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Effect of a Static Magnetic Field
on Optical Rotatory Dispersion

Yuji KaTo*
(Received May 28, 1984)

The expression for the optical rotatory dispersion of optically active isotropic
systems in the presence of a static magnetic field is studied on the basis of the
classical theory of harmonic oscillators. A magnetic optical rotatory dispersion term
and a product of dispersion terms for the magnetic optical activity (the Faraday
effect) and the natural optical activity are obtained as the effects of the static mag-
netic field. An equation similar to the Becquerel formula also is derived by use of

the oscillator model.

1. Introduction

A number of theoretical investigations of natural optical activity) and the
Faraday effect®3 have been made by using various methods. Since these two
phenomena are similar, they can be discussed from the same theoretical point of
view. 3

In classical treatments of the harmonic oscillator model, the index of refrac-
tion and the Faraday rotation for optically inactive substances are explained in
terms of familiar expressions for optical dispersion. 45 For optically active sub-
stances one needs to introduce a perturbing force giving rise to the natural optical
activity into the equation of motion for the oscillator in the classical theory.56
The force is induced by the electromagnetic field of incident light and is defined
with a rotatory parameter.

In the present paper, the optical rotatory dispersion of optically active sub-
stances in the presence of a static magnetic field is studied on the basis of the
classical theory of dispersion using a non-interacting oscillator model. The effect
of the external magnetic field on the natural optical rotation is derived and the
relation” between the optical rotation and the index of refraction in the absence
of external magnetic field is discussed.
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2. Formulation

A system consisting of isotropically-bound charged particles is under consid-
eration. As a model of an optically active molecule we adopt a charged harmon-
ic oscillator, which receives the force that gives rise to the natural optical
activity in the presence of electromagnetic field of incident light. The calculation
is made in a similar fashion to the classical theory of dispersion for the index of
refraction and the Faraday effect.4®

In order to study the effect of a static uniform magnetic field on the natural
optical rotatory dispersion, we assume a perturbing force which gives rise to the
natural optical rotation in the system and is linearly proportional to rotE where
E is the oscillating electric field strength of the electromagnetic field. 56 We take
the origin of our frame of reference at the equilibrium position of the charged
particle. The equation of motion of the charged particle with mass m and electric
charge e in the presence of a static uniform magnetic field of strength H, and an
electromagnetic field of strength E is of the following form:

dzx dx e dx

W ——— = —JH®X — M} —— -+ 288, 1ot & +-——r

dr d A TR @

where x is the displacement from the equilibrium position, @, the natural vibra-
tional angular frequency of the oscillator, g, a rotatory parameter for the natural
optical activity and ¢ is the light velocity in the vacuum, and here we introduce
a damping force with damping constant 7 linearly proportional to the velocity of
the particle. The fourth term on the right-hand side of Eq. (1) gives the Lorentz
force acting on the particle in the static magnetic field of strength H,, where the
magnitude of H, is much greater than the amplitude of the magnetic field strength
H of the electromagnetic field. The last term of Eq. (1) represents the force due
to the electromagnetic field. The force due to the magnetic field of strength H is

S e (5« ),

here neglected because of the magnitude of the order of =

dt
where E is the electric field strength of the electromagnetic field. The electric

field due to the polarization of the other particles in the system is also neglected,
that is, the non-interacting particles are to be under consideration.
If the electric field strength E of an electromagnetic wave is periodic and

given by
E:Eoexp[ia)<t - %s-rﬂ, (2)

the steady state solution to Eq. (1) has the following form with the same fre-
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(&)

quency o:
x = xoelvt, (3)

where ® is the angular frequency of the incident light, s the unit vector in the
direction of propagation of the light and % is the index of refraction for the
system of non-interacting isotropic oscillators, Substitution of the forms given in
Egs. (2) and (3) into Eq. (1) yields

. . n
— M@ = — Myt X — MyiwX + 2G| —lo— 8§ X E
s ¢
e .
~|-~? iwx X Hy + eE. (4)

Let us consider a linearly polarized light propagating in the z direction through
the system and a static magnetic field of strength H, pointing in the direction
of z axis; that is, both the directions of the propagating light and the static
magnetic field are the same along the z axis. Then, Eq. (4) becomes the set of

simultaneous equations

. e . e . 28w
(w2 — @ -+ irw)x — poo iwy H, 277;(Ex 4 ‘g;O' nEy)
. e . e . 28
(00 — o + ira)y 4~ —ioxHy :E(Ey - z-—f-’c"i Ex> , )
(w® — @* + i70)z :ﬁEz
m

where %, ¥, z and E,, E,, E. are the orthogonal components of x and E, re-
spectively.

