Journal of the Faculty of Engineering, Shinshu University, No 44, 1978 信州大学工学部紀要 第44号

第19回中国核爆発実験による強放射能粒子の Ge(Li)γ線スペクトロメトリーによる分析 (続 報)

> 带 刀 正* (昭和53年5月31日受理)

Analysis of Hot Particles from the Nineteenth Chinese Nuclear Test Explosion by Ge (Li) Gamma-Ray Spectrometry (Continued Report)

Tadashi TATEWAKI

The gamma ray spectra of the hot particles (highly radioactive fallout particles) due to the nineteenth Chinese nuclear test explosion on September 26, 1976 were obtained by the use of a Ge(Li) detector with high resolution in the shield cave of iron plates and lead bricks, 446 and 600 days after the explosion respectively. Without any chemical processing, many nuclides were identified in the gamma ray spectra. The nuclides of fission products such as 95Zr, 95Nb, 106Ru - 106Rh, 125Sb, 141Ce, 144Ce - 144Pr and ¹⁵⁵Eu were identified. ⁵⁴Mn, ⁵⁷Co, ⁵⁸Co and ¹⁸²Ta as the induced radionuclides were also identified. The ages of the hot particles were estimated by the activity ratios of 95 Zr to 95 Nb, calculated from the observed emission ratios, R_{b0} , R_{c0} , R_{d0} and R_{e0} , which represent the emission ratios of the gamma rays [95Zr (724keV)+95Zr (756keV)]/ 95Nb (765keV), 95Zr (724keV)/ 95Nb (765keV), 95Zr (756keV)/ 95Nb (765keV) and 95Zr (724 keV)/ [95Zr (756keV)+95Nb (765keV)], respectively. There was good agreement observed between the actual ages of the hot particles and the ages of those estimated from the emission ratio, R_{b0} , which was given correction of counting efficiencies for the photopeak areas of above-mentioned gamma rays and was independent of the branching ratio of the gamma rays 95Zr (724keV) and 95Zr (756keV). The youngest age of the hot particles estimated by this method was 4 days after the explosion and the oldest was about 440 days.

1まえがき

1976年9月26日に行われた第19回中国核爆発実験に由来する強放射能粒子に対し、爆

^{*} 応用物理学教室 教授

発後4日から80日にわたる期間において、Ge(Li)検出器を用い、ア線スペクトロメトリーを行ったが、強放射能粒子に含まれる核種の定性分析結果とそのうち主なる核種のア放射能減衰特性について前報¹⁾に発表した. その後1年余り経過した時点では上記粒子の放射能強度は著しく減衰し微弱となったので、今回は極めて長時間をかけて測定を行ない、得られたア線スペクトルを解析した結果について報告する.

また放射性降下物の核爆発後の経過時間すなわち年令を 推定する 方法 については, 真 室²⁾らは ⁹⁵Zr と ⁹⁵Nb の放射能比による年令推定法として emission ratio ⁹⁵Zr (724 keV) /95Nb (765 keV)と 95Zr (756 keV)/95Nb (765 keV)を用い,藤井3)らは emission ratio 95Zr (724 keV)/[%Zr(756 keV)+%Nb(765 keV)]による方法を発表しているが, 前者はこの 年令推定法の適用できる範囲として爆発後およそ 15 日から 150 日までとしており, 揮発 性核種のきめて少ない放射性降下物に対しては 15 日よりかなり少ない 年令まで 推定でき るものとしている. これに対し著者⁴⁾⁵⁾は ⁹⁵Zr と ⁹⁵Nb の放射能比による年令推定法の中 で emission ratio [95Zr(724 keV) +95Zr(756 keV)]/ 95Nb(765 keV) によるのが,前記 emission ratio を用いた年令推定法に較べ、分岐比の影響を全く受けることなく推定年令 値が最も誤差が少ないことを報告した. 一般に核爆発後も経過時間が永くなるにつれて, 放射性降下物の放射能も次第に減衰し,それとともに %Zr と %Nb の放射能比もまた小さ くなる. 従ってこの小さくなった放射能比の実測値における僅かな誤差も %Zr-%Nb 放 射能比曲線から放射性降下物の推定年令値に大きな誤差をもたらすことが予想される.そ こで上記核種の光電ピークの面積(強度)を正確に測定して精度を上げるためには,長時間 の測定が必要となり、その間の測定系の安定化がきわめて重要となる.前回455は爆発後13 日から67日経過した強放射能粒子に対して年令推定を試み,推定値と実測値がよく一致 することを明らかにしたが、今回は適用範囲を広げて爆発後4日および400日以上経過し た年令の強放射能粒子に対し, ⁹⁵Zr と ⁹⁵Nb の放射能比による年令推定が可能か否か,ま たその際の推定年令値の誤差はどれほどになるかを実験的に明らかにする.

2 試 料

前報¹⁾で報告した r 線スペクトロメトリー用試料 No. 1 と No. 2 はそれぞれ当工学部共 通講座建物屋上と著者の自宅(工学部北東 8 km)の屋上で採取した強放射能粒子のうちで, 比較的放射能の強い粒子を前者は 18 個,後者は 20 個を選び,それぞれ1個のステンレス 製試料皿にまとめたものであったが,核爆発後約 400 日以上経過した時点では放射能強度 が著しく減衰したので,両試料皿中の放射能粒子を一枚の薄いマイカのプレート上に移し 合わせたものを今回の r 線スペクトロメトリー用試料 No. 3 とした.

