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 Exciton-Phonon Interaction in Optical Rotation

                    Yuji KATO* and Toshihiko ANDO**

                  (Receivecl October 26, 1984)

    Effects ot exclton-phonon :,nteractl,on on optical rotation and refractive ].ndex of

 a polymer are investi.gated on the basis of the Frenkel exciton model. Excj.ton-

 phonon interaction has a 11ttle effect on optical rotation and refractlve lndex in

 counparison with that exerted by electron-electron interaction between monomers,

 as iar as the Frenkel exciton rrrodel is concerned. When exckon-phenon interaction

 is negligible and intermonomeric interaction is mttch less t:han exci'L'on energy, the

 optical rotatory dispersion ha$ the anomalous term; however, the anomalous dispersion

 disappears in the absorptien o{ lis.ht. A relation between rotational angle ancl

 refractiv'e index is derived.

                              R. Intr"ductiom

    One o'f the present authors (T. A.)i) developed the niicroscopic theory of

optical rotation on the basis of the linear response theory and applied it to a

long helical polymer by using tke Frenkel exciton model. In that theory, vibrations

of monomers are neglected, that is, the indirect intermonomeric interactlon

through phonons is neglected.

    In most oE tke theoretical investigations of opticai rotation, temperature-

dependent optical rotation formulae have been derived by the perturbation theory

through introducing the Boltzmann distribution over energy levels.2) As iR the

BCS theory of superconductivity, electron-electron interaction through phonons

may give rise to the teraperature dependence of optical rotation.

    In the preseRt paper, we investigate the effect of exciton-phonon interaction

on optical rotation and refractive index in a linear polymer.

    In sec. 2 we make the total Hamiitonian of the polymer on the basis of the

molecular exclton model by using the second quantizatien technique. In sec. 3

formuiae for optical rotation and refractive index are derived ln terms of response

function as the comrnutator of excltoR annihilation and creation operators. In sec.

  * l}'rofessor, Institute of Physics, I?aculty of llngineering, Shinshu Universlty,

Vtiakasato, Nagano-shi 380.

 *'S Professor, Department of Matherr}atics and Physics, Faculty of Science and Tech-
nology, Kinlti University, Higashi-Osaka, Osal<a 577.



 2 Y. KATo and T. ANDo
 4 we obtain response functions by the Green function method. It has been proved

 that exciton-phonon interaction has a llttle effect on optical rotation and refractlve

 index as far as the Frenkel exciton model is concerned. We have found that

 rotational angle is close!y related to refractive index. Section 5 is devoted to

 discussion.

                              2. llamiltonian

    The system under consideration ls a polymer composed of similar monomers.

 The total Hamiltonian M of the system is expressed as

      rw = 121F,Ipan+'llH¥, :ll, I, ]E;/]¥, Vnm(rin-rb,t)+¥, :ll,I], ¥. v(rinwR,n), (i)

                       (1･t w/- 711) CnS?n)

where ri. is the co-ordinate of the ith electron in the nth monomer in the polymer,

R. the co-ordinate of the centre of the mth monomer (for exampie, that of the

nucleus of the mth monomer>, M,t the Hamiltonian of the nth isoiated monomer,

 Jtl,.(ri,,-rj･m) the interaction betweeR the ith electroR ln the nth monomer and

the tith electron in the mth monomer and v(rin-R,n) is the interaction l)etween

the ith electron ln the nth monomer and the nucleus of the mth moRomer.

    In order to derive phonons, taking an average over the positions of electrons

in intermoBomeric interaction Vn"t, we obtain

         YnmcrPcr'P'(R;･: - Rnt) =j'drinSdrim gna*<rin>gmB"(ri'tn)Vnm(ri,t rm ry"t>

                                              ×. 90na'(rin)go"tp' (ri'm), (2)

where gn.<ri,,) is the cr-state function of the ith electron iR the nth monomer.

