差動歯車機構の軸トルク計算式

(第1報 2K—H型差動歯車機構)

両角 宗晴* 岸 佐年** (昭和58年10月4日受理)

Torque Distribution in Differential Gears (1st Report, 2K-H Type Differential Gears)

Muneharu Morozumi and Satoshi Kishi

2K-H type Differential gears were subjected to an analysis with a view to deriving formulas for the torque distribution on shafts. The analysis has revealed that the torque formulas are derivable by using the efficiency formula for the differential gear. All possible 2K-H type differential gears were worked out, and a tabulation has been made of the results obtained. The torque formulas obtained require as parameters only two quantities, the number of teeth and the efficiency of stationary gear trains. The results tabulated can be utilized safely without requiring any understanding of the underlying theory.

1 緒 言

遊星歯車機構や差動歯車機構を設計する際には、あらかじめそれら機構の理論効率や、三本の基本軸と中間軸とに作用するトルクの値を理論計算により確かめておかなければならない。 2K-H型遊星歯車機構の軸トルクの理論計算式は既に著者等により求められているが 11 、 2K-H型差動歯車機構の軸トルクの理論計算式については未だ研究が成されていない。

そこで本研究では、既に求められている 2K—H 型差動歯車機構の理論効率計算式²⁾を用いて、この機構の三本の基本軸と中間軸とに作用するトルクの理論計算式を誘導した。そして 2K—H 型動差歯車機構の代表的な四つの型式について各軸トルクの理論計算式を求め、実際にこれら理論計算式を使用する際にその適用を誤る心配のない便利な型式別一覧表を作成した。

2 2K-H型差動歯車機構の軸トルク計算式の誘導

2.1 型式 I の差動歯車機構

いま図1に示すごとき2K-H型差動歯車機構において、キャリヤSを時計方向(正方

^{*} 精密工学教室 教授

^{**} 長野工業高等専門学校機械工学科 助手

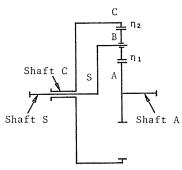


Fig. 1 I-Type Differential Gear

向とする)に角速度 ω_S および太陽外歯車Aを反時計方向に角速度 ω_A (<0) で駆動し、太陽内歯車 C を時計方向に角速度 ω_C で従動させる場合を考える。この場合、各軸の角速度の関係式および効率 γ を求める理論計算式が既に著者の一人により求められている 20 .

$$\omega_C = \frac{(1+i_0)\omega_S - \omega_A}{i_0},\tag{1}$$

$$\eta = \frac{\eta_o \left\{ (1 + i_o) \, \omega_S - \omega_A \right\}}{(1 + \eta_o i_o) \, \omega_S - \omega_A}. \tag{2}$$

ただし

$$i_0 = \frac{Z_C}{Z_A} > 1, \tag{3}$$

$$\eta_o = \eta_1 \cdot \eta_2. \tag{4}$$

ここで、 Z_A 、 Z_C は歯車AおよびCの歯数を示す。なお η_1 と η_2 はキャリヤSを固定した時の歯車AとB、歯車BとCとのかみ合い効率であり、従って η_3 は基準効率である。そして遊星ピニオンBに対する力の釣り合いから、これら力の大きさと方向とが定まり、従って各々の力による機構中心まわりのトルクの大きさと方向とが定まる。また駆動軸では

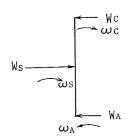


Fig.2 Forces and Angular Velocities in Planet Gear

トルクのかかる方向と回転方向とが同方向であり、従動軸ではトルクのかかる方向と回転方向とが反対方向であることより、各歯車およびキャリヤの回転方向が定まる。そしてこれをいま考察している場合に当てはめると図2に示すごとくになる。ここで W_A , W_C , W_S は歯車A, Cおよびキャリヤ Sから遊星ピニオンBに作用する力を示す。そして図2より各々の軸トルクの釣り合い方程式として

$$M_S - M_A - M_C = 0 (5)$$

velocities in Planet Gear を得る。ただし M_A , M_C , M_S はそれぞれ軸A,CおよびSに作用するトルクを示す。

いま,この場合の差動歯車機構の効率 η を

$$\eta = rac{M_C \omega_C}{M_S \omega_S - M_A \omega_A}$$

とおく, これに式(1), (2)および式(5)から得られる

$$M_C = M_S - M_A \tag{6}$$

を代入して

$$\frac{\eta_o \{ (1+i_o)\omega_S - \omega_A \}}{(1+\eta_o i_o)\omega_S - \omega_A} = \frac{(M_S - M_A)\frac{(1+i_o)\omega_S - \omega_A}{i_o}}{M_S \omega_S - M_A \omega_A}$$

を得, これより

$$M_A = \frac{1}{1 + \eta_{oio}} M_S \tag{7}$$

を得る.次にこの結果を式(6)に代入して

$$M_{\rm C} = M_{\rm S} - \frac{1}{1 + \eta_{oio}} M_{\rm S}$$

$$= \frac{\eta_{oio}}{1 + \eta_{oio}} M_{\rm S}$$
(8)

