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    We lnvestigate the absolute N6rlund summability with index k of orthegonal

 series, and give a generalization ef various known resttlts, e. g., U'yanov [9],

 Wang [11], Tsuchikura [7) and the author [3] and so on. Further we show that

 some suficient conditions for the summability of orthogonal series are the best

 possible ones.

  1. Let Xan be a given infinite series with s,, as its n-th partial sum. If {Pit}

is a sequence of constants, and P.=k'Po+Pi+･･･+Pn (n ::-T O,1,･･･), then the N6rlund

mean tn of Xa,, is defined by

(1' 1) tn= pi . li.lll., l,Pn-]' sj' :rm pi..l.,,Pn-j ai' (jF'n >Ei o).

                                                     'For a constant k, 1;:Slfe$2, if the series

                           oo(1. 2) XIP"!Pnlfe-'Itn nv tn-ilfe
                           n--1

coRverges, then the series Xa,, is said to be summable IAr, P.1fe. For the defi-

nition of this summability, the reader is referred to Umar and Khan [10]. The

case fe =1 is reduced to the absolute N6rlund summability IN, P.1, and further if

p.== r(n+a)1{I"(a)l"(n+l)}, we have the absoiute Cestiro summability IC, al.

  Let {¢n(x)} be an orthonormal system defined in the interval (a, b). For a fun-

                                 oo
ction f<x)Eff L2(a, b) such that f(x)･v2]a.¢n(x) we denote by E$,2)(f) the best ap-

                                n=O
proximatioR to f in the metric of L2 by means of polynqmials of ipo,･･･, ipnmi. k

                          oois well known that Eg,2)(f)=(Zla,'l2)'i2. We write

                          i--n

(i. 3) ws.le)-;. }l,ill.. ;, "2ife.P?ifiS,ll;t"'j( fll,t mpP,;?,>2.
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  In the following, we use the notations:

        Lo(t)=1, Li(t) = log t, Lp<t) = L,(Lp-i(t))==log･･･log t, (P times)

        Lp(E)(t) == L,(t)･･･Lp-.,(t)(Lp(t))i+e (EliliO,P=1, 2,･･･),

where, if the right hand sides are not determined a$ positive ntimbers, we replace

them by 1's.

  din:=2n-ln-i for aRy sequence {2,:}. A is a positive constant not necessarily

the same at each occurrence.

 2. For the trigonometric series, Singh [5]' proved the following theorem,

which is an extension of theorems due to Pati [4], Ul'yanov [9] and Wang [11].

 Theorem A. Let {9.} and {2.} be two Positive seauences such that {9.2I,2} is a

monotonic increasing sequence and that

                             co
(2. 1)

is convergent. Illf the series

(2. 2)

converges, then the '

>1!2) almost evezywhere.

  One of the authoys [3]

 Theorern B. Let{9n}be a

sequence and the series

increasing ILf the

is sztmmable IN, P.1 almost

 In this paper, we shall

 Theorem 1. Let 1sl;kK2

sequence and the series

(2. 3) S pn
                tt==1

converges, then the

(2. 4)

is summable IN, P.1fe almost

  This tkeorem is also a

trzgen,ometrtc

x
n=tl

Rltn-i s?ili

  t

       established

        Postttve

     Xn-i9n'

series Xlan129nW. converges,

        eve2 ywhere,

      first geReralize

       and

   QO   IZ]1an129n

   n=:O

      ooseries Zftnancos (nx-i-crn) is summable IC, aKev

      n=O

    the following theorem.

' sequence such that {9.ln} is a non-increasing

convezges. Let {Pn} be non-negative and non-

            then the orthogonal series 2an ¢n(x>

       where W.==WSi) is dev7ned by (1. 3).

       these two theorems.

{a.} be a Positive sequence. if {P.} is a Positive

  PnPts-, {?'ii..pt-'( pP,? -pP.':')2 2;'

orthogonal series

            j2EJ2nanipn(X)

       evei ywhere.

      generalization of theorems

lati2 }le/2

due to Tsuchil<ura [7, 8]
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and Banerji [1].

 Proof of Theorem 1. Let tn(x) be the n-th N6rlund mean of the series (2. 4).

Then, as Banerji shown,

           Atn(X)==':tn(X)'tn..i(X)

               ": PnPp'i,H-, },iil..IP"r"j( ;i,i -ill,l,'-';)2Ja,･ip,･(x).