We consider the linear polymer, composed of N similar monomers spaced a

distaRce d apart on the z-axis, and sma!1 vibrations of monomers along the z-axis.

Let us define a displacement ntn as the dispiacemeltt of the nth monomer from its

equllibrlum position RnO, that is, R,t= R,te+ bln, and then V..,aPcr'B' may be

expanded as a power series in displacement un around the equilibrium position

R.e as follows:

         VninaPa'P'(Rn - Rjn)=: VnmaPa'P'(RnO - RmO)

                           rr{- Jll.( 02V6niit,",ga'P' ) (u.- zt.,)2+ ････ <3)

                                            o

   We can derlve phonons from the harmonic term in eq. (3> and the klnetic

energy part of .Si?". iR eq, (1) by the operator technique. Introducing a Fourier
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transformation to the following set of new operators, derived from operators ztn(t)

and Pn(t), the momentum of the nth monomer,

            uk(t) ==viigi]:i,]eik'td"n(t) l ( k=: ]jlll'iim ), (4)

            Pk(t) = vll7gi¥, e-ih'i`<p.(t) i XM == O,1,2･''', N-lf

one may diagonalize the Hamiltonian of phonoRs in the form

               xp == 2ilizi ]2i]plt'l'pk -t- llil[ :i,;(e)(k))2ule-i-uk, (s)

where M denotes the mass of the monomer and

            M(.(le))2 =v(o)-v(le) 1
            nv"(le)=,il#m-eeik(n-m)d]i]i}];,];l;,](62V6nin:gcr'P'), l' (6)

Let us define the followlng annihllation and creation operators for phonons:3)

                  bfe =v2Min.ut)(Ple - iuao(k>Uk'i') 1

                                                . (7)                  bk'i-= ,/2xlifi.(le)<Ple'i'H- iMb)(h)Ule) ,i'

Equation (5) can be expressed, by use of eq. (7), as

                     cs}f"p ==il,l] fite(fe) (blei-ble a- -ili-). (s)

It is verified by using the commutation relations for u. and P. that the operators

bfe and bk'I" satisfy the followiRg commutatioR relations3)

             [bk, ble:i']==Skfe･, [bk, bfe･]==O, [bleS', bk･'l']=o. (g)

   The last term in eq. (1) gives rise to exciton-phonon interaction. If we expand

v(rin-Rm) in a power series in u,., we find that

               v(rin - Rm)= v(ri" nv R,nO)-(o6RV.,) oum +'", (10>

aRd the electron-phonon interactioR is obtained from the secoBd term on the

right-hand side of eq. (10) in the form
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         orei-p == ¥l:i lill,] van ' (le) vt+- ;, e" {le 'id an.'i- an.･ (bk'i' - b-k) , <n)

where ancr and a,,tii- are the aianihilation and the creation operator for the ct-state

electroR in the nth monomer, respectively, and

            vcrcr'(k)="' -l･irmVIIIII]liijl;-,(,nd) .;,.eife(""'")d

                    ×.idringncr':`(ri">(rm l)(66i.),gna'(rtn)･ (12)

We investigate the effect of phonon on optical rotation by making use of the

Frenkei exciton model of polymer. To deriving exciton-phonon interactioR, it is

convenient to make a Fourier transform

                              1                      Bkf == vl7<7 ¥, e-`k"dB.f

                                            , (l,3)
                     Bkf'i' "= ,v,tili; ;, e'fe"dB.ft

                 Twhere B"f and B.il' are the annihilation and the creation operator for the exciton

                                                             Tat the nth monomer and of the fth levei, respectively, i.e. Bnf=:aneTanf and

Bnf'fr tr-anf'l'ano.4) Thus, the exciton-phonoB interaction is given by

               ree"p == XZ vf(le)(B-kf'l- + Bfef) (bfe'l' - b"le) (14)
                       .f' k

                . .r.with the commutation relations for Bkf and Bkfi

                 T --       [Bkf, Bfetf･1ny]=Ofek･o"ff･, [Bfef, Bkif･]==O, [BkfT, Bk･f;i"]::::O, (15)

where vf(fe> == vfO(k) with superscript O denoting the grouRd state of electron.