を得る。以上の式(7),(8)を用いることにより駆動軸Sに作用するトルク M_S が既知の場合に、駆動軸A,従動軸Cに作用するトルクを求めることができる。

同様な方法により、図1に示すごとき 2K-H 型差動歯車機構に対して〔A駆動、CおよびS従動〕の場合、[CおよびS駆動、A従動〕の場合、[C駆動、AおよびS従動〕の場合、[AおよびC駆動、S從動〕の場合、[S駆動、AおよびC從動〕の場合に各軸に作用するトルクの理論計算式を求め、表 1に一覧表として示す。

ところで,この 2K-H 型差動歯車機構において, $\eta_0=\eta_1$ ・ $\eta_2=1$ と考えると,各軸に作用するトルクを求める理論計算式は,上記の六つの場合とも同一となることがわかり,これを表 1 の最下段に示す.

また表 1 から,この 2 K - H 型差動歯車機構の理論効率を計算するためには,三つの基本軸の角速度の値を定めなければならないことがわかる.そして一つの軸を駆動して他の二つの軸が被動されるいわゆる開路式遊星歯車装置では,これら基本軸の角速度の値は機構に作用する原動機と負荷との速度トルク特性によって決るのであり,一義的には決らないことに注意する必要がある30.

2.2 型式Ⅱの差動歯車機構

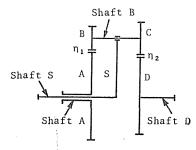
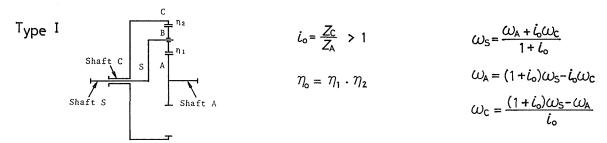



Fig. 3 II-Type Differential Gear

次に図 3 に示すごとき 2 K- H 型差動歯車機構において,太陽外歯車A を角速度 ω_A (>0) および太陽外歯車D を角速度 ω_D (<0) で駆動し,キャリヤS を角速度 ω_S (>0) で従動させる場合を考える。ただし歯車A, B, C, D の歯数を Z_A , Z_B , Z_C , Z_D で表わし,この場合は $Z_A>Z_D$ (Z_A $Z_C>Z_BZ_D$) とする。いま各軸の角速度を求める重ね合わせ法として表 2 が得られる。

Table 1 Angular Velocity, Efficiency, and Torque Formulas for 2K-H Type Differential Gears

	Driver	Follower	Direction of rotation	Efficiency	Torque on A	Torque on C	Torque on S
	A,S	С	Shaft A only: Opposite direction	$\eta = \frac{\eta_{o}\{(1+i_{o})\omega_{S}-\omega_{A}\}}{(1+\eta_{i_{o}})\omega_{S}-\omega_{A}}$	M - 1 M	$M_{\rm C} = \frac{\eta_{\rm o} \dot{\iota}_{\rm o}}{1 + \eta_{\rm o} \dot{\iota}_{\rm o}} M_{\rm S}$	A 4
	А	C,S	Shaft C only: Opposite direction	$\eta = \frac{(1 + \mathcal{N}_{i_0})\omega_s - \mathcal{N}_{i_0}\omega_c}{(1 + i_0)\omega_s - i_0\omega_c}$	1+766, 1×15	1+766 145	M_{S}
$\eta_{o} \neq 1$	c,s	Α	Shaft C only: Opposite direction	$\eta = \frac{\eta_0 \{(1+i_0)\omega_5 - i_0\omega_c\}}{(\eta_0 + i_0)\omega_5 - i_0\omega_c}$	M - 70 M	$M_{\rm C} = \frac{\dot{l}_{\rm o}}{\eta_{\rm o} + \dot{l}_{\rm o}} M_{\rm S}$	M _s
//0 - 1	С	A,S	Shaft A only: Opposite direction	$\eta = \frac{(\eta_0 + i_0)\omega_S - \eta_0 \omega_A}{(1 + i_0)\omega_S - \omega_A}$	$\eta_0 + i_0$	$\eta_{c} = \eta_{o} + i_{o} \eta_{s}$	IVIS
	A,C	S	All shafts: Same direction	$\eta = \frac{(\eta_0 + i_0)(1 + \eta_0 i_0)(\omega_0 + i_0\omega_0)}{(1 + i_0)((\eta_0 + i_0)(\omega_0 + i_0)(1 + \eta_0 i_0)\omega_0)}$	M ÷1_M	$M_{\rm C} = \frac{\dot{l}_{\rm o}}{1 + \dot{l}_{\rm o}} M_{\rm S}$	M _s
	S	A,C	All shafts: Same direction	7= 7 <u>(1+i)(1+76)(4+i64+i644)</u> (76+i2(1+76i)(44+i646)	1+ i ₀ 1 + i ₀ 1 + i ₀	$1+i_0$	MS
$\eta_{o} = 1$				$\eta = 1$	$M_{\rm A} = \frac{1}{1 + \dot{l}_{\rm o}} M_{\rm S}$	$M_{\rm C} = \frac{\dot{l}_{\rm o}}{1 + \dot{l}_{\rm o}} M_{\rm S}$	M _S