Using the H61der inequality and ehe orthogonality,

           iZIAtn(X)IkdXSA{I:iAtn(x)12dx}hi2

                    == A( P.PP'l,-, ) le{)..,P2nv'( ;i,i -pP;if )22;.a;.}k/2,

and then,

    ]i,ii.. 1i ( llll,l' ) k -" 'f: t titn (xx k dx

           SA]i,li..i.,(-Ppt£,L)k-i(..P.'i,", )k{i.#..pt-j( S,ii -pP;if,g)2i?.a;}ki2

which is convergene by the assumption and from the Beppo-L6vi lemma we

complete the proof.

 3. Now we shall sltow that Theorem 1 includes Theorerns A and B.

 Lemma 1. Let w(x) be a Positive and non-decreasing function of x over the

                              oo cointerval [Ar,oo]. Then the two series Xn-iw(n)-"i and Z nm"iw(nii2)-i converge

                             n==N }lwN2
or diverge simultaneously.

 This lemma is due to UYyanov [9].

 For fe=:1 and P. ==r(n4-a)1{r(a)1-(n÷1)}g)!nam'lr(cr) the sum (2. 3> is not greater

than

    AiS.,..inal+ i {?. ii..l (n - j + 1) 2a m'2j'22;. Iaj･12}ii2

           ;S!'/ll.li],..,nal+i{tY.I#'i2]''}i'2+AS,..,ncr1+i{tli.i](.;,'i]21!2='S+T'

say. Under the assumption of Theorem A we kave R;19j:wwSg2?19i and by (2. 2> we

get
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     S;il{AS,..,..1.,ncr-' ni!2{til.liil#i,'2]2;g,:ilaal2g,}i!2

          oo fnl12]
       ;:illAl2E]n"3f2{Z lajl2s2j}if2<oo.

         n=1 )'M-1

Similarly we have

        oo 7t    T ;El';Aii,li.. ]ncr1÷ i {i.{IIInt c., 1,](n nv ti + 1)2cr-21' 2Z; 9,-'" ' 1 ati 29fii12

        oo 7t     S.A,2,=incr1+i (1[ni/2]9ii17i92j)£].V..[,,,f,](n - ]' + 1)2cr-2ti21aal29J･}ii2.

By the Schwarz inequality and Lemma 1, we get

         co co n    T;SIA{E,..iREni!2)n-iS2Eilif2]}i/2{il,lll.. )}n,1..,,X...,i(n - 2' + 1)2a"2j'21a,l2S?j}"!2

         oo co     gSA{=1'21a,･129tiX(n - 7' + 1)2cr-2nm2cr-i}i12

         )'--1 n==j

         oo     =:A{X]'2[a,･i29,o(1'--2)}i12

         1'--1

         oo     ;:$IA{IZIlajl29j}i!2 < oo.

        J'--1

Hence from the assumption of Theorem A we caR apply Theorem i and we see

that Theorem 1 contains Theorem A.

 Tlteorem B is also deduced from Theorem 1 setting 2n==1 and fe= 1.

 4. Appiying Theorem 1 we shall show some generalization of known theorems

The foilowing Lemma will be proved by easy caiculations.

 Lemma 2 For P.:=r(n+a)1{r(ev)l"(n+1)} (a>O) the szem Il7S･k) is, as 1'-oo, (i)

O(1) if 121a>112, (ii)O(L,(]')) if a :112 and (iii)O(1"-2a) if O<a<1!2. (iv) ForP. :

L,(n + 2)'1{(n + 2)LSO"),(n+2)} (r>-1),

          WS･fe) = O<dL, <j')wu2r-21ie LgoP,(]'>2-2!fe),

and <v) for P. ::= (n -Y 2)"'LSe) (n + 2)-i,

          VPXS,k)=: O(1'L,., <]')-2!fe LgO)(1')2-2!k>
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 Theorem 2. Let ISk;:i!;2 ,and {9.} be a Positive sequence such that {9.ln} is

non-increasing and the series Xn-i9;,' converges. ILIf {P.} is a Positive non-increa-

sing sequence and the series Xian12YVS,fe)9?,ih""i converges, then the orthogonal series

Xanipn(x) is summable IAr, Pnlk almost everywhere.

