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                            1. IRtroduetjon

   The inforrnation theory originated by C. E. Shannon was extended to the

case of finite rnemory chaBnels by Hinckin3). Moreover the case of infinite

memory channels was also studied by Adleri) and others. However, among

these generalized channels, tkere are not many which are useful for concrete

models. In this paper, we define a Markov channel which is a natural genera-

lization of the Markov chain and useful to make examples of generalized chan-

nels. We skow that it is determined by a pair of vector valued mappings, and

give two representative examples of Markov channeis and simulate how errors

occur in these chaltnels. We also show that a stationary stochastic state

machine is a Markov channel and we can compute the capacity of this ckannel.

                              2. NotatioRs

   The inPat sPace and the outPut sPace are represented by the alphabet spaces

X=Ai and Y=-LBi respectively, where A== {ai,a2,･･-･･･,ale} and B:= {bi,b2,･･････,bi}

are sets of finite letters (or states), and J={O, tl, ±2, ･･･} is a set of all lntegers

which represents the time, i. e. , X and Y are the infinite dimensional product

spaces of the countable copies of finite measurable spaces A and B respectively.

Let ,,,,t21`7and Wbe Borel fields generated by all cylinder sets of X and Y res-

pectively. For the element x in X, xn represents the nt th letter in A, and for

yin Z yn represents the ni th letter in B. In the followings, we omit the

explanation for y as it is same as x. The notation [xg,xg+i,･･･,x?] represents a

thin cylinder on the time interval (s,s+1,･･･,t>, i.e.,

            [xg, x,O.i, ･･･, x?] == £x E X: x. :=-L x9,, n = s, s + 1, ･･･, t},

where s,tEf <s<t). A a-sub'field of .;Y generated by all thin cylinders of the

form [xs,xs.x, ･-･,xt] on the time interva! (s,s+1, ･･･,t) is denoted by (Eg) i.L, ,,sz"-i,

and a a-subfield generated by all thin cylinders of the form [xs] is deRoted by

.,'2e"'s and is called the time-s Partition, as it is also seen as a finite partitien of

X. Let 2x be a trivial Partition of X' , i. e. , 2x x {X}. A shij)5 transformation S
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(or T) on X (er Y) represents time advance and is defined by the formula (Sx)n

==: xn+i ((Ty)n == yn+i). The shift transformation S <or T) is a measurable trans-

formation on the rrieasurable space X (or Y). The inPut source is an S-invarariant

probability measure P on the rneasurable space X, i.e. , which satisfies P(S-iE)

 = P(E) for all E E .2e. The outPut source is defined similarly. We denote a set

of all input sources by U.

    A channel from an input space X to an output space Y is a two variable

numerical function vx (F) of x E X and Fe Ziand satisfies the followings:

    I. If we fix x Eff X, then vx(･) is a probability measure on <Y, fZY),

    II. if we fix FG cZi, then v. (F) is a measurable function on X,

and III. for all xEXandFEii Zi, vsx (F)=vx (SmiF>.

    An input source P E ll and a channel v determine an output source q(･);

                           q(F) =l.vx(.t7)p(dx) (FE czi ).

Let (Xop }i] ff (2} 7) be the direct product measurable space of (X, .;2lf) and

(Y; CZi), then we call it a comPound sPace, which is also an alphabet space

(A (8) B)t. A shift transformation S (E9 T on the compound space is defined by (S (E])･

T) (x, y) = (Sx, Ty). A comPound source is an S (g) T-invariant probability measure

on the compound space. An input source P and a channel v also determine a

compound source r;

                           r(G) == I.vx(Gx)P(dx) (G E xo op cztt ),

where Gx is an x-section of the set G. The sources q(･) and r(･) deterrnined by

an input source P and a chanRel v are sometlrnes denoted by q(･;P, v) and r(･;

p, v), respectively. We sometimes abbreviate vx([ys, ys+i, ･･･, yt]) to vx<ptsys+i･･･yt).

   If there exists an lnteger m such that f< ･> = v. (yiy2･ ny ･yn) is a op i-rm" i ffi-

measurable function for all positive integer n and for all letters Ni,y2,･･･,Nn,

and if fl･) is constant for n smaller than 1-m,then the channel v is called a

finite memory channel or an m-memory channel.

