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   1. Let i!E] an be a given infiiaite series with the sequence of partiai sums

{S71}.

   Let {Pn} be a sequence of constants, real or complex, and let us write

           P,t ==Pe -}- Pi E-'''･･･{nv Pn; Pph :=r- Pmk=O, for kli:;1.

   The sequence {tn}, given by

           tn=:-pi za,unrm, Pn-ksfe = -STiS, l-.., Pkan-fe, (Pn tc O),

defines the N6riuRd means of the sequence {sn} generated by the sequence of

constaRts {Pn}.

   The series Z an is said to be absolutely summable (N,Pn), or summable IN,

Pni, if tke series

                         oo                        X ltn - tn-il

                        n=1

is convergeRt.

   In the special cases in which Pn =:A£",-i == <"';,6-"i), aRd P. :=11(n÷1>, summa-

bility IN, Pnl are the same as the summability iC, cvl and the absolute harmonic

summability, respectively.

   Let f(x) be a periodic function with period 2rr and integrable (L) over (O, 2n).

We assume that the Fourier series of f(x) is given by

                 oo oo                iZ (an cos nx ÷ bn sin nx) ! X An(x>.

                11=O )l==e
   Throughout the paper, we use the followlng notatioRs:
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                     to(6) =sup lf(x + h) - f(x)l,
                           e<hl$6

                     tuP(6),."i:,9"m.g U,2"lf(x + h)-f(x)lpdu)ifp

                                                   ,
                     ES;P'(f) --1if- Tn(f)lip

where 1ISIP:wwfil; oo and Tn(f) is a trigoRometric polynomial of the best approx-

imation of order n for f(x) with respect to the corresponding norm.

   Let P' be the conjugate index of P, i. e. IZP +1/P' =: 1.

We write lipn =Pn -Pn+i-

   A wlll denote a positive constant which will not necessarily be the same at

differeRt occurrences.

   2. M. and S. Izurnl [3] and S. N. Lal [6] proved the following theorem.

   Theorem A. Let {Pn} and {ilpn} are both non-negntive and non-increasing

seqztences. if the conditions

                           co                           X p9, nP-2 < oo (1 <p xEi 2)

                           n==1
and

                           jli.ll,n`"･Sip4"n',<-

hold, then the Fourier series off(x) is summable ilV,Pni.

   Supplementing the result of Theorem A, S. M. Shah [9] proved the foliowing

theorem, which is closely concemed with Zygmund's result [16;pp. 241-242].

   Theorem B. Let {Pn} and {AP,,} are both non-negative and non-increasing

seaztences. Let f(x) be a 2r,-Periodic fatnction of bounded variation over [O, 2re]

and suPPose that the condition

                   cinrg(n) :;l k ;S c2nrg(n), O :$ r < 112

holds where ci and c2 are fixed Positive constants and g(x) is Positive on [O, oo)

and slowly oscillating in the sense of Karamata. ･

   ILI' the conditions

                          tll.} tu(ge) ..

and
                          X., di(;Z')ii2 ..

hold, then the Fourier series of f(x) is summable IN, Pni.

   On the other hand, S. N. Lal [4, 5] also proved the following theorem.
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    Theorem C. Let f(x) be a function belongin.cr to LP (1<P:S 2). Let {P,,} and

{APn} are both non-negntive and non-increasing sequences.

    if the conditions

                           co                           Z] p,P, np-2<.
                           vt=:1

and

                           t#.},:e5p¥E'l

hold, then the Fourier series off(x) is summable IN, P.l almost everywhere.

                                               co    S. N. Lal assumes the convergence of the series Z P9, nm"2 in place of the

                                              n=1
      co
series ]2il] p9, nPN2. But we can easily show that the convergence of the series

     izwl

Z PS n-2 is equivalent to that of the series 2) p?, nPm2 under the conditioR that

{Pn} is non-increasing.