3 測 定 装 置

前回と同じく測定装置はORTEC社のガンマⅢ形コンピュータ処理方式の γ 線スペク トロメータを用いた.今回は特に低レベルの微弱な γ 放射能を測定するために,低バック グランドにする目的で,Ge(Li)検出器の部分を厚さ 5 cm の鉄と厚さ 10 cm の鉛でしゃへ いした.

Fig. 1. γ-ray spectrum of hot particles sample No.3 measured from Dec. 13 to Dec. 16, 1977, 443 to 446 days after the 19th Chinese nuclear test explosion on Sept. 26, 1976. [50 keV~1600 keV]

4 測 定

測定は 1977 年 12 月 13 日から 16 日までと 1978 年 5 月 18 日から 19 日までの 2 回, 試料 No. 3 について第二精工舎のアプリケーションラボラトリーで行なった.

4.1. γ線スペクトル

Fig. 1 は試料 No. 3 について核爆発後 443 日から 446 日経過した 1977 年 12 月 13 日から同年 12 月 16 日にわたり, Live time 247,555 sec (2.865 day) をかけて測定した r線 スペクトルにして,そのエネルギー範囲は 1600 keV までである. Fig. 2 は Fig. 1 のエネルギー範囲 40~270 keV の部分を拡大した r線 スペクトルを示すものである. Fig. 3 は試料 No. 3 を爆発後 600 日経った 1978 年 5 月 18 日から 19 日まで Live time 111,560 sec (1.291 day)をかけて測定した r線スペクトルで,そのエネルギー範囲は 1650 keV までである. また Fig. 4 は Fig. 3 の 25~250 keV のエネルギー範囲を拡大した r線スペクトル である. Fig. 5 は Ge(Li) 検出器の部分を鉄と鉛でしゃへいした状態で上記測定装置によ

Fig. 2. γ-ray spectrum of hot particles sample No.3 measured from Dec. 13 to Dec. 16,1977,443 to 446 days after the 19th Chinese nuclear test explosion on Sept. 26, 1966. [50 keV~270 keV]

Fig.5. Natural background γ -ray spectrum obtained by the use of the Ge(Li) detector in the shield cave of 5-cm-thick iron plates and 10-cm-thisk lead bricks.

nuclear test explosion on Sept. 26, 1976. [30 keV~2350 keV]

り測定したバックグランドスペクトルを示す. なおこのときの Live time は 650,697 sec (7.531 day)であり, エネルギー範囲は 0~2000 keV である. Fig. 6 は Ge(Li) 検出器を しゃへいせずに 核爆発後80日目の1976年12月15日に Live time 55, 225 sec (15.34 hour) をかけて測定した試料 No. 2の r線スペクトルにして, 前報¹⁾に掲載しなかったが, しゃ へい効果および r線スペクトルの時間的推移を知るために掲げたものである.

4.2 核種分析

前回¹⁾と同じく Ge(Li) 検出器に対する r線エネルギー並びに計数効率用標準線源には, ⁵⁷Co(122.1 keV, 136.4 keV), ¹³³Ba(81.0 keV, 276.4 keV, 356.3 keV, 384.1 keV), ¹³⁷Cs(661.6 keV), ⁶⁰Co (1173.2 keV, 1332.5 keV) を使用した. これら標準線源の r線ス ペクトルから最小 2 乗法により, エネルギー較正曲線と計数効率曲線を求めた. すなわち 前者は r線の光電ピークのエネルギー値 E_i はその光電ピークのチャンネル数 x_i の 2 次曲 線として, また後者はエネルギー E_i の光電ピークの計数効率 ε_i の自然対数値が光電ピー クのエネルギー値 E_i の自然対数値の 2 次曲線としてあてはめを行なって定めた. しかる 後試料中に含まれる核種の光電ピークの正確なエネルギー値とその計数効率を算定した. このほか光電ピークの高さ, 面積, 強度, 面積の相対標準偏差および半値巾をコンピュー タにより求め, これらのデータを基に別記文献^{6~11)}を参照して, 光電ピークのエネルギー 値に対して核種の同定を行なった.

試料 No. 3 を 1977 年 12 月 13~16 日と 1978 年 5 月 18~19 日に測定したものについて, 同定された人工放射性核種とその 7 線エネルギー値を Table 1 に示す. Table 1 から核

· · · · · · · · · · · · · · · · · · ·			[1
γ-ray ene	rgy (keV)	Assigned	γ-ray ene	rgy (keV)	Assigned
Dec. 13~16, '77	May 18~19, '78	Nuclide	Dec. 13~16, ,77	May 18~19, '78	Nuclide
	35.5	PrKa1	236.2		^{95m} Nb
_	40.5	PrKβ1	428.5	427.8	¹²⁵ Sb
53.4	53.2	¹⁴⁴ Ce	464.2	463.5	¹²⁵ Sb
58.8	59.1	¹⁴⁴ Ce	512.0	511.1	{ ¹⁰⁶ Rh
68.1	67.5	¹⁸² Ta	697.2	697.2	Annihilation
80.5	80.0	¹⁴⁴ Ce	724.9	724.2	⁹⁵ Zr
87.0	86.4	¹⁵⁵ Eu	757.4	756.7	⁹⁵ Zr
100.5	100.0	¹⁸² Ta	766.5	765.7	⁹⁵ Nb
105.7	105.2	¹⁵⁵ Eu	811.4	810.6	58Co
122.6	122.0	⁵⁷ Co	835.5	834.8	⁵⁴ Mn
134.0	133.5	¹⁴⁴ Ce	1121.9	1120.9	¹⁸² Ta
146.1		¹⁴¹ Ce, ^{182m} Ta	1189.6	1188.3	¹⁸² Ta
152.9	152.5	¹⁸² Ta	1222.1	1221.2	¹⁸² Ta
176.8	176.4	¹²⁵ Sb	1231.5		¹⁸² Ta
179.9	180.2	¹⁸² Ta	1489.5	1488.6	¹⁴⁴ Pr
222.6	222.2	¹⁸² Ta			

Table 1. Assigned nuclides from the γ -ray spectra of sample No.3 (No.1+No.2) measured on Dec. 13~16, '77 and May 18~19, '78, respectively.

