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     An abstract theorem, which is an analogy of Boltzmann's K-theorm, is proved

 by the method of the ergodic theory. The theorem allows dynamical reversibility, i.

 e. , in our formulation, it is not absolutely certain that entropy increases monotonically,

 but it is overwhelmingly unlikely that it decreases if the number of molecules is

 large enough. The theorem can be extended in two directions: the one is in contjnuous

 case and another of which is in the case of more general entropy. Finally, three

 instructive examples are shown satisfying the conditions of the theorems.

                             1 Introductioxx

   The H-theorem by Boltzmann in statistical dyRamics was abstractly reformu-

lated by Yosida5) (p. 392) and by othersti`" who used Markov operators. As to the

H-theorem, which asserts the increase of entropy for time, there have been some

criticisms, e.g., the criticisms posed both by Loschmidt and by Zermelo-

Poincarh. By the allowance of tke existence of the fluctuations, we can answer

these criticisms (for example,see Radushkevitch4) Chap. 2 g6). The mathematical

formulations, however, are not suthcient. Obviously, the method of Markov

operators does not make models time-reversible, so such a formulation can not

answer the crieicisms.

   In this paper, we propose one of the abstract models, which are time-reve-

rsibie and to which the criticisms are irreievant.

                            2 Preliminaries

   Let (A, y) be a measurable space, and (AN, -fig"N) be a direct product

measurable space of countablly infinlte copies of (A, sf>, where .IV is a set of

all positive integers. Sometimes we denote (A", pa") by (X, X>. For xEX,

xi represents the i-th value of x, xtli represents the i-th space of AN, and pai

is the a-field of Ai, wkich is a copy of .sy. Let S be the shift transformation on

AN, i. e. , for xEMX, (Sx)i--xi.i. Cleariy S is a measurable transformation on (X,

ru). Similarly we introduce a measurable traRsformation S,t on (A", vsv""), whick

is defined as: for aeA", (Sn a)i-wwai÷i if i+1;$ln, and (Sn a)n==ai, Le., Sn is a
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It is also known that the similar inequality holds in quantum statistics (cf. von Neumann3)

and also see Nakamura and Umegaki2)).
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cyclic rotation of a, where A"==ll;･t-rmiAi and pan=ill･trm"ipai.

   Let Pn be a probability measure on (A", pt") and P be a probability measure

on (XL X). In such a situa#ion we define:

   DEFINITIoN 1. The probability measures Pn <n=1, 2, ･･････> are UI-convergent

<convergent "niformly and indttctivelN) to the probability measure P if for all E>O

there exists a number no, and for all n (;ii}no> and all BEi!.s)f"

                          IP.(B) - P<B'V) 1 <E,

where b is an imbedding of B to X, i. e. ,

                    B={x EX:(xi, x2, -･････, xn)GiB}.

   Especially if P" is a marginal distribution of P on (A", .gf"), then Pn is UI-

convergent to P trivially. The following iemma is obvious.

   LEMMA 2.1 Pn is UILeonvergent to P if and only if

                         limHPn - PIln = O,
                         n--+ co .
wkere li･lln is a total variation of a measure on (A", pan>.

   Let us assume that P is invariaRt under the transformation S and Pn's (n==1,

2,･-･) are invariaRt under Sn, i. e. , for all .Iir EEi .E2r', P(E) == P(S"'E), and for all

FE-SY'", Pn(F)===Pn(Sn"F).

   For an element a EE!A" and a set BE.Y", we put

                        rn(B;a)= ill-tlZilili x.(Snia), (2. 1)

                                        '
where xE is a characteristic funceion of a set E. Then, evidently rn(･;a) is a

probability measure on M" for every aEA", and rn(B;.) is a measurabie func-

tion on A'i for all BEiipa'i. For x(!X, the n-tupie (xi, x2, ･･･, xn) is regarded as

a point of A", which we denote by xn(x). Clearly rn(･;zn(x)) is a probability

measure on pa" for all xeXL Then we get:

   LEMMA 2. 2 ILIC P is ergodic with resPect toS, then for everyBG£ifM(mEN>,

                      A ev                    rn(B;rcn(x>)-eFP(B) P-a.e. x,
                            ("nrteen)

      Awhere B is an imbedding of B (g;AM) into An.

