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Exciton-Phonon Interaction in Optical Rotation
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(Received October 26, 1984)

Effects of exciton-phonon interaction on optical rotation and refractive index of
a polymer are investigated on the basis of the Frenkel exciton model. Exciton-
phonon interaction has a little effect on optical rotation and refractive index in
comparison with that exerted by electron-electron interaction between monomers,
as far as the Frenkel exciton model is concerned, When exciton-phonon interaction
is negligible and intermonomeric interaction is much less than exciton energy, the
optical rotatory dispersion has the anomalous term; however, the anomalous dispersion
disappears in the absorption of light., A relation between rotational angle and
refractive index is derived,

1. Introduction

One of the present authors (T. A.)D developed the microscopic theory of
optical rotation on the basis of the linear response theory and applied it to a
long helical polymer by using the Frenkel exciton model. In that theory, vibrations
of monomers are neglected, that is, the indirect intermonomeric interaction
through phonons is neglected.

In most of the theoretical investigations of optical rotation, temperature-
dependent optical rotation formulae have been derived by the perturbation theory
through introducing the Boltzmann distribution over energy levels.® As in the
BCS theory of superconductivity, electron-electron interaction through phonons
may give rise to the temperature dependence of optical rotation.

In the present paper, we investigate the effect of exciton-phonon interaction
on optical rotation and refractive index in a linear polymer.

In sec. 2 we make the total Hamiltonian of the polymer on the basis of the
molecular exciton model by using the second quantization technique. In sec. 3
formulae for optical rotation and refractive index are derived in terms of response

function as the commutator of exciton annihilation and creation operators. In sec.
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4 we obtain response functions by the Green function method. It has been proved
that exciton-phonon interaction has a little effect on optical rotation and refractive
index as far as the Frenkel exciton model is concerned. We have found that
rotational angle is closely related to refractive index. Section 5 is devoted to

discussion.
2. Hamiltonian

The system under consideration is a polymer composed of similar monomers.

The total Hamiltonian & of the system is expressed as

7 = 2%" + %‘EZ}EZ Vim(Tin — )+ Z}ZZ v(rin — Ru), (1)
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where 7;, is the co-ordinate of the ith electron in the nth monomer in the polymer,
R,, the co-ordinate of the centre of the mth monomer (for example, that of the
nucleus of the mth monomer), 57, the Hamiltonian of the nth isolated monomer,
Vam{Fin — rim) the interaction between the ith electron in the nth monomer and
the jth electron in the mth monomer and »(r;, — R,,) is the interaction between

the ith electron in the nth monomer and the nucleus of the mth monomer.

In order to derive phonons, taking an average over the positions of electrons

in intermonomeric interaction V,,, we obtain

V”muﬂa'ﬂ'(R” —R,,) :Jdrinjdrjm @/ta:k(7'1'11){«9”1:34:(7.,7"1» Vi — rjm)
X Ona’ (rin)§0m‘8' (rjm) , (2)

where @uq{ri,) is the a-state function of the ith electron in the nth monomer.
We consider the linear polymer, composed of N similar monomers spaced a
distance d apart on the z-axis, and small vibrations of monomers along the z—axis.
Let us define a displacement u, as the displacement of the nth monomer from its
equilibrium position R,°, that is, R, = R,°+ #,, and then V,,***# may be
expanded as a power series in displacement #, around the equilibrium position

R,° as follows:
Vnmaﬁw‘s/(Rn - Rm): V;zmaﬁa’BI(Rno - Rmo)

( i(~—62Vnmaﬁ«'ﬁ'
2

e R, ) (un "—um)z’Jl“ (3)
n

0

We can derive phonons from the harmonic term in eq. (3) and the Kkinetic
energy part of 27, in eq. (1) by the operator technique. Introducing a Fourier
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transformation to the following set of new operators, derived from operators ()
and p,(f), the momentum of the nth monomer,

Upl) = Ze‘k"du ] o

k=-—m
Nd (4)