Equation (5) can be solved by making use of the complex combinations of
these components, which are defined by

Exr=xkiy ©)
and
Er = E; +1iE,, ()
where the upper (lower) sign corresponds to the propagation along z of the left

(right) circularly polarized light. One may obtain new equations for £+ by use of
Eq. (6) and find out their solutions given by

2
1+ 8y,

‘f&-*e

T wg? — o 4+ w(—20p - i7) E.
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where w;, is the Larmor frequency, i.e.,
eHo

=0 9
“rL 2me ©)

If there are non-interacting localized particles in the system, one obtains
easily the electric polarization and the tensor of complex dielectric constant. Let
N be the number of particles per unit volume. If there is no polarization in the
absence of the electromagnetic wave, the polarization P is related to &,, &., z
and the orthogonal components of P are expressed as

Py= Nex= %Ne(& +e)

i (10)
Py = Ney = “’Z—Ne(& —£)
P, = Nez
Let
P,':chijEj (G, =2, 9, 2), (11)
J

where (o;;) is the polarizability tensor. Then, the dielectric constant tensor is given
by
&;j = 0ij + dneij (G, j=x, ¥, 2), (12)

where §;; is the Kronecker § symbol. Thus, the dielectric constant tensor is found
to be

€xx Exy 0']
<sij>:[~sxy a oJ, (13a)
[_ 0 0 &

where

Zgoa)
¢
(e — @ + fyw)? — 4wy *?

@ — @ + fyw + 1+ 20 @

Erx=1-F wp?
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1
p— . s
Ezz=1+ wp oF = T ire (13b)
—?—%’L%- (w? — @* + iyw) + 2wLw
£ =i o T
zy = o (we® — @? + 1y0)? — 4o 20?
with
T 2
02 = 4zNe , (14)
m

wp being plasma frequency.
Expressions for the relation between the index of refraction and the dielectric
constant are given by Maxwell’s equations expressed in terms of E as®

(xx — W) Ey + ExyEy =0
g By (Egy — ) Ey = , (15)
E,.E, =0

where use has been made of Egs. (2) and (13a) and the linearly polarized light

propagating in the z direction is under consideration. The set of homogeneous
equations (15) has solutions only if

ni? = Exx T+ Z.“‘:.z:ya (16)

and the corresponding solutions to the equations are E,/E.= TFi{ and E.=0.
Equation (16) with the upper signs corresponds to the left and that with the lower
to the right circularly polarized light.

At freguencies where there is little absorption, one may obtain equatins for
n+ by substituting Eq. (13b) into Eq. (16) as

_ Sow wp? ( wp* )
EL e —{1 - o
Mt o 2 ¢ wl?— *F 2010 F we® — 0 F 2op0 0, (a7

where use has been made of y = 0. Then, the two indices of refraction become

2 & 2
2 Wp
@p
He =4l 14— 2 T - + 2 2 T ¢
et — w* F ZoLw W — @° F 20w

o Ho»
- ¢ (18)
T W — o F 200

ap

The rotational angle ¢ of the plane of polarization per unit path length is
represented in terms of the difference n_ —n, between the indices of refraction of
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the right and the left circularly polarized light as

® n.—n,

¢ 2 (19)

$ =
where the sense of the rotation is defined so that positive ¢ corresponds to
counterclockwise rotation as seen by an observer against the z direction.
For the low magnetic intensity H,, we consider the expression ¢ containing
the terms up to the first order in H,. With the assumption

efhy e, (20)
me
one obtains the relation
1 . 1 | 2000 | )
@ — @ F 20L0 @ — w2<1 T W — wt ) (1

In order to have the expression for ¢, it is convenient to define the following

quantities:
G goa)
¢ (22)
Qe =02TF 2L
where
2 = @y — o
}. (23)
L = WL
From Egs. (18) one can obtain the quantity
1/1 1 s 171 1
no—mn, 1 @r 2(!2 Q>+(wPG) 2(9_2 .QZ)
2 21\/ _wp p2G \2 \/ Wp p°G 2}
WL 5 () g (5 )
1/ 1 1
= 2, I
oG 2(9_* p) (24)
and the mean » of n, and n.
. n.. —1' 7’1/+ \/ C!)p 2G 2 \/ (I)p2 (!)sz )2:1
P L { 1+ (.,..__Q )y _Q++( o
1 1
—wp?G e — 25
@p < 0 Q+) (25)
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As far as one investigates the external magnetic field effect up to the first order
in Hy, on ¢, the following approximation may be admitted:

i( L, )N 1

2\ 0. 0. 0

1,1 1 2L )
~2—<.J_~.Q+)%w & . (26)
171 1 )N 4L

o 03~

This means that the numerator of the first term on the right-hand side of Eq.
(24) is linearly proportional to H,, so that its denominator can be replaced by n
in the absence of H,, leading to the following equation:

(27)

wp’Gs )2 .