 Proof. To apply Theorem 1, we shall make an estirnation of the sum (2. 3)

with 2y'm-1 (7':-1, 2,･･-). By the H61der lnequality,

         S='#.iA,Pp'liwn,,",{i.ii..I,P3i--j(;,l'-pP,i'i)2la,･12}k!2

          :$[Ii,ll..l.}.]imk!2[S,..,"2ik-ii¥,,l"r,,k,iiP?Ilek..,.,p?,Hj( ftt -pP,;iff)2]aj12]ki2

          ;$A []. l.. I l a al 2}I, lllrmwu i"2ik - i 9}/i,.ii{ ;'i le P?i -" ( S ,' - ;;'f ) 2] k i2

           s-;;A[teq.,Ia,･t29;/7k.-'i}I,lll..;i'i2!kpPjl!mliiPk?'-'j(;;,' pP:'f')2]ie/2,

since 9;!kmild=(9,･ld>2ile'"i 1'2ik"2 is non-increasing, and then

                      co
                 S;S:.A[£la,･]2WS.k)n;./k-i]k!2
                      d--1

whlch is finite by the assumption, and we complete the proo£

 For each sequence {Pn} treated in Lemma 2, the above Theorem 2 implies

the following result.

  Corollary 1. Let 1$kas2 and P be a Positive integer.

<i) if the series

<4. 1) Xla.l2LSS)(n)2!k"i

converges for some e>O, then the series Wanipn(x) is summable IC, ecIh almost

everywhere for any 1211a>112.

(ii) if the series

(4. 2) .:la.12L,(n)LSe)(n)2!fe-'

converges for some E>O, then ia.ipn(x) is summable iC, 1!2ik almost ever:ywhere.

(iii) If the series

(4. 3) XIa.I2ni'2aLSS)<n)21fe"i
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convef:ges for some s>O, then Na.ip.(x) is summable IC, alle almost evezywhere

for O<cr<l12.

 Further let q be a non-negative integer and s a Positive integer.

(iv) Let r> -1 be a real zzumber. ILf the series

(4. 4) .Sla.12nL, (n)H'2r-21leLgO-),(n)2-21k LgS,),(n)2!le-i

converges for some s>O, then Xa.¢n(x) is summable IN, P.1le almost eveizywhere
for P. ==L,(n-l-2)r {(n+2> Lge"),(n+2)}-i.

(v) if the series

(4. 5) .Xla.12nL,., (n)-2!k LSQ)(n)2-21le Lgt)q,,(n)21k-i

converges for some s>O, then Xa.ip.(x) is summable IN, P.1le almost evefzywhere

for Pn =11{(n+2> Lge)(n+2)}.

 For k=:1, the cases P=1 and P=2 in this Corollary are the results obtained by

Wang [11] and Ul'yanov [9] respectively; and the case s==q=:k=:1 and r==O ln

(iv) is due to Okuyama [3].

 Now, if {9n} is a positive non-decreasing sequence with 9o==O, then by using

the best approximation, we see that

                        oo oo oo(4. 6) Xlanl29n = 2AS?jX.lanl2==X{ES･2'(f)}2 A9j,
                       j=T-1 vz=] d--1

therefore, estimating the corresponding A9ti for the series (4. 1)--(4. 5>, we have

easily the following :

 Corollary 2. in the Corollaity 1 the series (4. 1)--(4. 5) can be rePlaced bN the

followin.cr series (4. 7)･-(4. 11> resPectively:

(4. 7> Xn-'L, (n)-iLSS)(n>2ik-i{E$,2)(f>}2,

(4. 8> i'n-'LSS)(n)2!fe-i{Eg,2)(f)}2,

(4. 9) i'n-2aLSS)(n>2!fe"-i{ES,2)(f)}2,

(4. 10) XL,(n)"2r'"2!k LgO-),(n)2!k'iLgE.),(n)21fe-i{ES2)(f)}2,

(4. 11) -"L,,i (n)H21fe LSO)(n)2m2/feLgZ),.,(n)2!le-i{E(.2)(f)}2.
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  For the £rigonometric orthogonal system we shall make a remarl<. Let f(x)(g!

L2(O, 2rc>, and denote by 9(S, f) one of the following integral fnoduli :

        w(2)(6, f) = s,us?SIirr [f(x + t) - f(x - t)]2dx}i/2,

        wE2)(5, f) = g.ap.(fZrr [f(x l-2t)÷f(x - 2t) - 2f(x)]2dx}'i2,

         W(2) (S, f) :=: {-i. Sgdtlirr [f(x + t) - f(x - t>]2dx}i!2,

         WE2)<5, f) =:: {t. Ig' atl:rr [f(x + 2t) + f(x - 2t) - 2f(x>ll2dx}t!2.

Let {2n} be a positive monotone sequence such that

                          oo                          ]E] j-2zJ･ i ;$ISAnrm i2 il i .

                          j'--n

  TheR, Leindler [2] proved that the conditioBs 2i2 ,iS?(11n,f)2<oo aRd .£2n'{ES,2)(f)}2

<oo are equivalent. So that we get easily the following result.

