(k) — e(k)]’

G(ky, by s by By 3 ©) = 84000, @4
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where f(k) denotes the Fermi-Dirac distribution function for electrons, that is,
J(B) = Lata.

Thus, one can find out the correlation functions @,(g, ») and @x(g, ) in
the forms

%@ o) = = ()T (4]

(k + ;ﬁq + %)2 f(k + %q + ——) FE)

x§l6<k+%q+2_5_)__e(k)hw_[<k+gq+ > e(k)}

bt 3 et |
(25)
e<k+%q——%—>——s(k>hw~[<k+% ) e(kDH
and
a@ » =~ () - (5)]
Z}J b+ 42a+ 5 He+ L g+ 2 - s
X
z 1e<k+ gq+2—g)—e<k)hw—[( +-—q+——)—e(k>}
e gegeBow

e<k+ Dq——%) e(k);zw—[(k+ —a- 2) e(k)”

Finally, expressions for the refractive index n(w) and the rotational angle ¢(w)
are obtained by substituting eqs. (25) and (26) into eq. (14).

5. Summary and Discussion

In the present paper we have derived expressions for the refractive index
and the optical rotatory power for a free electron constrained to move on an
oriented long helix under the periodic boundary condition. The calculation has
been made by using a formula in terms of response function which represents
a correlation of electric current densities, that is, on the basis of the linear re-
sponse theory.

Our results have been exactly derived on the basis of the first principle.
The situation is quite different from that of Tinoco and Woody?2 and Leuliette-
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Devin et al.®. Their results also are exact but are based on the Rosenfeld for-

mulal® which has been derived from an equation expanded in a power series

in the wave-number of light. Leuliette-Devin et al.®> discussed the discontinuity

of optical rotation at resonance frequencies. As far as the Rosenfeld formula

is used, one cannot avoid the difficulty of the discontinuity of optical rotation.

Our results contain also the temperature dependence of the refractive index

and optical rotation through the Fermi-Dirac distribution function for electrons.
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