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An abstract theorem, which is an analogy of Boltzmann’s H-theorm, is proved
by the method of the ergodic theory. The theorem allows dynamical reversibility, i.
e., in our formulation, it is not absolutely certain that entropy increases monotonically,
but it is overwhelmingly unlikely that it decreases if the number of molecules is
large enough. The theorem can be extended in two directions: the one is in continuous
case and another of which is in the case of more general entropy. Finally, three

instructive examples are shown satisfying the conditions of the theorems.
1 Introduction

The H-theorem by Boltzmann in statistical dynamics was abstractly reformu~
lated by Yosida® (p.392) and by others** who used Markov operators. As to the
H-theorem, which asserts the increase of entropy for time, there have been some
criticisms, e.g., the criticisms posed both by Loschmidt and by Zermelo-
Poincare. By the allowance of the existence of the fluctuations, we can answer
these criticisms (for example, see Radushkevitch® Chap.2 §6). The mathematical
formulations, however, are not sufficient. Obviously, the method of Markov
operators does not make models time-reversible, so such a formulation can not
answer the criticisms.

In this paper, we propose one of the abstract models, which are time-reve-
rsible and to which the criticisms are irrelevant.

2 Preliminaries

Let (A, &) be a measurable space, and (A¥, ¥) be a direct product
measurable space of countablly infinite copies of (4, &), where N is a set of
all positive integers. Sometimes we denote (AY, s7¥) by (X, £°). For x€X,
x; represents the i—th value of x, A; represents the i-th space of AY, and .o;
is the o-field of A;, which is a copy of &7, Let S be the shift transformation on
AN e, for xeX, (Sx)i=xiy1. Clearly S is a measurable transformation on (X,
&7). Similarly we introduce a measurable transformation S» on (A%, &), which
is defined as: for a€A”, (Su a)i=aiy if i+1=<n, and (S» a)n=ay, i.e., Suis a

* Professor, Department of Information Engineering
*##% It is also known that the similar inequality holds in quantum statistics (cf. von Neumanns3>
and also see Nakamura and Umegaki?).
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cyclic rotation of @, where A*=IT1A; and ow"=I1] ;.

Let p» be a probability measure on (4", s»”)and P be a probability measure
on (X. £°). In such a situation we define:

DEFINITION 1. The probability measures pn (=1, 2, - )} are Ul-convergent
(convergent uniformly and inductively) to the probability measure P if for all £>0
there exists a number n,, and for all # (=n,) and all B w?

|pa(B) — P(B)| <¢,

where B is an imbedding of B to X, i.e.,

E :{x e X:(xl, Xg, *reeee , Xn)EB}.

Especially if p» is a marginal distribution of P on (A", "), then p» is Ul-
convergent to P trivially. The following lemma is obvious.
LeMMA 2.1 pu is Ul-convergent to P if and only if

llmen - PHn - O,

where ||-||n is a total variation of a measure on (A%, ).

Let us assume that P is invariant under the transformation S and p»'s (n=1,
2,--+} are invariant under Su, l.e., for all £ e 22, P(E)= P(57'E), and for all
Few” pu(F)=pa(Sn LF).

For an element ¢ €A4” and a set B =", we put

1 n—1 .
rao(Bja) = ;"—20 25(Sn'a), (2.1)

where xz is a characteristic function of a set E. Then, evidently 7x(-;a) is a
probability measure on " for every a=A”", and 7a(B;-) is a measurable func-
tion on A" for all Be s, For x=X, the n-tuple (xi1, xs, ---, x«) is regarded as
a point of A”, which we denote by =u(x). Clearly #a{-;za(x)) is a probability
measure on " for all x€X. Then we get:

LEMMA 2.2 If P is ergodic with vespect to S, then for every BE sr™ (meN),

(B 2n(x))—P(B) P-a.e x,

oo
(nzm)

where B is an imbedding of B (CA™) into A"
Proof. First, we see

~ 1% 1 .
7’11(B; TEn(X)) = ';Z“ XE(Snlﬁn(x»
=0
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n—m

n~1
£ 2‘_, AHSHima() + = ST gg(Sulmalx)) (2.2)

i=n—m41
Now we note that

xﬁ(Swzirz;z(x)) = xE(Six)

if i<n—m, because Sniﬂ'iz(x)Eg is equivalent to S»i(x1, ¥s, -, xn) € :Z?, and to (x:.:,
Xo4i, -~-xm+i)E§ as m—+i<n, which is also equivalent to SixeB. Hence (2. 2)
becomes

—m n—1

ng (S'x)+—- 21 1pSaialx)

i=n-—m-+1

1 ~1 1 =1 i A
- Z} fS’x) + = 2 {5(Su'an(x))— xz(S'2)}. (2.3)
nfn Bimn T
The first term of (2.3) is convergent to P(B) as P is an ergodic measure with
respect to the transformation S, and the second term of (2.3) goes to 0. q.e. d.