Induced Radionuclide	Main Nuclear reaction
⁵⁴ Mn	⁵⁴ Fe(<i>n</i> , <i>p</i>) ⁵⁴ Mn, ⁵⁵ Mn(<i>n</i> , 2 <i>n</i>) ⁵⁴ Mn
57Co	⁵⁸ Ni(<i>n</i> , 2 <i>n</i> , β) ⁵⁷ Co
⁵⁸ Co	⁵⁸ Ni(<i>n</i> , <i>p</i>) ⁵⁸ Co
¹⁸² Ta	181 Ta $(n, \gamma)^{182}$ Ta, 182 W $(n, \gamma)^{182}$ Ta, 182 W $(n, p)^{162}$ Ta
^{182m} Ta	$^{181}\mathrm{Ta}(n, \gamma)^{182m}\mathrm{Ta}$

Table 2.Main nuclear reactions for the induced radionuclidesproduced in the nuclear explosion.

Table	3.	Observed	γ−ray	energies	of	photopeaks	of	assigned	nuclides	for
	sa	mple No. 3	on da	ates of m	leas	uring.				

AT 111	TT 16 116	γ-ray energy	Date of M	Aeasuring
Nuclide	Half life	(keV)	Dec. 13~16, '77 (446d)	May 18~19,'78 (600d)
⁵⁴ Mn	303d	834.8	+	+
57Co	270d	122.0	+	+
⁵⁸ Co	71.3d	810.6	+	+
95Zr	65.3d	724.0;756.7	+ +	+ +
⁹⁵ Nb	35.3d	765.7	+	+
^{95m} Nb	3.75d	236.2	+	-
¹⁰⁶ Ru- ¹⁰⁶ Rh	367d30s	512.0	+	+
¹²⁵ Sb	2.73y	176.8;427.8;463.5	+ + +	+ + +
¹⁴¹ Ce	32.5d	146.1	+	_
¹⁴⁴ Ce	284.2d	*35.5; **40.5; 53.4;	+	+ + +
		59.1; 80.5;133.5	+ +	+ +
144Pr	17.3m	697.2;1489.5	+ +	+ +
¹⁵⁵ Eu	1.81y	86,4;105.2	+ +	+ +
¹⁸² Ta	115d	67.5;100.0;152.5;	+ + +	+ + +
		179.9;222.2;1120.9;	+ + +	+ + +
		1231.5	+	_
¹⁸² <i>m</i> Ta	16.2m	146.1	+	_

* Characteristic X-ray of PrK_{α_1}

** Characteristic X-ray of PrKβ1

分裂生成核種として⁹⁵Zr,⁹⁵Nb,⁹⁵¹⁰⁶Ru-¹⁰⁶Rh,¹²⁵Sb,¹⁴¹Ce,¹⁴⁴Ce-¹⁴⁴Pr,¹⁵⁵Eu が含まれていることが分り,誘導放射性核種としては,⁵⁴Mn,⁵⁷Co,⁵⁸Co,¹⁸²Ta が見ら れる.これら誘導放射性核種は核爆発の際,多量に生成された中性子と核爆弾の構造上の 材料との間の核反応の結果生じたものと考えられる.Table 2 にその主なる生成反応をか かげる. Table 3 は試料 No. 3 に含まれる放射性核種の光電ピークの時間的推移を核種別 に示したものである. Table 1 と Table 3 から分るように核爆発後 446日および 600日経 過した時点において, τ 線スペクトルには定性的な差異は殆ど見られない. 僅かに ¹⁴¹Ce (146.1 keV) と ⁹⁵^mNb(236.2 keV) および ¹⁸² Ta(1231.5 keV) が爆発後 446 日の τ 線スペ クトルには見られるが爆発後 600 日の τ 線スペクトルでは消えて見られない. これに反し PrK_α, と PrK_{β1} の特性X線のピークは爆発後 446 日の τ 線スペクトルには見られないが 爆発後 600 日の τ 線スペクトルにはよく現われている. これは新らたに取換えた Ge(Li) 検出器の特性によるものかと思われる.

5. 放射性降下物の年令推定

5.1. ⁹⁵Zr と ⁹⁵Nb の放射能比による方法

質量数 95 の崩壊系列は次のとおりである12).