   By making use of eq. (13> the Hamiltonian including no phoRon part is ex-

pressed in terms of Bkf and Bkir by second quantization. i)

   FiRally, the total Hamiltonian of the polymer becomes

   ew == [Eg + ;l]¥, dfBkf`i'Bkf {--ll-li]¥Vf(k)(B..kf'i- rrY Blef)(Bfef'k-B-ltf)]

                     + l;;i fitu(fe> (bk'l'bk + ill-)

                     + IZiX vf(le) (B vekf'l- + B,f) (bh'l' - bH,) (16)
                        f IL'
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under tke conditions <Bhii'Bkf><1 and ]EIBkfi4Bfef=:1, where Eg is

                                  f
state energy, Af the eigen energy of the fLstate of monomer and Yf(fe)

transform of the interaction between rnonomersit4) given by

            Vf(le) == X eik("'"M)dV..f

                  lt-m
                                                       .
            V,,",f Eii .ldi'fdr'g.f'i:(r)g.,e*<i">Il(r - i")g.o(r)g,.f(i")

        5

the ground

the Fourier

(17)

                   3. Formulatien of Optical Rotation

   Maxwell's equatioRs give the basic equation for optical rotation

             q±2- qo2+it,- [(?D<q±, ca) F iQN(q±, tu)] == O, (18)

where qo ::= tolc and the upper (lower) sign corresponds to left <righO circularly

polarized light. If we take the direction of propagation of an incident monochro-

matic iight of frequency tu to be para!!el to the 2-axis, correlation functions

QD(q,to> and QN(q,o) are expressed in terms of the spatial Fourier transform

J'(a,t) of the electric curreiit density operator in the formi}5)

                     oo B       (?D<q, a)) == 2trW fH..dte-ico'lf(t)f,d2<ix<q,t)7'x<- q,ifi2)

                               +]'.(q, t)d,(- q, lff2)> (19)

and

       QN(q, e,) = -llt/ll`" Slr.dte"icato(t)I,"d2<7'.(q,t)i'.(- q,im)

                              -1', (q, t)d.(- q, iff2)>, (20)

where Y denotes the volume of the system, 0(t> the step function, P==(leT>-i and

the triangular bracket represents the canonical average, that is,

                             Tr[exp(- P.sig")･･･]
                      <'''>= Tr[exp(-Por>] '

   When one expands (?D(q,to) and QN(q,a}) as a power series in the wave-number

q of light up to the first order in q into
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                  (g.(q,bl> :=-:- QD(O)<O,q)+q(?D(i)(O, a,) I (21)

                   QN(q, to) =-･ QN(O)(O, tu)+ qQN(i)(O, o> J

and when one defines refractive indices n. and n-, respectiveiy, for Ieft and right

circularly polarized lights and the rotational angle ¢ of the plane of polarization

per unit path iength" by

                       .. q-+q. nn+n.
                       n='- 2 =:qo 2

                                               , (22)
                               q- - q+                           of :r-- 2 un

one obtains relations between 7Nz and ip as follows:

                   it2 - ip2 :== q,2 - c-1, QD(O)(O, to) ]

                     O==- 2i2 QN(i)(o,o) Ik' (23)

where use has been made of QD(i)(e,tu)=: (?N(O)(O,tu) := O. It is shown that refractive

index relates closely to rotational angle.

   Let us suppose that the polymer has a pitch angle g between adjacent mono-

mers. The Fourier transform of the electric current density operator is represented

in terms of B"f and Bnft, under the assumption-vrithout loss of generality-that

the wave fuRction is real, in the form

                         N-1
               .i(q,t) == iX X eiq"dT"･,J(q)(B.f'i'(t)-B.f(t)) (24)
                       f n=-O

with

                        Tn:-.[g,P:ii.9 -i,'2::]

                                  jJ
and

                            J<q) = (.J(O)(q))fe,

where (J(O)(q))fo is the matrix element of the eiectric current density operator

J(e)<q) for the zeroth monomer.