   Corollary 3. For the case of trigonometric series, suiitcient conditions for the

conclusions (O-v<v) in Corollary 1 are, for some E>O,

(i) 9(ti, f) =O(L,(1/6>it2L(,e)<1/o")-iife),

(ii) 9(o", f>=O(LSS)(lf6)-iile),

(iii) 9<6, f) = O(o"i!2-cr LSS)(1!b)-iik),

(iv> S?(6, f) == O(6i!2 L, (Y6)r+i!le LgO-),(lf6)illemt LgE.),(1ra)-i!le>,

(v> 9(6, f) =O(5il2 L,÷i (116)iile LgO)(116)i!k-'LgE,),.,(11o")-i!h)

respectively.

   The case le:=:1 and P==2 in the results (i)--(iii) are due to Ui'yanov [9], and

the case s =P=k==1 aRd r=:O in (iv> is due to Okuyama [3].

   5. Let {rn (t)} be the Rademacher system. For the series

(5. 1) X2nanrn(t)
instead of general orthogona! series (2. 4), we shall establisk an inverse of Theo-

rem 1.

   Theorem 3. Let fekl and let {Pn} be a Positive seq"ence such that for any

fixed inte,ger ie>O, Pn-f (PnZPn-PnntiZzbn-i) ==O(l) for nllltiol.:it1'-21. Sumpose that the
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set of Points t for zvhich the series (5. 1) is sztmmable IN, Pnik is of Positive mea-

sure, then the series (2. 3) converges.

   ProoL We may suppose that the IN, P.ife sLim of the series (5. 1) is unifor-

mly bounded for ali tEEct(O, 1> where m(E)>O. Then,

           fEil,il..,lp.Pp'k-.ftt/iP"mj( ff -pP."m"i')2j'ati2v(t)lkdt<oo.

   Let N be a pos!tive integey and replace ai, a2,･･･, aN.i iR the series (5. 1)

by zeros. This replacement has Ro infiuence on the summability, since ･

           i....,p."p"h･-, itL,liPn-j( fr -7;if )Riair,(txfe

               =<"rm'AM,..ip.Pp'lig.,{rlii2jiaji}le

which is finite if NPn<oo, and by Pringsheim's theorem XP. P;,iPth<oo for aRy

k>O, if XP.==co. Therefore we may suppose that

(5' 2) i.#.-.p.Pp'iig-, ltte.,Pn-J'( S,i' nvpP,?-'"ti')Rtiaj'r]'(t)1fedt<co

where IV= N(E) is determined by the well known Khinchin inequality :

           f.I tt/.Pn-ti( Sl:i -pP,i'if)2jajrj(tx fedt

(5. 3)

              }liA{ttf.PZ-j( fl ; ptpP,?-';)2 R?･ iaj12}k/2.

                                        '
From (5. 2) and (5. 3) we can conclude the convergence of the series (2. 3), since

repeating the similar argument as above, the integer N may be replaced by 1.

   6. We shall show that the positive number Ein LSE) (t) is indispensable in

Coroliaries 1, 2 and 3 for the case of trigonometric series.

   Lemma 3. Let 1$le$2 and {Pn} be the same sequence as in Theorem 3. Put

Aj(x)==pj･ cos (jx+0i lf the series

(6' i) S,..,p.Pp"£-., {;.lil..pt-i( pP,i' -pP,i2-m;)2A;･(x)}fei2

converges for evezy x in a set of Positive measure, then the series

(6'2> i,lll..],ltT;;iiliil-;,2pb,e-, t?.t,i);iv'(:;-pPrminv'ii')2to;･I}fei2
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converges. Conversely, the convergence of (6. 2) imPlies that of (6. 1) for evexy

x.

   Proof. We may suppose that the sum (6. 1) is uniformly bounded by a con-

stant A in a set E, m(E)>O and denote, 'for the simplicity, an=PnPtiPtei, Pn,j

      Pn Pn-j'
 :P"mjl p. -pn-i              [. Then we have

(6･ 3) I=il,ill..lanSE{i.II..l,P?t,jp;･cos2 (i'x + oi)}hi2dx;$Am(E).

Using the Minkowski inequality, we get

               oo 7t           ik'-]i,lll..licr"{?.ill...li(fEPn,i' palcos (jxH-oj･) ldx)2}kx2

(6. 4)

            ==S,..,an{li.lk=,P?i,ip; (l.icos <]'x + o,･)idx)2}k!2.

By the Riemaim-Lebesgue theorem, we have

           IEICOS (jx + 0,･)ldxlll;IEcos2 (y'x -l- oy)dx

(6･ 5) =:-il-IE(1+cos 2(ju+0,･))dx==-ll-m(E> + il-fEcos 2(1'x -F O,-)dx

           l}i:-ii-m(E),

for suthciently large i say 1'um;}rN.