⁹⁵Kr(short)
$$\longrightarrow$$
 ⁹⁵Rb(short) \longrightarrow ⁹⁵Sr(40s) \longrightarrow ⁹⁵Y(10m)
 \longrightarrow ⁹⁵Zr ($T_1 = 65.3d$) $\xrightarrow{a_2 = 0.02}$ ⁹⁵mNb ($T_2 = 3.75d$)
 $a_1 = 0.98$ \downarrow \downarrow $a_1 = 0.98$ \downarrow $a_2 = 3.75d$)

 95 Zr の先行核種の半減期は 95 Zr のそれよりははるかに短いので、 95 Zr が生成され、崩壊し始める時刻を核爆発の時刻としても放射性降下物の年令決定にはさしつかえないものと考える.いま核爆発の時刻から測った時間 t における 95 Zr と 95 Nb の放射能比を R_a と ta さると、

$$R_{a} = 1 / \left[\frac{T_{1}}{T_{1} - T_{3}} \left(a_{1} + \frac{a_{2}T_{1}}{T_{1} - T_{2}} \right) - \frac{a_{2}T_{1}T_{2}}{(T_{1} - T_{2})(T_{2} - T_{3})} e^{-\ln 2 \cdot (T_{1} - T_{2})t/T_{1}T_{2}} - \frac{T_{1}}{(T_{1} - T_{3})(T_{2} - T_{3})} e^{-\ln 2 \cdot (T_{1} - T_{3})t/T_{1}T_{3}} + \frac{T_{1}}{T_{2} - T_{3}} \left(e^{-\ln 2 \cdot t/T_{2}} - e^{-\ln 2 \cdot t/T_{3}} \right) \frac{N_{20}}{N_{10}} + \frac{T_{1}}{T_{3}} e^{-\ln 2 \cdot (T_{1} - T_{3})t/T_{1}T_{3}} \frac{N_{30}}{N_{10}} \right]$$
(1)

ここに T_1 , T_2 , T_3 はそれぞれ 95 Zr, 95m Nb, 95 Nb の半減期, a_1 , a_2 はそれぞれ 95 Zr \rightarrow 95 Nb, 95 Zr \rightarrow 95m Nb における分岐比にして, N_{10} , N_{20} , N_{30} はそれぞれ t = 0 における 95 Zr, 95m Nb, 95 Nb の原子数である. $T_1 = 65.3$ d, $T_2 = 3.75$ d, $T_3 = 35.3$ d, $a_1 = 0.98$, $a_2 = 0.02$ とおくと,

$$R_{a} = 1/(2.17932 + 0.002522e^{-0.17422t} - 2.1818e^{-0.0090211t} + 2.0697(e^{-0.0090211t} - e^{-0.17422t}) \cdot N_{20}/N_{10} + 1.8499e^{-0.0090211t} \cdot N_{30}/N_{10}$$
(2)

核爆発の時刻 t = 0 のとき $N_{20} = N_{30} = 0$ の場合,任意の時間 t における 95 Zr と 5 Nb の 放射能比を R_{a0} とすると,式(2)から

$$R_{a0} = 1/[2.17932 + 0.002522e^{-0.17422t} - 2.1818e^{-0.0090211t}]$$
(3)

核爆発後4日から1000日にわたる期間において、同一の放射能比の値に対応する R_a と R_{a0} による年令の理論的誤差をTable 4に示す. またTable 5 は瞬間的に行なわれた核分裂の際質量数95 に属する核分裂生成物の原子数すなわち収率値に関するWeaver¹³⁾等

Table 4. Difference between the ages calculated from the formulas of R_a and R_{a0} for the same value of the activity ratio of 95 Zr to 95 Nb.

$N_{ m 20}/N_{ m 10}+N_{ m 30}/N_{ m 10}$	Difference between ages (days)
0.001	0.1
0.01	1
0.1	10

Table 5. Atom numbers of fission products belonging to mass chain 95 per 10⁴ fissions for instantaneous fission.

							-	
	U–235 TH	U–235 HE	U–233 TH	U–233 HE	Pu–239 TH	U–239 HE	U–238 HE	
Br	-0.	-0.	-0.	-0.	— <u> </u>	-0.	-0,6785	
Kr	40,2162	10,1498	5.2437	-0.	21.5942	2,9986	63,5720	
Rb	212,0843	111.1648	117,0820	58.6639	146.2832	88.8392	218,8706	
Sr	277.1108	228,1295	284.1989	221.1415	230,8687	230,7380	192.0092	
Y	94.4378	120.8313	179.1254	205.7845	96.3280	154.5029	42.1823	
Zr	1.8908	13,5331	26.5186	47.5045	4.2790	25.4117	-0.	
CHAIN YIELD	625.7403	483.8086	612, 1685	533.0944	499.3532	502.4903	517.3127	
	U–235 FI	U233 FI	U-238 FI	Pu-239 FI				
Br	-0.	-0.	11.0342	-0.		1		1
Kr	40.3640	5,2235	135.5079	18.7808	nuclear	reactions r	s represent	t the
Rb	212.4956	117.0960	259,4009	125.8819	product	distributio	ns given l	bene-
Sr	277,5660	202.0487	135,5079	199.9898	ath ther	n TH, HE	and FI re	epre-
Y	94.7588	178,1896	11.0342	82,7369	sent the	energies o	of the bom	ıbar-
7.	1 8911	26 3721	-0.	3,6952	ding neu	trons for	U or Pu, 1	ther-
	1.0011			1	mol 14	Moll and	Santon area	+

のデータを示すものである.この表から 95 Zr までの累積収率値に比べて、 95 Nb と 95m Nb の独立収率値は極めて小さいことが分るので、ここでは R_a の代りに R_{a0} を選ぶ、放射能比を実測によって求めるには、 95 Zr(724 keV、756 keV)の r線と 95 Nb(765 keV)と 95m Nb (253 keV)の r線を測定する必要があるが、 95m Nb(253 keV)の r線は弱く測定しにくいので、これは省き、次の4種の emission ratio を考える.すなわち [95 Zr(724 keV) + 95 Zr (756 keV)]/ 95 Nb(765 keV)、 95 Zr(724 keV)/ 95 Nb(765 keV)、 95 Zr(724 keV)/ 95 Nb(765 keV)、 95 Zr(726 keV)/ 95 Nb(765 keV)、 95 Zr(724 keV)/ 105 Zr(756 keV)+ 95 Nb(765 keV)]をそれぞれ R_{b0} 、 R_{d0} 、 R_{d0} 、 R_{d0} とすると、これらは次の理論式で表わされる.