As the almost everywhere convergence implies the convergence in probability,
we get the following lemma.

LemMMA 2.3 Under the same assumption as the previous lemma, 7'11(3\; (%))

converges to P(B) in probability, i.e., for every €>0,

lim P{x:|7a(B;zn(x)) — P(B)|= &} =0. (2. 4)

-roo

3 A Time-Reversible H-theorem

Let ¢ be an invertible measure preserving transformation on A" with respect
to the measure pn. Further, we assume the ergodicity of ¢». Then by the ergo-
dic theorem, for all LY{(A", ", pa)-function f, we see

71‘1_1”130 2T+ 1 ,Z.}.Tf (QDM LZ) = J "fdpn pn-a.e. a. (3 1)

Let F(f) be a logical proposition for the integer f, then we define:

DEFINITION 2. A ratio of F(t) is a value of a limit

hm c{t: —T<i<T, F(t) is true}

in case the limit exists, where ¢(+) is a counting measure on the set of all in-
tegers. Similarly a ratio of a set Fy of integers is a ratio of a logical proposition

“teFy’, if it exists. Sometimes we use above two notions indiscriminately.
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By this terminology, we get the following lemma.

LEMMA 3.1 Let m be an arbitravily fixed positive integer, and pn be Ul-
convergent to P. We assume that pn is ergodic with respect to on for all n. For
every €0, every 0>0 and every Be&. ™, there exists a number ny, and for all
n=mny, the ratio of the inequality

\ru(B;pnta) — P(B)| < e (3.2)
is greater than 1-3, for almost everywhere a= A" with respect to the measure pa.
Proof. Let us denote
En=1{a:|ruB;a) — P(B)| <},
which belongs to .&#%”. Then
En e {x:nn(x) S En}
= {x: |7a(B; malx)) — P(B)| e},

which belongs to £°. By Lemma 2.3,

}lﬂ P(Ex) = 1. (3.3)

As pn is Ul-convergent to P, we see

lim |pa(En) — P(Ex)| = 0. (3.4)

oo

From (3.3) and (3.4), there exists a number #, such that

pu(En) >1—6 (3.5)
for all n=n,. Then
_ B. N __ DR
}ll‘l’_l”lm 2T 1c{t T<tZT, |ra(B;pita) — P(B)| <&}
1
= M < nt n
Thrr:o T 1 c{t T<tET, pn'a € Eu)
1 A :
ZI‘I—I}ZO 2T+1 Z XEn(ﬁD" a) (3' 6)
:ﬁn(En)

almost everywhere a by the ergodic theorem (3.1), and the last term is greater
than 1—4 by (3. 5). q.e.d.
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If < is a finite measurable partition of A™ (for some m), the entropy of <&
with respect to some probability measure ¢(-) is defined by

H(z;q)= *-; q(A) log ¢(A),

where the summation is taken over all atoms of < and 0 log 0 is assumed to be
0. Suppose that & has the atoms of equal measure with respect to P, i.e., if
B is an atom of < and [ is the number of atoms in <& then P(E):l/l. In this
case the entropy of & with respect to P is equal to log /, which is the maximum
value of the entropy under assumption that the number of the atoms is /, and we
put Hy=log I For all a A" and all integer ¢, ra(-;pn'a) is a probability meas-
ure, therefore we can construct the entropy of & with respect to such a measure.
For this entropy we get the following theorem, under the same- assumption as
Lemma 3. 1.

THEOREM 3.1 For every >0 and 0 >0 there exists a number ng and for every
n=mny, the ratio of the inequality

H(Z ral-300'a) 2 Hy — ¢ (3.7)
is greater than 10, for almost everywhere a= A" with respect fo the measure pn.