	A	В	C	D	S
Gear locked	ω_S	ω_S	ω_S	ω_S	ω_S
Arm fixed	$\omega_A - \omega_S$	$-(\omega_A-\omega_S)\frac{Z_A}{Z_B}$	$-(\omega_A-\omega_S)\frac{Z_A}{Z_B}$	$(\omega_A - \omega_S) \frac{Z_A}{Z_B} \cdot \frac{Z_C}{Z_D}$	0
Result	ω_A	$\omega_S - (\omega_A - \omega_S) \frac{Z_A}{Z_B}$	$\omega_S - (\omega_A - \omega_S) \frac{Z_A}{Z_B}$	$\omega_S + (\omega_A - \omega_S) \frac{Z_A Z_C}{Z_B Z_D}$	$\omega_{\mathcal{S}}$

Table 2 Solution by Tabulation

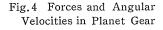
この表2より、各軸の角速度の関係式として

$$\omega_S = \frac{\omega_A - i_o \omega_D}{1 - i_o} \tag{9}$$

が得られ、またこの場合の効率を求める理論計算式が既に著者の一人により求められている²⁾.

$$\eta = \frac{(\gamma_o - i_o)(\omega_A - i_o\omega_D)}{(1 - i_o)(\gamma_o\omega_A - i_o\omega_D)} \tag{10}$$

ただし


$$0 < i_0 = \frac{Z_B Z_D}{Z_A Z_C} < 1, \tag{11}$$

$$\eta_o = \eta_1 \cdot \eta_2 \tag{12}$$

そしてこの場合、遊星ピニオンBとCとに作用する、歯車AとDおよびキャリヤSからの力 W_A 、 W_D 、 W_S と角速度の方向 ω_A 、 ω_D 、 ω_S の関係は、前述の場合と同様に考えると図4に示すごとくになる。この図4より軸A、D、Sに作用するトルク M_A 、 M_D 、 M_S の釣り合い方程式として

を得る. いまこの場合の差動歯車機構の効率 7 を

$$\eta = \frac{M_S \omega_S}{M_A \omega_A - M_D \omega_D}$$

とおく. これに式(9), (10), および式(13)から得られる

$$M_S = M_A - M_D \tag{14}$$

を代入して

$$\frac{(\eta_o-i_o)(\omega_A-i_o\omega_D)}{(1-i_o)(\eta_o\omega_A-i_o\omega_D)} = \frac{(M_A-M_D)\frac{\omega_A-i_o\omega_D}{1-i_o}}{M_A\omega_A-M_D\omega_D}$$

を得, これより

$$M_D = \frac{i_o}{\gamma_o} M_A \tag{15}$$

を得る. そしてこの結果を式(14)に代入して

$$M_S = M_A - \frac{i_o}{\eta_o} M_A = \frac{\eta_o - i_o}{\eta_o} M_A$$
 (16)

を得る。次に中間軸Bに作用するトルクについて考える。いま表 2において "合計" の欄に示した運動を行なっている機構全体に対し、キャリヤの回転と反対方向に角速度 $(-\omega_s)$ の回転を与えてキャリヤを固定した場合の運動が "キャリヤ固定" の欄に示してあり、これら "合計" の欄の運動と "キャリヤ固定" の欄の運動とは、いずれも各要素に作用する力も各要素間の相対運動も変りがないことは明らかである。そこで中間軸Bに作用するトルクについては "キャリヤ固定" の場合で考えると便利である。そして駆動軸ではトルクの作用する方向と軸の回転方向とが同方向、従動軸ではトルクの作用する方向と回転方向とが反対方向と考える。そこで式 (9) より

$$(1-i_0)\omega_S = \omega_A - i_0\omega_D$$

を得, $\omega_D < 0$ であることを考慮すると

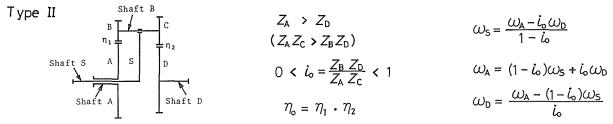
$$(1-i_0)\omega_S > \omega_A$$

が得られ、従って $\omega_S > \omega_A$ であることがわかる。このことより、表 2 の "キャリヤ固定" の欄において軸Aの角速度 $\omega_{A'}(=\omega_A-\omega_S)$ の方向は負、 同様に軸Dの角速度 $\omega_{D'}\{=(\omega_A-\omega_S)Z_AZ_C/(Z_BZ_D)\}$ の方向も負となることがわかる。一方、図 4 より軸Aのトルク M_A の方向は正、軸Dのトルク M_D の方向は負であるから、軸Dが駆動軸、軸Aが従動軸であることがわかる。以上により $\omega_{A'}$ 、 $\omega_{B'}\{=-(\omega_A-\omega_S)Z_A/Z_B\}$ 、 $\omega_{D'}$ を "キャリヤ固定" の場合の角速度とすれば