$$\left. \begin{array}{l} R_{b0} = (a_1/a_3)R_{a0}, \ R_{c0} = (a_{11}/a_3)R_{a0} \\ R_{d0} = (a_{12}/a_3)R_{a0}, \ R_{e0} = a_{11}R_{a0}/(a_{12}R_{a0} + a_3) \end{array} \right\}$$

$$(4)$$

ここに a_{11} , a_{12} はそれぞれ 95 Zr \longrightarrow 95 Nb のとき放射する 7 線 95 Zr (724 keV) と 95 Zr (756 keV)の分岐比である. また $a_1=0.98$, $a_8=0.99$ および $a_1=0.98$, $a_8=0.999^{14}$ とした とき,分岐比 a_{11} , a_{12} をパラメータとして式(3),式(4)を用い年令 t に対す R_{b0} , R_{c0} , R_{d0} , R_{c0} の理論値を電子計算機で計算し数表にしておくと便利である. N_{20} , N_{30} が既知の場合 は,式(4)の R_{a0} の代わりに R_a とおいて得られる emission ratio の理論式 R_b , R_c , R_d , R_e を用いればよい.

5.2 測定結果および考察

測定した試料の r線スペクトルにおいて, r線 ⁹⁵Zr (724 keV), ⁹⁵Zr (756 keV), ⁹⁵Nb (765 keV) の光電ピークの面積 (カウント数) をそれぞれ A_1 , A_2 , A_3 としこれら r線の計数効率をそれぞれ ϵ_1 , ϵ_2 , ϵ_3 とすれば, 上記 4 種の emission ratio R_{b0} , R_{c0} , R_{d0} , R_{c0} の実測値はそれぞれ次の実験式により求められる.

$$R_{b0} = \left(\frac{A_1}{\varepsilon_1} + \frac{A_2}{\varepsilon_2}\right) / \frac{A_3}{\varepsilon_3}, \quad R_{c0} = \frac{A_1}{\varepsilon_1} / \frac{A_3}{\varepsilon_3}$$

$$R_{d0} = \frac{A_2}{\varepsilon_2} / \frac{A_3}{\varepsilon_3}, \quad R_{c0} = \frac{A_1}{\varepsilon_1} / \left(\frac{A_2}{\varepsilon_2} + \frac{A_3}{\varepsilon_3}\right)$$
(5)

また上記の3本の7線のエネルギー値が接近しているので、計数効率をすべて等しいと みたときの4種の emission ratio をそれぞれ R'_{b0} , R'_{c0} , R'_{d0} , R'_{e0} とすると、これら emission ratio は次の如くなる.

$$\left. \begin{array}{l} R'_{b_0} = (A_1 + A_2)/A_3, \ R'_{c_0} = A_1/A_3 \\ R'_{d_0} = A_2/A_3, \ R'_{e_0} = A_1/(A_2 + A_3) \end{array} \right\}$$
(6)

Table 6 の値を用い式(5)または式(6)より求めた各 emission ratio の実測値を Table 7 に示す. これら emission ratio の実測値と式(4)の各式より求めた理論値とをそれぞれ対 比して求めた年令値を Table 8 と Table 9 に示す. ここに Table 8 と Table 9 は式(4) によって $a_1=0.98$, $a_8=0.99$ とした場合と $a_1=0.98$, $a_8=0.999$ とした場合に算定され た年令推定値を示すものである. 試料No. 1と試料No. 2によって核爆発後4日から80日

	(,,	1 (,,	(
Sample Measuring date		24 keV)	⁹⁵ Zr [(7	56 keV)	⁹⁵ Nb (765 keV)		
		ε1	A_2	ε ₂	A_3	ε3	
Sept. 30, '76	4564	0.007409	3929	0.007086	540	0.007002	
Oct. 29, '76	55630	0.007203	66357	0.006879	68208	0.006794	
Dec. 15, '76	115909	0.015467	138502	0.014361	281986	0.014146	
Dec. 16, '77	45576	0.019163	53470	0.018428	210016	0.018238	
	Measuring date Sept. 30, '76 Oct. 29, '76 Dec. 15, '76 Dec. 16, '77	$\begin{array}{c} \mbox{Measuring} \\ \mbox{date} \end{array} \begin{array}{c} \mbox{9}^{5}\mbox{Zr} (7) \\ \mbox{A_1} \end{array} \\ \hline \mbox{Sept. 30, '76} \\ \mbox{Get. 29, '76} \\ \mbox{Get. 29, '76} \\ \mbox{Get. 15, '76} \\ \mbox{I15909} \\ \mbox{Dec. 16, '77} \\ \mbox{45576} \end{array}$	$\frac{\text{Measuring}}{\text{date}} \xrightarrow{9^5 \text{Zr} (724 \text{ keV})}{A_1} \xrightarrow{\varepsilon_1}$ Sept. 30, '76 4564 0.007409 Oct. 29, '76 55630 0.007203 Dec. 15, '76 115909 0.015467 Dec. 16, '77 45576 0.019163	$\frac{\text{Measuring}}{\text{date}} \xrightarrow{9^5 \text{Zr} (724 \text{ keV})}{A_1} \xrightarrow{\epsilon_1} \xrightarrow{9^5 \text{Zr} (744 \text{ keV})} \xrightarrow{9^5 \text{Zr} (744 \text{ keV})}{A_2}$ $\frac{\text{Sept. 30, '76}}{\text{Oct. 29, '76}} \xrightarrow{4564} 0.007409 \xrightarrow{3929} 0.007203 \xrightarrow{66357} 0.007203 \xrightarrow{66357} 0.015467 \xrightarrow{138502} 0.015467 \xrightarrow{138502} 0.015467 \xrightarrow{138502} 0.015467 \xrightarrow{53470} 0.019163 \xrightarrow{53}{53} 0.019163 0.019163 0.019163 0.019163 000000000000000000000000000000$	$\frac{\text{Measuring}}{\text{date}} \xrightarrow{9^5 \text{Zr} (724 \text{ keV})} \xrightarrow{9^5 \text{Zr} (756 \text{ keV})} \frac{A_1}{A_2} \xrightarrow{\epsilon_2} \frac{1}{2}$ Sept. 30, '76 4564 0.007409 3929 0.007086 Oct. 29, '76 55630 0.007203 66357 0.006879 Dec. 15, '76 115909 0.015467 138502 0.014361 Dec. 16, '77 45576 0.019163 53470 0.018428	$\frac{\text{Measuring}}{\text{date}} \xrightarrow{9^5 \text{Zr} (724 \text{ keV})} \xrightarrow{9^5 \text{Zr} (756 \text{ keV})} \xrightarrow{9^5 \text{Nb} (776 k$	