Therefore, by (6. 4) and (6. 5)

           iiiiii, li..lcrn{iS. .. .p?i,i p;･ (tm (E)) 2}hi2

                oo 7t l            k:Aii,ll..,lan{,ll.I[]=,I.P9t,jp;･}k/2･ l

                                i
By the same reason as in Theorem 3, We replace N by 1 and we conclude the

convergence of (6. 2). The converse is Pbvious.

   Theorem 4. Let 2;kfe;ll and let {P,n} be the same as in Theorem 3. ff the

series (6. 2) converges, then almost all series of

(6. 6) X±(an cos nx+bn sin nx),

zvhere An(x)=pn cos (nx+0n)==an cos nx+bn sin nx, are summable IIV, P,elfe for
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almost eveTly x, and if (6. 2) diverges, then almost all series of (6. 6> are non-

summable IN, P.lk for almost eveizy x.

   Proo£ CoRsidering the series 2Err.(t) An(x), the first part is an easy conse-

quence of Theorem 1 putting Rjaj･=Aj(x). The latter part ls also a consequence

of Theorem 3 and Lemma 3 following the well known Paley--Zygmund argument.

   Corollary 4. Let lgli{le<2. in the assumPtions of Corollaries 1, 2 or 3 the Po-

sitive number E in LSe) or Lgt)q is indisPensable.

   Proo£ We treat the case (lv) of Corollary 1, because the other cases can be

shown similarly. It is sufficient to show the existence of a Rademacher-trigono-

metric series Na.r.(t) cos nx which is non-summabie IN, P.Ik for aimost every

(t, x) in (O, 1)×(O, 2z) and the series (4. 4) is convergent for s=O. For this

purpose we put

            a. == n-' L, (n)r"ilk LSO..), (n)i!k-' LgO.)q,, (n)-ilfe,

then as we see easlly the series (4. 4) with s==O is

            2'n-` LgO.)q (n)-i L,+q+i (n)-2!k

which is convergent for ISk<2. 0n the other hand, since P.==n-'LgO-)i(n)"iL,(n)",

we see P.--L, (n)r" and P.IP.--nLg")(n). HeRce it is easy to see that the series

(6. 2) is not smaller than

            A#.,pP.k"+i{].#i.. I[./,]P;t-]'( pP,li )2a3,}k!2

                ulnt>AIZ]n-i LgO,),,,(n)mi

                    n

which is divergent.

   Finally, the author wishes to express his hearty thanks to Pro£ T. Tsuchi-

kura for his valuabie suggestions and encouragements in the preparation of this

paper. This research was partially supported by Grant-in-Aid for Scientific Rese-

arch, (No. 464042), Ministry of Education

                               References

[1] J. Banerji, On the absolute N6rlund summability factors (PrePn'nt).

[2] L. Leindler, Uber Sturl<turbedingungen fur Fourierreihen, Mizth. Zeitschr. , 88(19

   65), 418-431.

[3] Y. Okuyama, On the absolute N6rlund summability of orthogonal series, Proc.

   IaPan Acad., 54(1978), l13-118.

[4] T. Pati, The absolute summability factors of infinite series, D"fee Math. J., 21



            On the Absolute N6rlund Summability of Orthogonal Series ll

   (1954), 27i-283.

[5] N. Singh, The absolute Cesare summabiiity factors, Proc. Edittburgh Math.

   Soc., 16(1968), 71-75.

[6] A. F. Timan, Theory of approximation of functions efa real variable, "Pergainon

   Press 1963.
        '
[7] T. Tsuchikura, Absolute Cesaro summability of ortlaogonal series, T6heleu Math.

   f. 5 (l953), 52-66.

E8] T. Tsuchil{ura, Absolute summability of Rademacher series, T6hofeu Math. f.

   IO (1958), 49-59.

[9] P. L. Ul'yanov, Solved and unsolved problems in the theory of trigonometric

   and orthogonal series, USPehi Math. fVkeufe., 19 (1964), 3-69.

[10] S. Umar and H. H. Khan, On llVp, r, alk summability of infinite series, Inaian

   J. Pure and APPI. Math.,8 (1977), 752-757.

[11] F. T. Wang, Note on the absolute summability of Fourier series, J. London

    Math. Soc., 16 (1941), 174--176.

[i2] F. T. Wang, The absolute Cesaro summability of trigonometric series, Duke

    Math. J.,9 (1942), 567-572.

[13] A. Zygmund, Trigonometric series I, Cambridge, 1959.

'