$$M_D|\omega_D'|\eta_2 = M_B|\omega_B'|$$

が得られ, これより

$$M_B = \frac{|\omega_D'|}{|\omega_B'|} \eta_2 M_D = \frac{Z_C}{Z_D} \eta_2 \frac{i_o}{\eta_o} M_A,$$


$$\therefore M_B = \frac{Z_B}{Z_A} \cdot \frac{1}{\eta_1} M_A \tag{17}$$

を得る. または

$$M_B|\omega_B'|\eta_1=M_A|\omega_A'|$$

が得られ, これより

Table 3 Angular Velocity, Efficiency, and Torque Formulas for 2K-H Type Differential Gears

	,	7							
	Driver	Follower	Direction of rotation	Efficiency	Torque on A	Torque on D	Torque on S	Torque on B	
	A,D	S	Shaft D only: Opposite direction	$\eta = \frac{(\eta_0 - i_0)(\omega_A - i_0\omega_D)}{(1 - i_0)(\eta_0\omega_A - i_0\omega_D)}$	M_{A}	M	M = 12 M	η-iον	$M_{\rm B} = \frac{Z_{\rm B}}{Z_{\rm A}} \cdot \frac{1}{\eta_1} M_{\rm A}$
	D	A,S	Shaft S only: Opposite direction	$\eta = \frac{\eta_{\omega_A} - (\eta_0 - i_0)\omega_S}{\omega_A - (1 - i_0)\omega_S}$	I I I	TADE NO THA	$\eta_{\rm s}^{-}$ $\eta_{\rm s}^{-}$	$I^{N_B} = \overline{Z_A} \cdot \overline{\eta_1} I^{N_A}$	
η₀≒1	A,S	D	Shaft S only: Opposite direction	$\eta = \frac{\eta_0 \{\omega_A - (1 - i_0)\omega_5\}}{\omega_A - (1 - \eta_0 i_0)\omega_5}$	$M = \frac{1}{M_0} M_0$	$M_{D} = \frac{\eta_{i_{o}}}{1 - \eta_{i_{o}}} M_{S}$ $M = \frac{i_{S}}{1 - \eta_{S}} M_{S}$		$M = \frac{Z_B}{\eta_1} \frac{\eta_1}{M}$	
16+1	S	A,D	Shaft D only: Opposite direction	$\eta = \frac{(1 - i_0)(\omega_A - \eta_0 i_0 \omega_D)}{(1 - \eta_0 i_0)(\omega_A - i_0 \omega_D)}$	1-766 ¹¹⁵			$M_{\rm B} = \frac{Z_{\rm B}}{Z_{\rm A}} \cdot \frac{\eta_1}{1 - \eta_0 i_0} M_{\rm S}$	
	D,S	А	All shafts: Same direction	$ \eta = \frac{\eta_0 \{(1 - i_0) \omega_5 + i_0 \omega_0\}}{\eta_0 (1 - \eta_0 i_0) \omega_5 + i_0 \omega_0} $	$M_{A} = \frac{1}{1 - i_{o}} M_{S}$			$M_{\rm B} = \frac{Z_{\rm B}}{Z_{\rm A}} \cdot \frac{1}{1 - i_{\rm o}} M_{\rm S}$	
	А	D,S	All shafts: Same direction	$\eta = \frac{\eta_0^2 i_0 \omega_0 + (\eta_0 - i_0) \omega_s}{\eta_0 \{ i_0 \omega_0 + (1 - i_0) \omega_s \}}$	1-i ₀ 1-	1-i ₀ 1-i ₀ 1/s	1715	Z_A 1- i_0	
$\eta_{o} = 1$				$\eta = 1$	$M_{\rm A} = \frac{1}{1 - i_{\rm o}} M_{\rm S}$	$M_{\rm D} = \frac{\dot{l}_{\rm o}}{1 - \dot{l}_{\rm o}} M_{\rm S}$	M _S	$M_{\rm B} = \frac{Z_{\rm B}}{Z_{\rm A}} \cdot \frac{1}{1 - \dot{l}_{\rm o}} M_{\rm S}$	

$$M_B = \frac{|\omega_A'|}{|\omega_B'|} \cdot \frac{1}{\eta_1} M_A = \frac{Z_B}{Z_A} \cdot \frac{1}{\eta_1} M_A \tag{17}$$

が得られる。以上の式 (15)、(16)、(17) を用いることにより、駆動軸Aに作用するトルク M_A が既知の場合に、駆動軸D、従動軸Sおよび中間軸Bに作用するトルクを求めることができる。