Table 6. Photopeak areas (counts) and counting efficiencies of ⁹⁵Zr (724keV), ⁹⁵Zr (756keV) and ⁹⁵Nb (765keV).

Table 7	. Mea	asured	values	of	the	emission	ratios.
				~ ~		· · · · · · · · · · · · · · · · · · ·	

N	Sam	ple			Emission ratio									
Date				R _{b0}	R' b0	R _{co}	R' c 0	R _{do}	$R'_{\rm d0}$	R _{e0}	R' e0			
No. 1	Sept.	30,	'76	15.17724	15.72778	7.98756	8.45185	7.18968	7.27593	0.97532	1.02126			
	Oct.	29,	'76	1.73005	1.78845	0.76924	0.81559	0.96078	0.97286	0.39232	0.41341			
No. 2	Dec.	15,	'76	0.85975	0.90221	0,37594	0.41105	0.48381	0.49117	0,25336	0.27565			
No. 3	Dec.	16,	'77	0.45851	0.47161	0.20653	0.21701	0,25197	0.25460	0.16562	0.17297			

までの強放射能粒子の年令を推定するのに、a1=0.98、a3=0.99の場合と a1=0.98、a3= 0.999の場合を比較して見ても、それぞれの各 emission ratio により算定された対応する 年令推定値には余り差異が認められない. これに反し核爆発後 400 日以上経過した時点に おいて算定された試料 No. 3の対応する年令値には、かなりの差が生じて来ることがわか る.またこれら算定された年令推定値の真値に対する誤差も著しく大なるものがあり、そ のバラッキもまた大きい. さらに各 emission ratio に計数効率の補正をほどこした場合と しからざる場合について、 算定された対応する年令推定値は核爆発後4日と33日の場合 は殆ど差異は認められないが、 爆発後 80 日の場合にはかなりの差が認められるものが あ り,爆発後446日の場合には算定された対応する年令値に著しい差異が現われてくること がわかる. また emission ratio Rco, Rdo, Rco または R'co, R'do, 'Rco によって強放 射能粒子の年令を推定する場合は分岐比の影響を受けて年令推定値にバラッキが生じ、ど の emission ratio による年令推定値が最も誤差が少いか真値が未知の場合はその判定が むずかしい. これに反し Rbo または R'bo による年令推定値はかかる分岐比の影響を受け ることがなく誤差が最も少いことがわかる. いま 1976 年 9 月 30 日 と 1977 年 12 月 16 日 にれぞれ測定した試料 No. 1 と試料 No. 3 について, emission ratio R_{b0} と R'_{b0} による 年令推定値を Table 10に示す. 核爆発後4日経った時点で放射性降下物の年令を推定す るのに emission ratio R_{b0} でも R'_{b0} でもまた $a_3=0.99$ としても, $a_3=0.999$ としても 年令推定値には余り差異がなく真値と誤差も少いが、爆発後400日以上を経過した時点で は a₃=0.999 とし計数効率の補正を行なった emission ratio R_{b0} によって得られた年令 値が最も誤差が少く真値とよく一致していることが分る. なお核爆発後 600 日経った時点 において放射性降下物の年令推定を試みたが,算定値は得られなかった. 今後機会があれ