   Proof First, we see

     rn(B"; nn(x)) = i tiS'lii xE(snirrn(x))
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                   -ww -jll tlitEiignxE<Sn'rcn(x)) + -jll-,--,:.., zfi<SniTn(x))･ (2･ 2)

Now we note that

                         XG(Sn'nn(X)) = xij(StJt)

                   .A .Aif i:ins{In-m, because SniTn(x)GB is equivaient So Sn'(xi,x2, ･･･,xn)(!ff B, and to (xi+i,

x2+i, ･･･xm÷i)eB as m+i:-:{;;n, which is also equiva!eRt to S'xEiffB. HeRce (2.2)

becomes

            -$- 'i .,.o"zE(six) -i- -ill- irmm ii--,i,+lzs(snin(x))

          =: -ji" 'i .,, xg(Six) + -ill-i--,IEI,i. ,-i {xs(Sninn(x)>- xi(six)}･ (2. 3)

The first term of (2. 3) is convergeRt to P(I> as P is an ergodic measure with

respect to the transformation S, and the second term of (2. 3) goes to O. q. e. d.

   As the almose everywhere coRvergence implies the convergence in probabiliey,

we get the foilowing !emrna.

                                                             A   LEMMA 2.3 Under the same assamPtion as the Previous lemmq, rn(B; rr,t(x))

converges to P<B) in Probability, i. e., for every e>O,

                             AN                   lim P{x:lrn(B;nn(x)) -P(B)l) 8}=:O. (2. 4)
                   n-+oo

                    3 A Time-Reversible H-theorem

   Let gn be an invertible measure preserving transformation on A'i witlt respect

to the measure Pn. Further, we assume the ergodicity of gn. Then by the ergo-

dic theorem, for all Li(A", .sbeif", Pn)-functioR L we see

           ;Lm. 2Tl+i,X.T.m.f (gnia) "= I..fcipn pn-a･ e. a. (3. o

   Let F(t) be a logical proposition for the integer t, tlien we defiRe:

   DEFINITION 2. A ratio of F(t) is a va}ue of a limit

                   lim 1                            c{t:-T;s{lt;:i{T,F(t) ls true}
                  T-･oo 2T+1

in case the limit exists, where c(･> is a counting measure on the set of all in-

tegers. Similarly a ratio of a set Fo of integers is a ratio of a logical proposition

"tEEFe", if it exists. Sometimes we use above two notions indiscriminaeely.
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   By this termlnology, we get the following lemma.

   LEMMA 3.1 Let m be an arbitrarily .lixed Positive integer, andPn be UiZ-

convergent to P. JJVe assume that Pn is ergodic with respect to gn for all n. .For

every e>O, every 6>O and every BEEsuM, there exists a number no, and .fbr all

n}lne, the ratio of the inequality

                           AN                        lrn<B;gnta)-P<B)1 <E <3. 2)

is greater than 1-6, for almost everywhere aEiiA" with respect to the measure Pn.

   Proo.fl Let us denote

                               A n"                    En == {a:lrn(B;a) - P(B)1 <s},

which belongs to pa'i. Then

                   En = {x:zn(x) e En}

                             A A.                      = {x: l rn(B; Tn(x)) - P(B) l <E} ,

which belongs to X. By Lemrna 2. 3,

                         l,i-m.. P(ENn)x i･ (3. 3)

As Pn is UI-convergent to P, we see

                      lim IPn(En)mP<℃n)[=O. (3.4)
                      11eoo

From (3. 3) aRd (3. 4), there exists a number ne such that

                           Pn(En)>l-6 (3. 5)

for all n;lino. Then

            /rllloo 2Tl+lc{t: - TiStEsglT, lrn(BA;g."a) - p(]t)l<E}

                    1                       c{t: - T$tl$IT, gnta Eii En}             = lim
             T-. 2T +1

            =li-M. 2Tl+lt$.TxEn(gnta) (3. 6)

            =Pn(En)

aimost everywhere a by the ergodic theorem (3. 1), and the last term is greater

than 1-S by (3. 5). q. e. d.
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   If vas ls a finite measurable partition of AM <for some m), the entropy of va

with respect to some probability measure a(･) is defined by

                  H<va;q)=- -Xq(A) log q(A),

                             A

where the surnmatioR is taken over all atoms of va and O log O is assumed to be

O. Suppose that to' has the atoms of equal measure with respect to P, i. e., if

B is an atom of ta andlis the number of atoms in tw then P(B-" )=1/l. IR this

case the entropy of va with respect eo P is equal to log l, whick is the maximum

value of the entropy under assumptioR that the number of the atorns is l, and we

put ,Nb=:log l. For all aesiA" and all in£eger t, rn(･;gnta) is a probability meas-

ure, therefore we can construct the entropy of ta with respect to such a measure.

For this entropy we get the following theoreir}, under the same･ assumption as

Lemma 3. 1.

   THEoREM 3. 1 .l71or evexy 6>O and ti>O there exists a mtmber ne and for every

nkno, the ratio of the inequality

                         A                      il( ta;rn(';gpnta>) llill Hb -E (3. 7)

is greater than 1-6, for aimost everyzvhere aEA'` zvith resPect to the measure Pn.