同様な方法により、図 3 に示すごとき 2K-H 型差動歯車機構に おいて、[D駆動、Aおよび S従動〕の場合、[Aおよび S駆動、D従動〕の場合、[S駆動、Aおよび D従動〕の場合、[Dおよび S駆動、A從動〕の場合、[A駆動、Dおよび S從動〕の場合に各軸に作用するトルクの理論計算式を求め、表 3 に一覧表として示す。

ところで,この2K-H 型差動歯車機構に対して, $\eta_0=\eta_1$ ・ $\eta_2=1$ と考えると,各軸に作用するトルクを求める理論計算式は,上記の六つの場合とも全て同一となることがわか

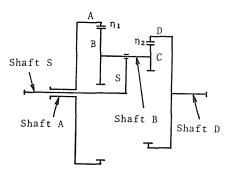


Fig. 5 III-Type Differential Gear

り, これを表3の最下段に示す. 2.3 型式Ⅲの差動歯車機構

次に図5に示すごとき2K-H 型差動歯車機構において,太陽内歯車Aを角速度 ω_A (>0) および太陽内歯車Dを角速度 ω_D (<0) で駆動し,キャリヤSを角速度 ω_S (<0) で従動させる場合を考える.ただし歯車A, B, C, Dの歯車を Z_A , Z_B , Z_C , Z_D で表わし、この場合は Z_A > Z_D (Z_AZ_C < Z_BZ_D) とする.前述と同様に各軸の角速度を求める重ね合わせ法として表4が得られる.

Table 4 Solution by Tabulation	Table	4	Solution	bv	Tabulatio
--------------------------------	-------	---	----------	----	-----------

	A	В	С	D	S
Gear locked	ω_S	ω_S	ω_S	ω_S	ω_S
Arm fixed	$\omega_A - \omega_S$	$(\omega_A - \omega_S) \frac{Z_A}{Z_B}$	$(\omega_A-\omega_S)rac{Z_A}{Z_B}$	$(\omega_A - \omega_S) \frac{Z_A}{Z_B} \frac{Z_C}{Z_D}$	0
Result	ω_A	$\omega_S + (\omega_A - \omega_S) \frac{Z_A}{Z_B}$	$\omega_S + (\omega_A - \omega_S) \frac{Z_A}{Z_B}$	$\omega_S + (\omega_A - \omega_S) \frac{Z_A Z_C}{Z_B Z_D}$	ω_S

この表 4 より、各軸の角速度の関係式として

$$\omega_S = \frac{i_0 \omega_D - \omega_A}{i_0 - 1} \tag{18}$$


が得られ、またこの場合の効率を求める理論計算式が既に著者の一人により求められている 20 .

$$\eta = \frac{(\eta_o i_o - 1)(i_o \omega_D - \omega_A)}{(i_o - 1)(\eta_o i_o \omega_D - \omega_A)}.$$
(19)

ただし

$$i_0 = \frac{Z_B Z_D}{Z_A Z_C} > 1, \tag{20}$$

$$\eta_o = \eta_1 \cdot \eta_2. \tag{21}$$

そしてこの場合、遊星ピニオンBとCとに作用する、歯車A、DおよびキャリヤSからの力 W_A 、 W_D 、 W_S と角速度 ω_A 、 ω_D 、 ω_S の方向との関係は、前述の場合と同様に考えて図6に示すごとくになる。そしてこの図6より、軸A、D、Sに作用するトルク M_A , M_D , M_S の釣り合い方程式として

$$M_A + M_S - M_D = 0 (22)$$

Fig. 6 Forces and Angular Velocities in Planet Gear

を得る,いまこの場合の差動歯車機構の効率 η を

$$\eta = \frac{-M_S \omega_S}{M_A \omega_A - M_D \omega_D}$$

とおく. これに式(18)、(19)、および式(22)から得られる

$$M_S = M_D - M_A \tag{23}$$

を代入して

$$\frac{(\eta_o i_o - 1)(i_o \omega_D - \omega_A)}{(i_o - 1)(\eta_o i_o \omega_D - \omega_A)} = \frac{-(M_D - M_A)\frac{i_o \omega_D - \omega_A}{i_o - 1}}{M_A \omega_A - M_D \omega_D}$$

得を, これより

$$M_D = \eta_o i_o M_A \tag{24}$$

得をる. そしてこの結果を式(23)へ代入して

$$M_S = \eta_o i_o M_A - M_A = (\eta_o i_o - 1) M_A \tag{25}$$

を得る. 次に中間軸Bに作用するトルクについて前述と同様に "キャリヤ固定" の場合で考えると、Aを駆動軸、Dを従動軸と考えることができる. 従って ω_A '($=\omega_A-\omega_S$) および ω_B ' $\{=(\omega_A-\omega_S)Z_A/Z_B\}$ を "キャリヤ固定" の場合の軸AおよびBの角速度とすれば

$$M_A|\omega_A'|\eta_1=M_B|\omega_B'|$$

を得, これより

$$M_B = \frac{|\omega_{A}'|}{|\omega_{B}'|} \eta_1 M_A = \frac{Z_B}{Z_A} \eta_1 M_A \tag{26}$$