Proof. As the function —)/_,

x; log xi is continuous on
A={(xy, -, x1)€R:xi =0 i=1,2, -, [, Zle xi =1},
there exists & >0 such that

—Zle x; log xi = Hy — ¢ , (3. 8)

if |xi—1/1) <&G=1,2, -, 1). For this &, 4/l and an atom B, we apply Lemma
3.1, then there exists a number ny = ny/(¢',5/[, B) and for all n>n,, the ratio of

|7 Bignta) — P(B)| <&
is greater than 1—0/! for a.e. a. Thus we put
1y = max{ny' (&', 6//, B):B is an atom of «#},
then for all n>n,, the ratio of
[17a (B;pnta) — P(B)|< & for all B]

is greater than 1—9 for a.e. @, because the “ratio” is an additive set function on
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the set of all integers, i.e., if ratios exist for sets Iy and Fy which are disjoint,
then the ratio of ;U [ exists and equals to a sum of two ratios of Fy and F..
Therefore, by (3.8) the ratio of

H(Z; ral~son'a)) = Hy — ¢

is greater than 1-—4 almost everywhere a. g.e.d

The above theorem is considered as a time-reversible analogy of the H-theo-
rem in the statistical mechanics. That is, the theorem asserts that the macro-
scopic state remains in a neighborhood of the maximum entropy for arbitrarily
long time, if the number of molecules is large enough. Subsequently, if the initial
state happens to be at the small entropy, then the entropy increasing is probable
in the next instant. The theorem takes a time-reversible form, in which the
existance of fluctuations is allowed, even if the fluctuations are periodic. These
circumstances are shown by some instructive examples in §5. Therefore the
criticisms by Loschmidt and Zermelo—Poincaré are irrelevant to our time-reversible
H-theorem.

4 Some Extensions

In the previous section, the time was discrete, thus let us consider the case
of continuous time at first. For the parameter ¢ in ¢»’, we assume that the real
value instead of integer is allowed and the following conditions are supplemented:

1. For all real value ¢, ¢’ is an invertible measure preserving transforma-
tion on (A", ", pu),

2. for all ¢ and 5, prlEs=pn'*s,
and

3. for all sv"-measurable function f, f(en’a) is a joint measurable function
on R'x A" as a function of a pair of variables (¢, a).

The transformation which satisfies 1,2 and 3 is called ¢ flow. The flow is ergodic
if for all ¢ p’E=E mod pn implies pu(E)=0 or 1. The following ergodic theorem
for the flow is well known.

THEOREM (Ergodic Theorem for Flows) If o’ is ergodic, then for any inte-
grable function f,

.1 (T ; J
— = . e 4.1
lim 5 j_T Flonta)pn(da) = | Fdpn a.e 4.1)

The definition of the ratio given by Definition 2 is altered substituting the
counting measure ¢(-) on the integers by a usual Lebesgue measure on the real
axis. Moreover, replacing 3" in the formula (3.6) by §, the proof of Lemma 3.1
proceeds quite similarly, thus we conclude that Lemma 3.1 holds even if time is
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continuous. Therefore Theorem 3.1 is also applicable to the continuous case.
Next, let us extend the concept of entropy. The amount
q(4)
Wz 3q, Py=2 q(A) log——=- (4.2)
; P(4)
is called the Kullback-Leibler entropy, where the summation is taken over all
atoms of a finite partition <. It is well known that this entropy is nonnegative

and equal to zero if and only if g(A)=P(4) for all atom A In case P(A)=1/,
(4. 2) becomes

log l~§q(z4) log ¢(A)= Hy— H(# ;q),

consequently the Kullback—Leibler entropy is a sort of difference between the
maximum entropy and the usual entropy. Thus the notion of entropy increasing
corresponds to decreasing of the Kullback-Leibler entropy. If we use the Kullback—
Leibler entropy, we need not choose the partition of equi-atoms. Then Theorem
3.1 becomes the next theorem, the proof of which is similar.

THEOREM 4.1 For any finite partition <& of A™ and for any §>0, 6>0,
there exists a number ny, and for all w>ny, the ratio of the inequality

](»%irn(';gonta), Pyge

is greater than 1—é, almost everywhere a.
In case & posesses atoms of equi-measure, the above theorem reduces to
Theorem 3. 1.