   Also, Theorem C is a generalization of Tkeorem D, which is due to N.

Matsuyama [7].

   Theorem D. if f(x) belongs to LP (1<P ;Sl 2) and the series

                            #.-,%P,5;i,?3.

converges, then the Fourier series of f(x) is summable IC, 6] almost everywhere,

where -1 < ti < IZP.

   N. Matsuyama established this tkeorem as the analogue of Hyslop's theorem

[2], which is easily deduced from Theorem A.

    In this note, the author deduces several results from Tkeorern C by the same

method as that used by C. Watari aRd Y. Okuyama [14].

   3. The following theorem is wel}-known.

                                  oo
   Theorem of Denjoy-Lusion. ILfthe £ An(x) converges absolutely for x belonging
                                 h'=o

to a set P of positive measure, then £ (lani + lbnD converges.

                                n==e
   Using a result by A.Zygmund [15], G. Sunouchi [10] proved the foilowing

Theorem.

   Theorem E. There exists a function in L2 which is summable IC, 11 in (a, b)

in (O, 2n), bect not secmmable IC, II ainzost everyzvhere in the comPlementary interval.
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   To extend this theorem, we require Tsuchil<ura's theorem [12, 13], which is

as follows.

   Tkeorem F. If f(x) belongs to LP (1<PS.2) and if; for some E>O,

           Iglf(x + t) + f(x - t) - 2f(x)±pdx -- o(ltl (logTl/il)-P-E )

as t--+O, at a Point x, then the Fourier series of f(x> is summable iC, 61 (6>lfp>

at the Point.

   Following Sunouchi's argument and applying Tsuchikura's Theorem, we can

obtain the following tkeorem.

   Tkeorem 1. For 6>1/2, there exists a frtnction in L2 which is summable IC, 61

in (a, b) in (O, 2rr), but not sufezmable IC, 61 almost everywhere in the comPlementary

interval.

   Thus this tkeorem shows that the iC, 61-analogue of the DeRjoy-Dusin

theorem does not hold for 6>Z!2. This theorem is open for O<6$112.

   4. 0ne of the fundamental theorems of the constructive theory of function

ls a reciprocal relation between E£P)(f> and tup(1!n), that is to say,

                       ESP)<f) S Atup(1/n)

and conversely

                                 11
                     top(11n) S A n-iX E£P) ( f).
                                 k--O

               oo   Suppose that X 11ni'ilP' P,, == O(11feilP'Pk). Then we have

              n=tle

              ll:.i, .toSS} -l -f` AtP.ll, ni÷ilptii, l,Iii..I,EZP'(f)

                        figAi,:=,E£P)(f)t/l.ilhni+i!ip,a,

                        :;gAlll.#, E,k,ig',Sf,> .

HeRce, if Ilz := A9,, we assume that 6>-11P'.

Thus Theorem C can be restated as follows.

   Theorem 2. Let {P.} and {AP.} are both non-negntive and non-increasing

sequences.
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   Ilf the conditions

                    oo                   X p9, nP-2 < oo (1 <ps2)
                   n=1
and

                   ,#.,gi;p'･`R'l<oo

hold, then the Foecrier series of f(x) is summable iA[, Pnl almost everywhere.

   To reduce several theorems from this theorem, we need a lemma, which is

due to C. Watari and Y. Okuyama [14].

                   oo   Lemma. Let f(x)== IX An(x) Eill LP and let ES,P)(f) =O(nma) for some a>O.

                   n==1
Then, for any P<cr, there exists a function f[P](x) belonging to LP such that

                                oo                        f[P)(x) tv 2 nPAn(x)

                                nt=1
and
                         EStP)(f[P]> := O(n-a'P).

                                                      oo   Theorem 3. Lfr ES,2)(f) ==:O(nma),a>O and P<a, then the serieslZ] nPAn(x) is

                                                      n==1
summable IC, ai almost everywhere, tvhere 6>112+P-a and 6>-112.