 :ts The sense of rotation is defined so that positive ¢ corresponds to counterclockwise
rotation as seen by an observer against the z-direction.
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   Let us consider only the lowest exciton for tke sake of simplicity. Substitution

of eq. (24) into eqs. (19) and (20) leads to

            QD(q, (ti)== ww nvMAftu (JT6(q)[G,.s,f(o) -- G,-sf(w)]

                    -ili (q) [G,.mop,.f(to)- G,-sf <O)]] (25)

and

            QN(q, ct)) == H rrvMJf`" (A(q)[G..f/f(ct,) +G,-{sf(Q))]

                    +i16(q)[G,.sf(`ti)-G.-sf(a,)]1, <26)

where

                  2,[X ft[lik[i ll±ft(,ll2[: li ) (27)

and

         Glef(w)== ./3,-Ioeik("-"')dfoo dte'i"'tio(t)

                             Hoo

                     ×<[B"fi'(t)+Bnf(t), Bmf'i'(O)-Bmf(O>]>･ (28)

                         4. Green Funetiens

   Refractive index and optical rotation can be expressed by use of Green

functions

                             oo                     Gfef<re) ==f dte"ito`Gkf.(t) (29)

                             -co

with

          Gfef.(t)==iO(t)<[Bltft(t>±B-kf(t), B-feA"<O)-Bkf(O)]>, (3o)

as kas been seen in eqs. (19), (20), (21), (23), (25) and (26). In course of calculating

Green functions, one obtains an equation

                    ff dGfef.(t)
                    T･ dt := 2o"(t)-Y AfGfef-(t> (31)
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by differentiating eq. (30) with respect to time t. If one takes the time derivative

of Gkf-(t) on the right-hand side of eq. <31) in order to obtain Gkf.(t), one will

have a Green function fYkfm(t) of Rew type

            El}7kf.(t)=: -2- 0(t)<[blei'(t)± b-k(t), B-left(O)- Bkf(O)]>, (32>

which immediately allows 9lef.(t) to be defined. Similarly, if oRe takes a series

of time derivatives for these Green functions, oRe will obtain coupled equations

of Green functions of various types. By solving these simultaneous equations for

Gkf±(t) and EYfef±(t), one can obtain

                                     2ffen

   Under the

          Gkf<to)

Since vf(k><fitu, the

much less than those

little effect of the

rotation as far as

   When one
reduces to

which has been '

represented by eqs.

functions up to the

Since k(q> in eqs.

equations has no

Gkf(tu)

conditioR

(fito)2- df [i]6f + 2Vf(fe)) -

fibl(k)<fitu, eq. (33)

              2fiw

   4(he(le))(vf(k))2

   <fiw)2 - (fiw(k))2

may be rewritten

].

into

     (fi(v)2 - tif(Af + 2yf(k)>+ 4df(fi(o(fe)) ( V2ijk) )2

     value of the third term iR the denominator

      of the first and secoRd terms. This states

    exciton-phonon interaction on refractive in

  the Frenkel exciton model is concerned.

neglects the exciton-phonon interaction, the Green function

                       2fito
      Glef(to):::: [(fi.)2wwAf2]-2AfVf(le) '

  given in ref. I. In order to calculate (?D(q,to>

    (25) and (26>, let us clefine the sum and remainder

    first order in q as follows:

   G' =' G,--sf(O> ± G,-sf(to) == G±(O){- qG±(i).