5 Examples

At first, we raise a simple example: let A be {0, 1}, and P be a probability
measure on AV, which is coordinatewise-independent and P([0];)=P([1])=1/2
for all j& N where [{];={xX : xj=i}. Obviously P is an ergodic measure with
respect to the shift transformation S on A¥. For the transformation ¢u, we
choose an operation which adds 1 to an element of A" considered as a binary
number, i.e., writing

a = {(a, as, -, an) A",
we put

onad = (bl, b2; Tty b")

where b;i's are such that



8 Yatsuka NAKAMURA

b"271—1+b"_1271—-2_}_ "'+b1:a712n—1+a11_12n—2+ ta 1,

and particularly (bi,bs, -+, bn)=(0,0,---,0) if a=(1,1,---,1). Then ¢x is an ergodic
transformation on A” with respect to the measure p» which is a marginal distri-
bution of P on " lLet & be a partition of A!, which posesses two atoms {0}
and {1}. Choosing 2 as a base of the logarithm and starting from «=(0,0,---,0),
we get Fig. 1, which represents the variation of entropy with time, when #=10,
Entropy decreases many times, however, it has a tendercy to increase in a long
range time. The inverse operation of ¢» exists, as it is a minus-one-operation,
thus we get the similar graph as Fig. 1 in the negative direction of time. More-
over we note that ¢n is a periodic transformation, hence it has the so-called
Poincaré periode trivially.

0.5 1

Entropy [bit]

¥ T U i T T ) ¥ T

0 10 206 30 40 50 60 70 80 90 100 110 120 130
Time

Fig. 1 The variation of entropy with time, advanced by binary addition.

We can make an example, in which pu's differ from marginal distributions
of P. Let (X, £#”) be same as the first example, and

pul{a}) = { 0 if @=(0,0,---,0)
1/(2"—1) otherwise,

where a€ A", then pn converges uniformly and inductively to the probabity meas-
ure P defined in the first example. We choose ¢x as a linear transformation of
a vector a=/{ai, as, ---,an), which has a period 2"7!, e.g.,



A Time-Reversible Formulation of the H-Theorem 9

on=[ 0 0 - « - 0 17
1 by

10 bs

) :

i 1bus.

where (by,bs, -, ba-1) is a sequence of 0's and 1's such that
X" 4 b X"+ bhix 1

is a primitive irreducible polynomial. Then we get the similar graph as Fig. 1.

The third example is one of the cases of continuous time. Let A be [0, 2x),
the half open interval of R!, and let P be a countably infinite product of the
normalized Lebesgue measure on A=[0,2x), and p» is the marginal distribution
of P. Put

gon“a = (611 + 01t, as -+ ﬁzt, e, An -+ 6nt), (5 1)

where the coordinate-wise addition and multiplication are taken as modulo 2=,
then it satisfies the conditions of the flow. If the equality

"
Z mil; = m-2x (5. 2)
i=1

does not hold for all integers my, ma, -+, mn, m. which are not zero simultaneously,
then ¢« is ergodic (See Kawadal)). For instance we choose

0; = = logs ki i=1,2, -, n, (5. 3)
where k; is the (i+1)—th prime number, i.e., £1=3, ky=5, ky=7, - , then
(5. 2) is equivalent to

Ry kg voe ByMn = 28 (5. 4)

which is impossible, i.e., choosing as (5.3), ¢»’ becomes ergodic. Choosing <&
as a partition of [0, 2z) to the octants, we get Fig. 2 in case n=24. We can
observe the fluctuations in the tendency of entropy increasing.

If our abstract H-theorem is applicable directly to the model of the perfect
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3.0 o

8 . ore, 00,800 00000, ,
P A T i e A R T AL R A
P D O

Entropy [bit]
N
(o]

Y T i T T T T

0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6 1.8
Fig. 2 The variation of entropy with time, advanced continuously
by an irrational rotation,

elastic collision of the molecules, then the primitive H-theorem by Boltzmann
can be rewritten into the time-reversible form. However, we meet the two diffi-
cult problems to do so, one of which is whether the model is ergodic or not, and
the other of which is whether or not the invariant measure of the model of finite
molecules converges to some shift-ergodic measure, when molecules increase.
The second problem is related to a sort of law of large numbers, the consistency
of which seems quite doubtful in many actual physical systems because it is pro-
bable that the system becomes more complicated and changes itself qualitatively
when the number of molecules increases.
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