>
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N

one may diagonalize the Hamiltonian of phonons in the form

Hp = MZ]PIe{Pk + — Z} (!) Ule Uley (5>

where M denotes the mass of the monomer and
M{o(R)? = V(0) — V(k)

ik(n-m)d 62Vnmaﬁa'ﬁ» : (6)
E ¢ ZZE}] (W)
0

n—m=0

Let us define the following annihilation and creation operators for phonons:®

by = (P} — iMa(B)U ) 1
~ OMiak)
(7)
bt =t (Pt iMa(R)U) J
v oMok

Equation (5) can be expressed, by use of eq. (7), as
1
57 = D fiw(k) (bk'bk + ?>. (8)
k

It is verified by using the commutation relations for u, and p, that the operators
br and b1 satisfy the following commutation relations®

[bk, ble"¥-]:51ele’, [bk, bk‘:l :O, [ka, bk"{]:O- (9)
The last term in eq. (1) gives rise to exciton-phonon interaction. If we expand
v(rin — Ry) in a power series in #,,, we find that
v(rin — Ry)= vriy — Ry°)— <6Rm> U 105 (10)

and the electron-phonon interaction is obtained from the second term on the
right-hand side of eq. (10) in the form
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Fep= 22100 (k) J}V— S g @ (BT — b4, (1)
R o o« n

where a,, and a,,l are the annihilation and the creation operator for the a-state
electron in the nth monomer, respectively, and

aa’ — l _“_]T:: ik(n-mdd
v ) = i \/ 2Ma(k) nge

xjdrin%m*(ri")( )< =

oR, ) DOna’ Tin). (12)

We investigate the effect of phonon on optical rotation by making use of the
Frenkel exciton model of polymer. To deriving exciton-phonon interaction, it is
convenient to make a Fourier transform

ka _'\/_ Z}e nkﬂdB of

ka /\/» EelkﬂdB ff

where B,y and B, /l are the annihilation and the creation operator for the exciton
at the nth monomer and of the jfth level, respectively, i.e. an:a,,o'f'an f and
B, fT=a,/Ta,. % Thus, the exciton-phonon interaction is given by

Fep = D 00BN B_pfT + Brp) Ol — b_s) (14)
P
with the commutation relations for Brs and Bt
[Bis, Bi gt ]=bppdrr. [Bis, Brypl=0, [Brsff, Bpspil=0, (15

where v (k) = vf°(k) with superscript 0 denoting the ground state of electron.

By making use of eq. (13) the Hamiltonian including no phonon part is ex-
pressed in terms of By and BT by second quantization. D

Finally, the total Hamiltonian of the polymer becomes

5 = [y + 31 dsBustBay + 5 SI53VBuist -+ Bug) Bus+ i)
ok f ok
+ ol (bat o+ )
S

+ >0 kUB ks + Brp)brt — bop) (16)
A
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under the conditions <BjsTBrs> <1 and > |BrsIBrr=1, where E, is the ground
7

state energy, Ay the eigen energy of the f-state of monomer and V s(k) the Fourier
transform of the interaction between monomersh 4 given by

Vi(h) = E eik(n—m)dvnmf

H—m

(17)
anf = {erdr,@nf*(r)(P7no*(r’>V(r - 7")@;10(")§0;;1f(r’)
8. Formulation of Optical Rotation
Maxwell’s equations give the basic equation for optical rotation
1 .
g+ — qo* + Eg[QD(Qi,(!))+ i@n{gs, w) =0, (18)

where ¢, = of/c and the upper (lower) sign corresponds to left (right) circularly
polarized light. If we take the direction of propagation of an incident monochro-
matic light of frequency w to be parallel to the z-axis, correlation functions
@plg, w) and @nlg, ) are expressed in terms of the spatial Fourier transform
Jlg. 1) of the electric current density operator in the form!®

2wiw

- 8
Qole, a)=—p|  dte0(0)| disla. sl 0,180
-0 0

3510 Dy~ 0.1 (19
and
. 0 g
Qnla. 0= dte 00| aiciida, il 0,182

where V denotes the volume of the system, 0(f) the step function, 8=(k¥7T)"! and
the triangular bracket represents the canonical average, that is,