Sample	Branching					A	ge (days)				
Date	a_{11}/a_{12}	$R_{ m bo}$	R _{c0}	R _{d0}	R _{eo}	Mean value	$R'_{ m b0}$	R' co	R'do	R'eo	Mean value	True value
No. 1 Scpt. 30, '76	$\begin{array}{c} 0.42/0.56\\ 0.43/0.55\\ 0.44/0.54\\ 0.45/0.53\\ 0.46/0.52\end{array}$	3.4	2.8 2.9 2.9 3.0 3.1	$ \begin{array}{r} 4.1\\ 4.1\\ 4.0\\ 3.9\\ 3.8 \end{array} $		3.43 3.47 3.43 3.43 3.43 3.43	3.3	2.6 2.7 2.8 2.8 2.9	4.1 4.0 3.9 3.9 3.8		3, 33 3, 33 3, 33 3, 33 3, 33 3, 33	4.00
	Mean value		2.94	3,98		3.44		2.76	3.94		3,33	
No. 1 Oct. 29, '76	$\begin{array}{c} 0.\ 42/0.\ 56\\ 0.\ 43/0.\ 55\\ 0.\ 44/0.\ 54\\ 0.\ 45/0.\ 53\\ 0.\ 46/0.\ 52\\ \end{array}$	33.8	32.1 33.4 34.3 35.2 36.1	34.6 34.3 33.6 32.9 32.2	29.7 32.5 34.9 37.5 40.0	32.55 33.50 34.15 34.85 35.53	32.6	30.0 31.2 32.0 32.9 33.7	34.1 33.8 33.1 32.4 31.7	26.1 28.7 31.0 33.3 35.7	30.76 31.58 32.17 32.80 33.43	33.00
	Mean value		34.22	33,52	34.92	34.12		31.96	33.02	30.96	32.14	
No. 2 Dec. 15, '76	0.42/0.56 0.43/0.55 0.44/0.54 0.45/0.53 0.46/0.52 Mean value	83.3	81.0 83.8 86.8 89.8 92.9 86.86	85.3 83.1 80.8 78.7 76.6 80.90	79.0 84.2 82.4 95.6 102.0 88.64	82.15 83.60 83.33 86.85 88.70 84.93	77.3	71.2 73.6 76.1 78.6 81.1 76.12	83.4 81.3 79.1 77.0 74.9 79.14	65.7 70.1 74.7 79.4 84.4 74.86	74.40 75.58 76.80 78.08 79.43 76.86	80.00
No. 3 Dec. 16, '77	0.42/0.56 0.43/0.55 0.44/0.54 0.45/0.53 0.46/0.52	518.0	317 372 485 492 —	 555 409 348	275 329 440 	370.0 406.3 499.5 473.0 433.0	366.0	252 278 312 360 449		223 252 393 357 530	280.3 [*] 298.7 355.8 363.5 417.5	446.0
	Mean value		416.5	437.3	348.0			330.2	382.7	331.0		

Table 8. Ages of the hot particlee samples estimated from the various emission ratios in the case of $a_1=0.98$ and $a_3=0.99$.

帯刀

Ħ

Sample	Branching					A	ges (da	ys)				
Date	a_{11}/a_{12}	R _{bo}	R_{c0}	R_{d_0}	R _{e0}	Mean value	R'_{b0}	R' c 0	R'd0	<i>R</i> ′ _{e0}	Mean value	True value
No. 1 Sept. 30, '76	$\begin{array}{c} 0.\ 42/0.\ 56\\ 0.\ 43/0.\ 55\\ 0.\ 44/0.\ 54\\ 0.\ 45/0.\ 53\\ 0.\ 46/0.\ 52\end{array}$	3.4	2.8 2.8 2.9 3.0 3.0	$ \begin{array}{r} 4.1\\ 4.0\\ 4.0\\ 3.9\\ 3.8 \end{array} $		3.43 3.40 3.43 3.43 3.43 3.40	3.3	2.6 2.7 2.7 2.8 2.9	4.1 4.0 3.9 3.9 3.8		3.33 3.33 3.30 3.33 3.33 3.33	4.00
	Mean value		2,90	3,96		3.42		2.74	3.94	_	3.32	
No. 1 Oct. 29, '76	$\begin{array}{c} 0.\ 42/0.\ 56\\ 0.\ 43/0.\ 55\\ 0.\ 44/0.\ 54\\ 0.\ 45/0.\ 53\\ 0.\ 46/0.\ 52\end{array}$	33.5	32.1 33.0 33.9 34.8 35.7	34.7 34.0 33.2 32.5 31.8	29.7 32.1 34.5 37.0 39.6	32,50 33,15 33,78 34,45 35,15	32.3	30.0 30.9 31.7 32.5 33.4	34.2 33.5 32.5 32.1 31.4	26.1 28.4 30.6 32.9 35.3	30.65 31.28 31.78 32.45 33.10	33.00
	Mean value		33.90	33.24	34.58	33.81		31.70	32.74	30.66	31.85	
No. 2 Dec. 15, '76	0.42/0.56 0.43/0.55 0.44/0.54 0.45/0.53 0.46/0.52 Mean value	82.3	79.8 82.6 85.5 87.5 91.6 85.40	85.3 83.1 80.9 78.7 76.6 80.92	77.8 83.0 88.4 94.1 100.2 88.70	81. 30 82. 75 84. 28 85. 65 87. 68 84. 33	76.7	70.4 72.6 75.0 77.5 80.1 75.12	82.3 80.2 78.1 76.0 74.0 78.12	64.8 69.1 73.6 78.2 83.1 73.76	73.55 74.65 75.85 77.10 78.48 75.93	80.00
No. 3 Dec. 16, '77	0. 42/0. 56 0. 43/0. 55 0. 44/0. 54 0. 45/0. 53 0. 46/0. 52	444	302 347 426 	461 375 328	264 312 397 —	336.7 367.7 432.0 409.5 386.0	343	244 267 297 338 403	539 406 347 308	217 244 281 336 450	268.0 348.3 331.8 341.0 376.0	446.0
	Mean value		358.3	388.0	324.3			309.8	400.0	305.6		

Table 9. Ages of the hot particles samples estimated from the various emission ratios in the case of $a_1=0.98$ and $a_3=0.999$.