   Proof] As the fuRction-£i,..ixi log xi is continuous on

          Al,. {(x,, ･-･, xi)EIIRI:xi-:;}iLO i=1, 2, ･･･, l, ZS･..,xi -- 1},

there exists e'>O such that

                     -iZ]f･--i xi }og xi 2-}rz lilb -s (3. s)

if lxi-1/II <6'(i -- 1, 2, ･･･, l). For this E', a/l and an atom B, we apply Lemma

3. 1, then there exists a number 72e' = no'(e',S/l,B) and for ali n>ne', the ratio of

                           A --                        I r"(B; {on`a) - P(B) I < e'

is greater than 1-6/l for a. e. a. Thus we put

               ne =: max{ne'(E', b/l, B):B is an atom of ta},

then for all n>no, the ratio of

                       A A.                   []rn (B;gn`a) - P(B)1<s' for all B]

is greater than 1-S for a. e. a, becau$e the "ratio" ls an additive $et function on
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the set of all integers, l. e. , if ratios exist for sets Fi and F2 which are disjoint,

then the ratio of FiUF2 exists and equais to a sum of two ratios of Fi and F2.

   Therefore, by (3. 8> the ratio of

                           A                        fl< ue; rn(･;gnta)) llil; Hb - s

is greater than 1-6 almost everywhere a. q. e. d.
   The above theorem is considered as a time-reversibie analogy of the H-theo-

rem in the statistical mechaRics. That is, the tkeorem asserts that the macro-

scopic state remains in a neighborhood of the maximum entropy for arbitrarily

long time, if the number of moiecules is large enough. Subsequently, if the initiai

state happeRs to be at the small entropy, then the entropy increasing is probable

in the next iRstant. The theorem takes a time-reversible form, in which the

existance of fiuctuations is allowed, even if the fluctuations are periodic. These

circumstances are shown by some instructive examples in S5. Therefore the

criticisms by Loschrnidt and Zermelo-Poincar6 are irrelevant to our time-reversible

H-theorem.

                           4 Seme Extensions

   In the previous section, the time was discrete, thus let us consider the case

of continuous time at first. For the parameter t in gnt, we assume that the real

value instead of integer is allowed and the foiiowing conditions are suppiemeRted:

   1. For ali real value t, pnt is an invertible measure preserving traBsforma-

tion on (A", .gf", Pn),

   2. for ali t and s, gntg,tS==gnt'S,

                        'and

   3. for all pa"-measurable funceion f, f(gnta) is a joint measurable function

on RixA" as a function of a pair of variables (t,a).

The transformation which satisfies l,2 and 3 is called a flow. The flow is ergodic

if for alU gntE= E mod Pn implies Pn(E> =O or 1. The foliowlng ergodic theorem

for the fiow is well known.

   THEoREM (Ergodic Theorem for Flows) lf gn` is ergedtc, then for any inte-

grable junction L

                Y-m.... 2iT If. f(gn`a)pn(da)=ffclpn a.e. (4. i)

   The definition of the ratio given by Definition 2 is altered substituting the

counting measure c<･) on the integers by a usual Lebesgue measure on the real

axis. Moreover, replacing : in the formu!a (3. 6) by S, the proof of Lemma 3. 1

proceeds quite similarly, thus we conclude that Lemma 3.1 holds even if time is
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                                          '
continuous. Therefore Theorem 3. 1 is also applicable to the continuous case.

   Next, let us extend the concept of entropy. The amount

                                           q(A)                      J( ca ;q, P) = ]Z] q(A) log                                                                   (4. 2)
                                  A ,F}(AA'>

is called the Kullbacl<-Leibler entropy, where the summation is taken over all

atoms of a finite partition ts'. It is well known that this entropy is nonnegative

and equal to zero if and only if q(A)= P(AN ) for all atom AA". In case P(AN>=1/l,

(4. 2) becomes

               log l -]Z] q(A) log q(A) = Hb - H< ta ;q),

                     A

coBsequently the Kuilback-Leibler entropy is a sort of difference between the

maximum entropy and the usual eRtropy. Thus the notion of entropy increasing

corresponds to decreasing of the Kullback-I.eibler eRtropy. If we use the Kullback-

Leibler entropy, we need not choose the partition of equi-atoms. Then Theorem

3.1 becomes the next theorem, the proof of which is similar.

    THEOREM 4.1 ,For any .17nite Partition ca of AM and fbr any e>O, o">O,

there exists a number ng, and for all n>ne, the ratio of the inequality

                         1< s;li' ;rn(･;gonta), P) xS E

is greater than 1-6, almost everywhere a.