   Proof. By lemma, we have

                       ES,2) (f[p]) = o(n-cr+p)

ancl

                              oo                       f[P](x) "-Z nPAn <x) .

                             n=1
Thus we obtain

       tli.), ES;l<i$l,]) == O(Ii,ll..], .ii2÷:.ct-p ) <oo for 6> i12 + fi ' ec

By Theorem 2, Theorem 3 is completed.

   The case P==O of this theorem is an aRalogue of the result due to J. M. Hyslop

[2ll.

   Theorem 4. Let B<cv. bC E$;)(f) =O(iln) and E,(,OO)(f) ;O(n-"), then the

     ooseries XnPAn(x) is summable IC, o"I almost everywhere, where ti>P-ar12 and 6>

     n"1
-112.



6 Yasuo OKuyAMA
   Proo£ By Lemma, we have

                ES,i)(fCP))= O(n-i"P), ES,oo)<f[P]) =O(n'a'P)

and

                                 oo                         f[P)(x)･h- X nPAn(x).

                                n=1
   Since (EE?,)(f(P)))2i:SAE$,')<f(P)) E£co)<f[P])(see [14]), we have

            #,.., En'(ii2i)2(At,{P]> =O (t/i.i, .i+6-l-p+a!2 ) < oo for 6>P- cr12'

Hence Theorem 4 is proved by Theorem 2.

   Since f(x) EBV(O, 2z) impiies E£i)<f) := O(1!n>, the case P=O of Theorem 4

is an analogue of results due to H. C. Chow [1].

   Theorem 5. Let 1<P:Ill2. if ES,P)(f)= O(n-a) (a>O) and P<cr, then the

      oo
series 2]nPAn(x) is summable IC, 6I almost everNwhere, where 6>11P +P-cr and

     n==1
S > -IZpt.

   Proo£ By Lemma, we have

                        ESP)(f[P)) = O(n-a+P)

and

                                oo                        fCP](x) -- Z nPAn(x).

                               nwl
Thus we obtain

        #., E£':IS4Xl]) = O(.2coI]=, ni-iipl6--p+a )<oo for ti > i/P ' P - cr'

Hence we establish Theorem 5 by Theorem 2.

   Also, the caseP==O of this theorem is an analogue of results due to H.C.

Chow El].

   In the case P=O, the reader ls referred to H.C. Chow [1] and L. Mcfadden

[8] for the results on the absolute Cesaro summability of Fourier series of a

function which belongs to the class LiP(cr,P).

   We see from Lusin-Denjoy's theorem that the following Corollaries 1, 2 and

3 are the results which are deduced from Theorems 3, 4 and 5, respectively.

                                                co   Corollary 1. ES,2)(f) = O(n-a), cr>O and P<a imPly 2]nPmii2 <lanl+ibnl)<oo.

                                               ft=:1
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   Corollary 2. ES,')(f) -- O(11n) and ES,co)(f) r O(nmex) together imPly, for (O<)

       co
B< a, Z nP /2(]anj + ]bnl) < oo.

      n==±1
   Corollary 3. ES,P)< f> = O(nma) (cr > O), 1 <P ;;$I 2, and P < cr- 11P imPly

oo

X nP<iani + lbnl) < oo･

n==1

   These corollaries are due to C.Watari and Y.Okuyarna [14]. Also see A.

Zygmund [16].

   Next, we can obtain tke analogue of Theorem B. Our results read as foliows:

   Theorem 6. Let {P.} and {AP.} are both non-negative and non-increasing

sequences. Let f(x) be a 2r,-Periodic function of bounded variation over [O, 2ff]

and sztPPose that the conditions

                          oo                         l2 ] p?, < oo

                         lt--1

and

                         S,..,E't:,',,,,,f)ii2 . .

hold, then the Fourier series of f(x) is summable IN, Pnl almost everywhere.