Type III

Shaft S

Shaft B

Shaft D

Shaft D

$$Z_A > Z_D$$
 $(Z_A Z_C < Z_B Z_D)$
 $\omega_S = \frac{i_o \omega_D - \omega_A}{i_o - 1}$
 $\omega_A = i_o \omega_D - (i_o - 1) \omega_S$
 $\omega_A = i_o \omega_D - (i_o - 1) \omega_S$
 $\omega_A = i_o \omega_D - (i_o - 1) \omega_S$
 $\omega_A = i_o \omega_D - (i_o - 1) \omega_S$

	Driver	Follower	Direction of rotation	Efficiency	Torque on A	Torque on D	Torque on S	Torque on B
	A,D	S	Shaft A only: Opposite direction	$ \eta = \frac{(\eta_{0}i_{0}-1)(i_{0}\omega_{0}-\omega_{A})}{(i_{0}-1)(\eta_{0}i_{0}\omega_{0}-\omega_{A})} $	M _A	$M_{\rm D} = \eta_{\rm o} i_{\rm o} M_{\rm A}$	M-(n; 1)M	$M = \frac{Z_B}{2} n M$
	А	D,S	Shaft S only: Opposite direction	$\eta = \frac{\eta_{i_0}\omega_{b} - (\eta_{i_0} - 1)\omega_{s}}{i_0\omega_{b} - (i_0 - 1)\omega_{s}}$	I*IA	1VID- 1000 1VIA	1V15-(1660-1)/VIA	$V_B - \overline{Z_A}^{\prime\prime} 1 V_A$
n + 1	D,S	A	Shaft S only: Opposite direction	$\eta = \frac{\eta_0 \{i_0 \omega_0 - (i_0 - 1) \omega_S\}}{i_0 \omega_0 - (i_0 - \eta_0) \omega_S}$	$M_{A} = \frac{\eta_{o}}{i_{o} - \eta_{o}} M_{5}$	M - io M	$M_{ m S}$	$Z_{\rm B} \eta_{\rm 2-M}$
$\eta_{o} = 1$	S	A,D	Shaft A only: Opposite direction	$\eta = \frac{(i_o - 1)(i_o \omega_D - \eta_o \omega_A)}{(i_o - \eta_o)(i_o \omega_D - \omega_A)}$	io-70,115	ind in the interpretation	1715	$M_{\rm B} = \frac{Z_{\rm B}}{Z_{\rm A}} \cdot \frac{\eta_{\rm 2}}{l_{\rm o} - \eta_{\rm o}} M_{\rm S}$
	A,S	D	All shafts: Same direction	$\eta = \frac{\eta_{o}\{(i_{o}-1)\omega_{s}+\omega_{A}\}}{\eta_{o}(i_{o}-\eta_{o})\omega_{s}+\omega_{A}}$	$M_{A} = \frac{1}{\hat{L}_{0}-1} M_{S}$	M = io M	M _S	$A_A = Z_B 1$
	D	A,S	All shafts: Same direction	$\eta = \frac{\eta_o^2 \omega_A + (\eta_o i_o - 1) \omega_S}{\eta_o \{\omega_A + (i_o - 1) \omega_S\}}$	$i_0-1^{N/S}$	$i_0-1^{N_0}$	IMS	$M_{\rm B} = \frac{Z_{\rm B}}{Z_{\rm A}} \cdot \frac{1}{i_{\rm o} - 1} M_{\rm S}$
$\eta_{o} = 1$				$\eta = 1$	$M_{\rm A} = \frac{1}{i_{\rm o}-1} M_{\rm S}$	$M_{\rm D} = \frac{i_{\rm o}}{i_{\rm o} - 1} M_{\rm S}$	M _S	$M_{\rm B} = \frac{Z_{\rm B}}{Z_{\rm A}} \cdot \frac{1}{\dot{\iota}_{\rm o} - 1} M_{\rm S}$

を得る. 以上の式(24)、(25)、(26)を用いることにより、駆動軸Aに作用するトルク M_A が既知の場合に、駆動軸D、従動軸Sおよび中間軸Bに作用するトルクを求めることができる.