    In case va posesses atoms of equi-measure, the above theorem reduces to

Theorem 3. 1.

                                                               m
                               5 Examples

    At first, we raise a simple exampie: let A be {O, 1}, and P be a probability

measure on A", which is coordinatewise-iBdepeRdent and P([O]f)me P<[1]i')==1/2

for all iGAr where [i]iww- {xeX: xi--i}. Obviously P is an ergodic measure with

respect to the shift transforrnation S on AN. For ehe transformation gn, we

choose an operation which adds 1 to an element of An considered as a binary

number, i.e. , writing

                         a = (al, a2, ･･･, an) EiiAn,

we put

                           gna :(bi, b2, ''', bn)

 where bi's are such that
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            bn2n-i+bn-i2"-2+･･･-l-bi=an2"-i+an"i2"-'2+･･･+ai+1,

and partlcularly (bi,b2,･･･,bn)==(O,O,-･･,O) if a :=(1,1,･･-,1). Then gn is an ergodic

transformation on A" with respect to the measure Pn which is a marginal distrl-

butlon of P on pa't. I.et tu l)e a partitlon of Ai, which posesses two atoms {O}

and {1}. Choosing 2 as a base of the logarithm and starting from a=(O,O,-･･,O),

vLre get Fig. 1, which represents the variation of eneropy with time, when n =10.

Entropy decreases many times, however, it has a tendercy to increase in a long

range time. The inverse operation of gn exists, as it is a minus-one-operation,

thus we get the similar graph as Fig. 1 in the negative direction of time. More-

over we note that gn is a periodlc transformation, hence it has the so-cailed

Poincar6 periode trivialiy.

  1,O
l'
:
E
H
I

-
os
g o.s
I
Sd
i

        o lo 2o 3o 4o so 6o 7o so go zoe zio no 13o
                                    Time

     Fig. 1 The variation of entyopy with time, advanced by binary addition.

   We can make an example, in which Pvz's differ from marginal distributions

of P. Let (X,ff) be same as the first example, and

                    """"" = ( l,,,.Lf,3:,`k?UIkL?'

where aGA", then Pn converges uniforrnly and inductively to the probabity meas-

ure P defined in the first example. We choose gn as a linear transformation of

a vector a=(ai,a2,･･･,an), whlck has a period 2n-i, e. g. ,
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                       sonm-O O ･ ･ ･ O 1',

                             1 b, ,
                               10 b,
                                             .
                               o･
                                              .
                           - lbn-i..

where (bi,b2,･･･,bn-i> is a sequence of O's and 1's sttch that

                       x'i + bnf.ix'i-i + ･･ny + bix + 1

is a pyimitive irreducibie polynomial. TheR we getthe similar grapk as Fig. 1.

   The third example is one of the cases of continuous time. Let A be [O,2rc),

the kalf open interva! of Ri, and let P be a countably infinite product of the

normallzed Lebesgue measure on A=[O,2x), and Pn is the marginal distribution

of P. Put

                  gnta=(ai+0it,a2+02t, -･, an+0"t), (5. 1)

where tlte coordiRate-wise addition and multiplication are taken as modulo 2z,

then it satisfies the conditions of the flow. If the equality

                             n                            IZ] miOi yn･2z (5. 2)
                            ;==1

does not hold for all integers mi, m2,･･･,mn, m. which are not zero simultaneously,

then gnt is ergodic (See Kawadai)). For instance we ckoose

                     0i rm-zlog2 ki i=1, 2, ･･･, n, (5. 3)

where fei is the (i+1)-th prime number, i.e., fei==3, fe2==5, fe3==7, ･･････, tken

(5. 2) is equivalent to

                          le lfni le2)il2 ... knnln =: 22}n (5. 4>

whick is impossible, i. e., choosing as (5. 3), gnt becomes ergodic. Choosing ta

asapartition of [O, 2r,) to the octants, we get Fig. 2 in case n::;24. We can

observe the fluctuations in the tendency of entropy increasing.

    If our abstract H-theorem is applicable directly to the model of the perfect
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         Fig. 2 The variation of entropy with time, advanced continuously

             by an irrational rotation.

elastic collision of the molecuies, then the primitive H-theorem by Boltzmann

can be rewritten into the time-reversible form. However, we meet the two dira-

cult probiems to do so, one of which is whether the model is ergodic or not, and

the other of which is whether or not the invariant measure of the model of finite

molecules converges to some shift-ergodlc measure, when molecuies increase.

Tlte second problem is reiated to a sort of law of large numbers, the consistency

of which seems quite doubtful in many actual physical systems because lt is pro-

bable that the system becomes more complicated and changes itself qualitatively

when the number of moiecules increases.
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