   Since a funcion of bounded varlation has the property ES,i)(f> = O(11n),

Theorem 6 is contained in the fo!lowing theorem.

   Theorem 7. Let {Pn} and {AP.} are both non-feegative and non-increasing

sequence. ILf the conditions

                          ES,i)(f) = o<1/n>,

                          oo                         X P7? < oo
                         n=1
and

                         tW.,EStO.O'X)ix2<.

hold, then the Fourier series off(x) is sztmmable IN, Pnl almost every'where.

   Proo'f. As stated above, we have

                   (ES2.)(f) )2 is ESi)(f) ES,oo)(f).
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Thus we kave

                   tW.,g#ii/4':i{At/.il..ec'Sl;)ii2...

Hence Theorem 7 is proved by Theorem 2.

    5. We assume that a sequence di =,'{gn} formsa complete orthonormal system

over a set of finite measure and pt2t is the iinear space spanRed by the first n

elemeRts of di. Morever, we suppose that the system ¢ tmder consideration has
the following properties:

    (10) (Nikolsky property) For 1$P<qEll oo, and ,P E!i (Z)", we have 1[PY4;;i{Anex

lIPIlp, cv = IZp-11q.

    (20) <de la Vallee Poussin property) There exists a sequence of linear operators

Gn : Li---,di2n such that (i) bounded, (ii> Gn leaves the element of ipn invariant,

(iii) For 1::{PEII oo, we have

          lIf- G" flip ;gl A E5,P)(f) =rm A inf(i[f- PlIp : P Ei {Pnl.

   It is weli known that these properties are held by the system of trigoRometric

functions as well as that of Walsh functions.

   Now, we have the following theorem, which is due to C. Watari aRd Y.

Okuyama [14] for R, == 1.

   Theorem 8. Let ip have the Properties (10) and (20) and let 1;!ilP<q$l oo. .ILIe

we suPPose that a sequence {A,} is a Positive sequence sntch that {nilP'P;,} is non-

              n
decreasing and 22fe/elP2k =O(2"!qlP2n), then we have

             k--e

                      #,..,ii(gq't`.i'i,>ESiAt/,ill=.,i;(i',`i

   ProoL As 11P'<1/q', we see that {n'lq'K} is non-decreasing. Hence, by

Cauchy's condensation principle, what we have to prove ls

                    oo 2nlqE&G,)(f) oo 2n!PES,',)(f>
                    ,]Z, ]..l, Rin $Ai..., Plin '

This is reduced, by property <20), to

            #,.., 2,F'i,Zl,q iif-G2nf[iqi$All,iii..I, 2iliiiE lif-G,nfnp
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or, by the subadditivity and the property (10), we see that

                         oo           ll f ww G2" fYq i:il X lIG2k"'f ve G2kflIq

                        h=n
                         co                      :;l IX 2ler]IG2k+if- G2bf1Ip (r= 11P - 11q)

                        le==n

                         oo                      5 X 2fer1 lf- G2kf Mp.
                        k--7･t

                   #,.., 2,F'I,tlg HfmG2nffi,
Therefore we have

                   $AtW., 2iJ'E'l,q ii.i]..2fer"finG2kflEp

                  :iii A #., 2krYf- G2kfHp;, ll.. I, 2p'bi/.q

                  :is A ill.l]o 2le(ilp-ilq)f  If- G,kf1b 2ALI,q

                  sA S., 2k'l lif- G2kf li p･

   Our results are stated in terms of the best approximation, but

rather complete paraiielism between the modulus of continuity aRd the

roximatioB. HeRce tlte above results can be stated in terms of the

continuity. From theorem 8, we have

   Corollary 4. Let 1$P<qSco. Then

                     tep.,-9zg52it?]:iiiAtep.,:;fri,ig,.L

where 11q >6> - 11P'.

   This corollary shows that Matsuyama criterion is best possible

O<6<112.
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