同様な方法により、図5に示すごとき2K—H 型差動歯車機構に対して、[A駆動、DおよびS従動」の場合、[DおよびS駆動、A從動」の場合、[S駆動、AおよびD從動」の場合、[AおよびS駆動、D從動」の場合、[D駆動、AおよびS從動〕の場合に各軸に作用するトルクの理論計算式を求め、表5に一覧表として示す。

ところで、この 2K-H 型差動歯車機構に対して、 $n_0 = n_1 \cdot n_2 = 1$ と考えると、各軸に作用するトルクを求める理論計算式は、上記の六つの場合とも全て同一となることがわかり、これを表 5 の最下段に示す。

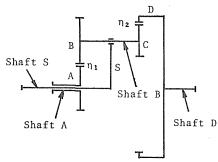


Fig. 7 IV-Type Differential Gear

2.4 型式Ⅳの差動歯車機構

次に図7に示すごとき2K—H 型差動歯車機構において,太陽外歯車Aを角速度 ω_A (>0) およびキャリヤSを角速度 ω_S (<0) で駆動し,太陽内歯車Dを角速度 ω_D (<0) で従動する場合を考える.歯車A, B, C, Dの歯数を Z_A , Z_B , Z_C , Z_D で表わし,前述と同様に各軸の角速度を求める重ね合わせ法として表6 が得られる.

	A	В	C	D	S
Gear locked	ω_S	ω_S	ω_S	ω_S	ω_S
Arm fixed	$\omega_A - \omega_S$	$-(\omega_A-\omega_S)\frac{Z_A}{Z_B}$	$-(\omega_A-\omega_S)\frac{Z_A}{Z_B}$	$-(\omega_A - \omega_S) \frac{Z_A}{Z_B} \cdot \frac{Z_C}{Z_D}$	0
Result	ω_A	$\omega_S - (\omega_A - \omega_S) \frac{Z_A}{Z_B}$	$\omega_S - (\omega_A - \omega_S) \frac{Z_A}{Z_B}$	$\omega_S - (\omega_A - \omega_S) \frac{Z_A Z_C}{Z_B Z_D}$	ω_S

Table 6 Solution by Tabulation

この表6より、各軸の角速度の関係式として

$$\omega_D = \frac{(1+i_0)\omega_S - \omega_A}{i_0} \tag{27}$$

が得られ、またこの場合の効率を求める理論計算式が既に著者の一人により求められている²⁾.

$$\eta = \frac{\eta_o \{\omega_A - (1 + i_o)\omega_S\}}{\omega_A - (1 + \eta_o i_o)\omega_S}$$
(28)

ただし

$$i_o = \frac{Z_B Z_D}{Z_A Z_C} > 1, \tag{29}$$

$$\eta_o = \eta_1 \cdot \eta_2 \tag{30}$$

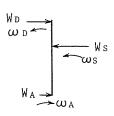


Fig. 8 Forces and Angular Velocities in Planet Gear

そしてこの場合,遊星ピニオンBとCとに作用する,歯車A,DおよびキャリヤSからの力 W_A , W_D , W_S と角速度 ω_A , ω_D , ω_S の方向との関係は,前述の場合と同様に考えて図8に示すごとくになる。そしてこの図8より,軸A,D,Sに作用するトルク M_A , M_D ,, M_S の釣り合い方程式として

$$M_A + M_D - M_S = 0 (31)$$

を得る,いまこの場合の差動歯車機構の効率 η を

$$\eta = \frac{-M_D \omega_D}{M_A \omega_A - M_S \omega_S}$$

とおく. これに式(27), (28), および式(31)から得られる

$$M_D = M_S - M_A \tag{32}$$

を代入して

$$rac{\eta_o \left\{ \omega_A - (1+i_o)\omega_S
ight\}}{\omega_A - (1+\eta_o i_o)\,\omega_S} = rac{-(M_S - M_A)rac{(1+i_o)\omega_S - \omega_A}{i_o}}{M_A\omega_A - M_S\omega_S}$$

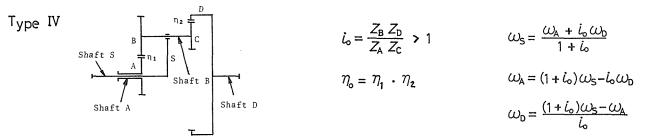
を得、これより

$$M_S = (1 + \eta_0 i_0) M_A \tag{33}$$

を得る. 次にこの結果を式(32)へ代入して

$$M_D = (1 + \eta_o i_o)M_A - M_A = \eta_o i_o M_A \tag{34}$$

を得る。次に中間軸Bに作用するトルクについて前述と同様に "キャリヤ固定" の場合で考えると、Aを駆動軸、Dを従動軸と考えることができる。従って $\omega_A'(=\omega_A-\omega_S)$ および $\omega_B'\{=-(\omega_A-\omega_S)Z_A/Z_B\}$ を "キャリヤ固定" の場合の軸AおよびBの角速度とすれば


$$M_A|\omega_A'|\eta_1=M_B|\omega_B'|$$

を得, これより

$$M_{B} = \frac{|\omega_{A}'|}{|\omega_{B}'|} \eta_{1} M_{A} = \frac{Z_{B}}{Z_{A}} \eta_{1} M_{A}$$
(35)

を得る.以上の式(33),(34),(35)を用いることにより,駆動軸Aに作用するトルク M_A が

Table 7 Angular Velocity, Efficiency, and Torque Formulas for 2K-H Type Differential Gears