_ Trlexp(— gz7)---]
~ Trlexp(— p&7)]

When one expands @plg, ») and Qn(g, ®) as a power series in the wave-number
q of light up to the first order in ¢ into
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@plg, ®)= Qp(0, )+ ¢QpM(0, »)
On{g, @)= GnO(0, w)+ gOn0, o)

(21)

and when one defines refractive indices n, and n_, respectively, for left and right
circularly polarized lights and the rotational angle ¢ of the plane of polarization
per unit path length* by

7 — q-+4q. — n- 4 1,
2 2
; (22)
-4+
P S
P 2
one obtains relations between # and ¢ as follows:
12 — H2 = .2 1Q(o)o
P =qo — 2 WD (0, m)
, (23)
i
b=~ 5 N(0,0) J

where use has been made of @Qp(V(0, w)= Qn®(0,w)= 0. It is shown that refractive
index relates closely to rotational angle.

Let us suppose that the polymer has a pitch angle ¢ between adjacent mono-
mers. The Fourier transform of the electric current density operator is represented
in terms of B,y and B, fT, under the assumption—without loss of generality—that

the wave function is real, in the form

N-1

Ja.t) =25 27 91 J(g) (B () — Bas(t)) (24)
fon=0
with
cosS#p  ~ Sin ne
- ]
sin ngp Cos 1
and

J(@)=(T(g)) s,

where (J©®(qg))s, is the matrix element of the electric current density operator
JO(g) for the zeroth monomer.

* The sense of rotation is defined so that positive ¢ corresponds to counterclockwise
rotation as seen by an observer against the z-direction,
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Let us consider only the lowest exciton for the sake of simplicity. Substitution
of eq. (24) into egs. (19) and (20) leads to

zNfio

@plq, @)= — Vi,

{H0LG, o @ 4G, . (o))

~iH@IG,,, (@=GC f(a))]} (25)

and

xNfiw
Vdyr

Onlg. )= = ZZHI@IG, @ 4G, (@)]

a+os (1—{7f

HUOLG, o ()~ cq_%f@)j} : (26)

where

Jold)= T ](— @+ Ty(@]y(—a) } =)

1@y = TA) y(— @) — Jo(@) =~ @)
and

N-1 o .
ka(w): E eik(n—m)dJ' dte-—imt%g(l«)

#n—m=0

X <[an1(t)+ an(t)) Bmf.i‘(o)_ Bmf(o)]>- (28)

4. Green Functions
Refractive index and optical rotation can be expressed by use of Green
functions

=)

ka((r)) :J dte'i‘"’Gkh () (29)

with
Grr=(t)= %0(t)<[3k AW Bors(t), BorsT(0)— Brs(0)], (30)
as has been seen in egs. (19), (20), (21), (23), (25) and (26). In course of calculating

Green functions, one obtains an equation

é def+(t)

- = 206(t)+ AfGry-(1) (31)
i df
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by differentiating eq. (30) with respect to time /. If one takes the time derivative
of Grr_(t) on the right-hand side of eq. (31) in order to obtain Gpr.(f), one will
have a Green function @, (f) of new type

Trr=)= %0(1)<Eb1ﬂ'(i)i bor(®, B_ksT(0)— Brr(OD, (32)

which immediately allows @7, (f) to be defined. Similarly, if one takes a series
of time derivatives for these Green functions, one will obtain coupled equations
of Green functions of various types. By solving these simultaneous equations for
Grrx(t) and Zpr+(t), one can obtain

2hm
Grrlw)= . (33)
- _ Alfio(R))(vr (k)
(fw)2— Ay Edf + 2V ¢(k)) ) — GiolR)? ]
Under the condition Am(k) <#fim, eq. (33) may be rewritten into
ka(“’): 2o vr(k) \2 . (34)
(fe)* — Ay + 2V 5+ 4d s iw(l) (25 )

Since vy(k) <Am, the value of the third term in the denominator in eq. (34) is
much less than those of the first and second terms. This states that there is a
little effect of the exciton-phonon interaction on refractive index and optical
rotation as far as the Frenkel exciton model is concerned.