     (25) and (26) has no linear term in q and

  constant term in q, QD(q,to) and (?N(q,to> reduce

    (?D<q, to) = AE16(e)G.(o)]

    QN(q, bl) == Aq[1i(i)G.(O) + i16(O)Gm(i)1

                                  rf           nswbl,
    A=:-            VAf

         (33)

. <34)

  in eq. (34) is

tkat there is a

dex and optical

        Gfef(bl>

         (35)

   and (?N(q,bl)

      of Green

         (36)

  A(q> in those

    to

         (37)
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where 16(O) = lb(O) and 1i(q>== ql,('). Consequently, one may say that (?D(q,o)

is independent of q and that QN(q,(ti) is proportional to q.

   Furthermore, when we expand the Green function (35) in a power series in

Vf(le) as in ref. I, then usiRg eq. (17) and the expression

                         1

          L(va

                          1
                  rv                     [(fire)2 - tif2]2

we find out an expression

                            6G.(e)
                            6(gfd)

By making use of this equation one

index and optical rotation

        '
                -- 6n
                71                  6(g/d)

where

                                .                         C..--L
                                2

This shows a close relationship

cD)2- Af2 - 2Af X ei("-M)9V..,f]2

            Vt-IJI

a-

4Af £ ei("r"')9Yfwnf

  ll.-iJl
(fi(e)2 - Af2

                                  =G-(i). (38)

                               can derive the relation between refractive

                                      6ip
                       + C(it2 - qo2)= ip                                          +Cip2-ip, (39)                                     6(g!d>

                                  1,(i)
                                      . (40)                                  k(o)

                          between refractive iRdex and optical rotation.

                       5. Discussion and Summary

   X?Ve have investigated the exciton-phonon interaction of linear polymer on

the basis of the molecular exciton theory of second quai}tization. The total

Hamiitonian of the polymer in terms of exciton aRnihilation and creation operators

is written as eq. <16), aRd then it is shown that the Hamiltonian satisfies the

condition of excitoR momentum conservation.

   The refrac£ive index and the optical rotational angle are expressed in terms

of response functions, which are shown in eqs. <23), (25), (26) and (28). In order

to obtain Green function (i.e. response function) we have had a set of four

equations for Gfef±(t) and El 'kf±(t), and then we have obtained the exact soiutions

of these four simultaReous equations with a finite chain of coupled eqttations,

without using the decoupiing method. It should be noted that one of tltese exact

so!utions, given by eq. <33), could be obtained because of the relevant Hamiltonian
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in the form of eq. (16) on the basis of the FreRkel exciton model.

   In the optical frequency region it may be satisfied that fito(k)<fito, hence the

Green function may be al}owed to reduce to the form of eq. (34). Since the

exciton-phonon interaction energy is much less than photon energy, the value of

the third term in the denominator on the right-hand side of eq. (34) is negligibly

small as compared with those of the other terms. Tkis means that the exciton-

phonon interaction has a littie effect on refractive index and optical rotatioR.

   As has been seen in eqs. (25) and (26), QD(q,bl) and QN(q,to> are expressed

in terms of G± defined by eq. (36), 16(q) and 11(q>. In these expressions the roles

of .lb(q) aRd 11(q> are interchanged with each other in (?D(q,to) and QN(q,w) that

is, the anomalous dispersion relates to 1i(q) in the absorption of light and to k<q>

iR the optical rotation. WheR the effect of exciton-phonon interaction caR be

negiected, (?D(q,w) kas no aRomalous dispersioR, whereas QN(q,to) has the

anomalous dispersion, because the anomalous dispersion term arises from the first

order term of q, i.e. G-(i) in eq. (37).

   By expanding the Green function of eq. (35> in a power series in Yf(fe), we

have fottnd a relatioR between refractive index and optical rotational angle as

expressed by eq. (39). Therefore, it kas been seen that the opticai rotation is in

ciose connection with the refractive index or the absorption of light. The constant

C in eq. (39) corresponds to the gyration constant or the rotatory parameter gb

given by the classical phenomenological theory of optical rotation developed in

ref. 6.
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