	Driver	Follower	Direction of rotation	Efficiency	Torque on A	Torque on D	Torque on S	Torque on B	
	A,S	D	Shaft A only: Opposite direction	$\eta = \frac{\eta_o \{\omega_A - (1 + i_o)\omega_S\}}{\omega_A - (1 + \eta_o i_o)\omega_S}$	$M_{A} = \frac{1}{1 + \eta_{i} i_{o}} M_{S}$	A4 - 1 A4	766	3. d	$\lambda_A = Z_B \cdot \eta_1$
	А	D,S	Shaft D only: Opposite direction	$\eta = \frac{(1 + \eta_0 i_0)\omega_5 - \eta_0 i_0 \omega_D}{(1 + i_0)\omega_5 - i_0 \omega_D}$	1+766 ^{78/5}	1+766 1×15	<i>™</i> s	$M_{\rm B} = \frac{Z_{\rm B}}{Z_{\rm A}} \cdot \frac{\eta_1}{1 + \eta_0 i_0} M_{\rm S}$	
$\eta_{o} \neq 1$	D,S	А	Shaft D only: Opposite direction	$\eta = \frac{\eta_0 \{(1+i_0)\omega_5 - i_0\omega_b\}}{(\eta_0 + i_0)\omega_5 - i_0\omega_b}$	$M = \frac{\eta_{e-M}}{2}$	M - Lo M	M	$M_{\rm B} = \frac{Z_{\rm B}}{Z_{\rm A}} \frac{\eta_2}{\eta_0 + \xi_0} M_{\rm S}$	
16-71	D	A,S	Shaft A only: Opposite direction	$\eta = \frac{(76 + 6)\omega_S - 76\omega_A}{(1 + 6)\omega_S - \omega_A}$					
	A,D	⁻ S	All shafts: Same direction	7=\frac{(n+i)(1+ni)(\omega+i\omega)}{(1+i)\(n+i\)\omega+i\(1+ni)\omega)} 7=\frac{n(1+i)\(1+ni)\omega+i\(n+i\)\omega}{(n+i)\(1+ni)\omega\)\omega+i\(1\)	M = 1 M	M = io M	M	$M = \overline{Z}B = 1 M$	
	S	A,D	All shafts: Same direction	7= <u>M1+i) (1+76) W4+6(76+6) W4</u> (76+i) (1+76i) (W4+i6W)	1+6 ¹⁴⁵	1+6 ^{11/5}	1775	"'B" Z _A 1+6""S	
$\eta_o = 1$				$\eta = 1$	$M_{A} = \frac{1}{1 + \dot{l}_{0}} M_{S}$	$M_{\rm D} = \frac{\dot{\iota}_{\rm o}}{1 + \dot{\iota}_{\rm o}} M_{\rm S}$	M _S	$M_{\rm B} = \frac{Z_{\rm B}}{Z_{\rm A}} \frac{1}{1 + \dot{\omega}} M_{\rm S}$	

既知の場合に、駆動軸S、従動駆Dおよび中間軸Bに作用するトルクを求めることができる。

同様な方法により、図7に示すごとき2K-H型差動歯車機構に対して、〔A駆動、DおよびS従動〕の場合、[DおよびS駆動、A従動〕の場合、[D駆動、AおよびS従動〕の場合、[AおよびD駆動、S従動〕の場合、[S駆動、AおよびD従動〕の場合に、各軸に作用するとトルクの理論計算式を求め、表7に一覧表として示す。

ところで,この 2K-H 型差動歯車機構に対して, $\eta_0=\eta_1$ ・ $\eta_2=1$ と考えると,各軸に作用するトルクを求める理論計算式は,上記の六つの場合とも全て同一となることがわかり,これを表 7 の最下段に示す.

3 結 言

遊星歯車機構として最も基本的な 2K—H 型遊星歯車機構を, 2K—H 型差動歯車機構として用いた場合の軸トルク計算式について考察し, この 2K—H 型差動歯車機構の理論効率計算式を用いることにより, 軸トルクの理論計算式を誘導できる分りやすい方法を明らかにした。そしてこの機構の効率を計算する場合には各基本軸の角速度の値を定める必要があるが, 各軸のトルクの理論計算式はこれら角速度の値とは無関係に, 歯数比と基準効率のみにより計算できることを示した。そしてこの誘導方法を 2K—H 型の基本的な四つの型式の差動歯車機構に対して適用して各々の場合の理論軸トルク計算式を求め, 読者がこれらの計算式を使用する際に, 適用を誤るおそれのない, 便利な型式別一覧表を作成した。

参考文献

- 1) 両角宗晴,岸 佐年:遊星歯車機構の軸トルク計算式 (第1報 2K—H型遊星歯車機構), 信 州大学工学部紀要,第54号 (1983),1.
- 2) 両角宗晴:差動歯車機構の効率計算式について (第1報 2K—H型差動歯車機構),信州大学工 学部紀要,第38号 (1975),45.
- 3) 矢田恒二:開路式遊星歯車装置(1),機械の研究,21,7 (1969),969.