When one neglects the exciton-phonon interaction, the Green function Gy (o)
reduces to '

2fw
[(fiw)® — d5*]— 245V s(k) °

Grylw)= (35)
which has been given in ref. 1. In order to calculate @plg,») and Qulg,w)
represented by egs. (25) and (26), let us define the sum and remainder of Green
functions up to the first order in ¢ as follows:

s = = GiOL gGLD,
G= Gﬁ_%f(w)qu_%f(a)) G+ qGx (36)

Since Jo{g) in egs. (25) and (26) has no linear term in q and Ji(g) in those
equations has no constant term in ¢, &pl¢,w) and @n(g,®) reduce to

@plq, )= ALJVG, ]

Ong, )= Agl ]GO + i[OG 7]
A alN#iw.
- Vay
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where [ = J,(0) and Ji(q)= qJ,*®. Consequently, one may say that Qp(g, )
is independent of ¢ and that Qu(g,®) is proportional to q.

Furthermore, when we expand the Green function (35) in a power series in
V¢(k) as in ref. 1, then using eq. (17) and the expression

1
LEw)2— 472 — 24, Z el eV 12

n—m

4Af E ei(ﬂ-—m)govnmf

S~ 1 1 ‘_%‘ n—m
T [ — 47T (fw)* — 47*
we find out an expression
8G . @
r (€5
0ld) G.™, (38)

By making use of this equation one can derive the relation between refractive
index and optical rotation

”ﬂ 52 o 2y — _@ﬁ__. _ 2
P iy T W )= P gy TP (39
where
i ]1(1)
C= -4 (40)

This shows a close relationship between refractive index and optical rotation.

5. Discussion and Summary

We have investigated the exciton-phonon interaction of linear polymer on
the basis of the molecular exciton theory of second quantization. The total
Hamiltonian of the polymer in terms of exciton annihilation and creation operators
is written as eq. (16), and then it is shown that the Hamiltonian satisfies the
condition of exciton momentum conservation.

The refractive index and the optical rotational angle are expressed in terms
of response functions, which are shown in egs. (23), (25), (26) and (28). In order
to obtain Green function (i.e. response function) we have had a set of four
equations for Grr=() and @rr«(), and then we have obtained the exact solutions
of these four simultaneous equations with a finite chain of coupled equations,
without using the decoupling method. It should be noted that one of these exact
solutions, given by eq. (33), could be obtained because of the relevant Hamiltonian
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in the form of eq. (16) on the basis of the Frenkel exciton model.

In the optical frequency region it may be satisfied that Ze(k) <fiw, hence the
Green function may be allowed to reduce to the form of eq. (34). Since the
exciton-phonon interaction energy is much less than photon energy, the value of
the third term in the denominator on the right-hand side of eq. (34) is negligibly
small as compared with those of the other terms. This means that the exciton-
phonon interaction has a little effect on refractive index and optical rotation.

As has been seen in egs. (25) and (26), Qp(g,») and @nlg,®) are expressed
in terms of G+ defined by eq. (36), Jolg) and Ji(g). In these expressions the roles
of fulg) and [i(g) are interchanged with each other in @plg, w) and @ulg, ) that
is, the anomalous dispersion relates to /fi(g) in the absorption of light and to Jo(gq)
in the optical rotation. When the effect of exciton-phonon interaction can be
neglected, ®&plg,w) has no anomalous dispersion, whereas @n{(¢,®) has the
anomalous dispersion, because the anomalous dispersion term arises from the first
order term of ¢, i.e. G_® in eq. (37).

By expanding the Green function of eq. (35) in a power series in Vi (&), we
have found a relation between refractive index and optical rotational angle as
expressed by eq. (39). Therefore, it has been seen that the optical rotation is in
close connection with the refractive index or the absorption of light. The constant
C in eq. (39) corresponds to the gyration constant or the rotatory parameter g
given by the classical phenomenological theory of optical rotation developed in
ref. 6.
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