2
o) = n(Ho = 0) =1+ 22 (22

By taking into account Egs. (19), (24), (26) and (27) one can write the ex-
pression for ¢ as follows:
eH, wp* ? wp® @

T ome cng(@) (0o — @) 0 ¢ @ — ot

eH, o2 2wp* 1)
2me =% () (w2 — 0?)¥’

¢:

4

(28)

where use has been made of Egs. (22) and (23). The first and the second term on
the right-hand side of Eq. (28) show the magnetic and the natural optical rotatory
dispersion, respectively, and the parameter g, corresponds to the rotational
strength. The third term gives rise to the effect of interference between the
magnetic and the natural optical activity, and this term may be rewritten in
the form

eH, wp?® o® P wp* ?
— . Do
2me cnglw) {0 — w?)? ¢t w — &

¢'= - 28, (29)
This expression is composed of a product of dispersion terms due to the magnetic
and the natural optical activity.

Since the first term on the right-hand side of Eq. (28) gives the dispersion
of the Faraday effect, one can study the Faraday effect in optically active sub-
stances and the relation between the magnetic and the natural optical activity.

Let us consider a system which is weakly optically active, namely for which
4z Net
m
refraction in the absence of H, in Eq. (27) may be approximated to

Zo=0. In the low frequency region w,?®— o*>

9o, the index #n4(w) of
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2
nolw) = |1+ 21+ L2127 6o, (30)
" 2 2 1+ wp®
2

This formula contains the zeroth and the second order term in g. Furthermore,

.. 4z Ne? .
outside the absorption region, thatis, if w® — o®>» Lm , the mean index #n(w)

of refraction reduces to

31)

2 Ne? 1
o) = 1 _{_ﬂ—e_
m

>
wy? — @?

and is independent of g,. As for the rotational angle under these conditions, the
rotational angle ¢ will be given by a linear combination of the magnetic and the
natural optical rotatory power as

eH, 1 4rNe? w?

— 32
2me cno(w) m (@2 — w?)? (82)

op =

and

1 4z Ne? @?
c? m wl — o?’

(33)

N = —&

because ¢r is due to the zeroth order in g, and ¢n due to the first order. Then,
let-us consider only the terms up to the first order in g;, and with the assump-
tion that #ny(w) is nearly unity, combination of Egs. (31), (32) and (33) leads to
eHo ano(w) 2
0—20P

wz
 2me? do 8oz [70(w) — 11, (34)

¢ = ¢rp + ¢on =

where ny(w) =1 in Eq. (32) has been used. We have here obtained an expression
similar to the one originated by Becquerel,” the latter of which gives the relation
between the optical rotatory power of weakly optically active substances in the
presence of an external static magnetic field and the index of refraction in the
absence of external magnetic field.

3. Summary and Discussion

We have studied the optical rotatory dispersion of optically active substances
in the presence of an external static magnetic field on the basis of the classical
theory on the Faraday effect by use of the non-interacting harmonic oscillator
model. As the effect of the static magnetic field on the optical rotatory power,
we have obtained an expression containing a term for the magnetic optical rota-
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tory dispersion (i.e., the dispersion due to the Faraday effect) and a dispersion
term of product of the magnetic and the natural rotatory dispersion. The former
term specified by Eq. (32) is nearly independent of the natural optical activity in
substances, whereas the latter given by Eq. (29) is related closely to it, and is
derived from the third term in the square root in Eq. (18).

4rNe? o .
r e g, the second term in the [ ] brackets

Under the condition @y — o>

in Eq. (30) may be neglected, so that #y(w)’s in the first and the third term on
the right-hand side of Eq. (28) have no g,. Therefore, one may have the rotational
angle ¢ consisting of the first term without g;, the second term with g, and the
third term with g% in Eq. (28). Consequently, the rotational angle due to the
interference of the magnetic and the natural optical activity has been given only
by the last term in Eq. (28).

This term, as shown by Eq. (29), is expressed in terms of a product of the
dispersion formulae for the magnetic and the natural optical activity, but is of
the second order in g,. The magnetic optical rotation is governed only by prop-
erties of substances, whereas the natural optical rotation is governed by both
properties of substances and the electromagnetic field of the light applied to sub-
stances. For these reasons the rotational angle ¢’ given by Eq. (29) appears. Since
the natural optical rotation is caused by the first order spatial dispersion in the
wave number ¢ of light and the magnetic optical rotation by the zeroth order in
q,® one may have a conclusion that the rotation ¢’ specified by Eq. (29) is caused
by the second order in ¢ of light.

4 Ne?

Furthermore, under the condition w,® — w® > and with up to the first

order term of g, under consideration, the relation between the rotational angle ¢
and the index ny(w) of refraction in the absence of static magnetic field has been
derived in the form of Eq. (34). This equation is in close connection with the
Becquerel formula. The last term ¢n in Eq. (34), however, retains the parameter
Zo for natural optical activity, since #no{w) has not the first order term of g, but
only the zeroth order one.
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