Monouring		Age (days)								
Sample	date	R	bo	R	True value					
	uate	$a_3 = 0.999$	$a_3 = 0.999$ $a_3 = 0.99$ $a_3 = 0.999$				$a_3 = 0.99$			
No. 1	Sept. 30, '76	3.39	3.42	3.27	3.30	4.00				
No. 3	Dec. 16, '77	444	518	343	366	446.0				

Table 10. Ages of sample No.1 and sample No.3 estimated from the emission ratios R_{b0} , R'_{b0} respectively.

ば、 核爆発による放射性降下物の年令値として 150 日から 50 日とびに 500 日までの 範囲 を実測によって推定し、本方法の精度と確実性を確めたい.

6まとめ

1976年9月26日に行われた第19回中国核爆発実験による強放射能粒子を爆発後443日から446日経過した1977年12月13日から同年12月16日にわたり, また爆発後600日経過した1978年5月18日から同年5月19日にかけて, Ge(Li)検出器による7線スペクトロメトリーを行ない,かなり多くの放射性核種を同定することができた.そのうち核分裂生成核種としては比軽的長い半減期を有する核種⁹⁵Zr,⁹⁵Nb,¹⁰⁶Ru-¹⁰⁶Rh,¹²⁵Sb,¹⁴¹Ce¹⁴⁴Ce-¹⁴⁴Pr および¹⁵⁵Eu を同定することができた.また誘導放射性核種としては5⁵⁴Mn,⁵⁷Co⁵⁸Co が同定され,さらに新らたに¹⁸²Ta が検出された.

次に核爆発後4日,30日,80日および446日経過した各時点において、 95 Zr と 95 Nbの 放射能比による強放射能粒子の年令推定を行なった.そのうち emisson ratio R_{e0} , R_{d0} , R_{e0} または R'_{c0} , R'_{d0} , R'_{e0} による年令推定値は分岐比の影響を受けてバラッキがあり, 同一の分岐比に対する上記各 emission ratio による年令推定値の間にもバラッキが見ら れる.これに反し emission ratio R_{b0} または R'_{b0} による年令推定値はかかる分岐比の 影響を全く受けることがなかった. Ge(Li)検出器をふくめて,使用した τ 線スペクトロメ ータが極めて高分解能なので、 95 Zr (724keV)、 95 Zr (756keV) および 95 Nb (765keV) に近 接した妨害核種の τ 線とは完全に分離されて計測することができ,最も若い年令値として 4日を1日以内の誤差で3.4日と推定することができた.核爆発後400日以上経過した放 射性降下物の年令を推定する場合は 95 Nb \longrightarrow 95 Mo の際の756keV 遷移のときの分岐比 $a_3=0.999$ とし,計数効率の補正をほどこして得られる emission ratio R_{b0} を用いれば真 値に近い年令推定値を得ることがわかった.

終わりに試料の測定に多大の便宜とご協力を頂いた第二精工舎科学機器部技術課の佐藤 康彦氏に対し深甚なる感謝の意を表します.また本研究に対し終始変らざる激励を頂いた 本学名誉教授,長野工業高等専門学校長森本弥三八先生に対し,深い感謝の意を表したい.

文 献

- 1) 带刀 正:信州大学工学部紀要第43号11-26 (1977)
- 2) T. Mamuro, Y. Matsuda : J. Rad. Reserch 10, 126-132, (1969)
- 3) I. Fujii, K. Onodera : J. Inorg. Nucl. Chem., 31 (7) 1907 (1969)
- 4) 带刀 正: 信州大学工学部紀要第29号 1-17 (1970)
- 5) 带刀 正: Radioisotopes, 21 (4) 230-234 (1972)
- 6) H.F.Hunter, N.E.Ballou: Nucleonics, 9, No. 5, C-2 (1951)
- 7) C.E.Crothamel, F. Adams and R. Dams: Applied Gamma-Ray Spectrometry, 2nd edition, Pergamon Press (1970)
- C. M. Lederer, J. M. Hollander, I. Perlman: Table of Isotopes, 6th edition, John Wiley & Sons, Inc. (1967)
- 9) ORTEC's Gamma-ray Library listing by energies with branching ratios and halflives.
- 10) 岡野真治, 森内茂: 原子力工業, 23(8) 98-104 (1977)
- 11) 五十嵐健治, :原子力工業 23(8) 118-124 (1977)
- 12) S.Katocoff: Nucleonics, 18, 201 (1960)
- L.E. Weaver, et al: U.S. Naval Radiological Defence Laboratory Technical Report USNRDL-TR-633 (1963)
- 14) S. M. Brahmavar, J. H. Hamilton : Phys. Rev. 187(4) 1490 (1969)

信州大学工学部紀要 第44号 正誤表

- **標 題** 第19回中国核爆発実験による強放射能粒子の Ge(Li) γ 線スペクトロメトリー による分析(続報)
- 著者 带 刀 正

頁	行	誤	正
24	下より 7 行	$\frac{a_3T_3}{T_3-T_2}$	$\frac{a_2T_3}{T_3-T_2}$
	下より 6 行	$(e^{-\ln 2 \cdot t/T_2} - e^{-\ln 2 \cdot t/T_3}) \frac{N_{20}}{N_{10}}$	$\{e^{-\ln 2 \cdot (T_1 - T_2)t/T_1 T_2} - e^{-\ln 2 \cdot (T_1 - T_3)t/T_1 T_3}\} \frac{N_{20}}{N_{10}}$