   For any finite partitions pai and Y2 of X, we write

              Y,V £f', = {A, fi A,: A, Ei LSY ,, A, E pt2},

which is a new partition of X. Then the entroPy hp(S) of the transformation S

relative to an inpat source P E ll is defined by

                  hp(s) = lim -IL H<2ea vSmi 2ov ･･･vST""+i ge),

                          nn

where .2:;7e is the time-O partition, and H(..gvf) is the sum -X P <A) log P (A).

                                                        AE vftif
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Ifqandran output source and a compound source respective!y, then we

can also define the entropy hq(T> and hr (S(g>T> of the transformation T relative

to an output source q and of the transformation S(g>T relative to a cornpound

source r. Then the transmission rate Rp(v) of a channel v relative to an input

source P is given by

                     Rp(v) = hp(S) + ha(T) - hr(S(El)T)

where both q(･) =q(･;P,v) and r(･)= r(･;P,v) are determined by P and v. The

(stationary) capacity Cs (v) of a channel v is defined by

                       Cs (v) =: sup Rp (v).
                              pErr

                          3. MarkovChannels

   We begin with the definiton of a Markev channel.

    Definition. A channelvfrorn the input space X to the output space Y is

calied an m-fold Marfeov channel if there exists a positive number m such that

    IV. vx(.Yn j JYe'''Yn-i) = Vx(Nn j ptn-m''' Yn-i)

for all xe X, for all yi,･･･,yn Ei B and for all positive integer n (n:}lm), where

           ..(,,...y,,, i yt･･･ys-i) : ("x(Y`UYS'i)i"Y`l.'2''ilMy)):111xs,[:l :.'.i 8:

The errors which occur in the m-fold Marlcov channel depend on the only m

steps in the past.

    Next let us see that the Markov channel is characterized byapair of

measurable mappings. Now for every e!ement x in X, we consider a stochastic

vector on Bm

                             Q(x)=(qb- (x)) (bEBM)

and we also consider a stochastic matrix

                             (li<x) = (ijb t-b(x)),

whose row is indexed byb in B and whose column is indexed by bin BM.

Moreover we assume that ab-(x) and abl-fi(x) are measurable functions of x on

(X, .fi}a), and assume that

          qyn--m+!･･･yn (SX) = X ayniyn-n;･･･yn-i(X)gyn-m･･･yn-i(X). (1)

                         Yn-m emB

The pair (Q(x), Q"U (x)) is called a stochastic Pair.
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   Theorem 1. Let (Q(x),QN(x>) be a stochastic Pair. Then it dojines an m-fold

Marfeov channel. Conversely every m-fold Markov channel defines a stochastic

pair.

   Proof. For a stochas£ic pair (Q(x>, Q-"(x)>, we can construct an m-£old Mar-

kov channel by tke foliowing proceedure:

We put

     v.(y,･･･yn) : (z;}. ;;..,ptj.{,li/i//' ,4y-+ii yi'"y-"'-i (S`-iX' 111 l.i Iillllll i.l gl

Assumming n-m>O, we see

          y.l!lilBVx (Yi'''Y") = y.IIIillBqyi'''ym(x) llYJIn4ynt+i : yi'''ym+i-i (x)

                      "= qy,･･･y. (v)ll1.i;l'imm1 4y.+iT yi･･･y.+i-, (Si'ix)

                      == vx(Yi'''Yn-i)･

As a similar equaiity also holds in case of n-m f{ O, we conclude that vx(･) can

be extended to a probabllity measure on op ico..i cZii by the Kolmogorov extenslon

theorem. Next, for any thin cylinder [yi,･･･,yn] in Y (n 2}})l2}i i, n>m),

     vx(yl･･･yn)= Z vx(Y,･･･Y.)

               Yl"'Yl-1

             = Z qyii･･y.,(x) fl",I;'l ay.,.Myi･･･y..i.,(Si-ix>

              J,1-i･3'lfit

            =y,.II.ily -,qy2･･･ynt+i (Sx) ll1･i:.L" Aq'y..il yi.･.y.,i", (si-ix>

             = qyl･･-ym÷l., (S l x> IIZItrl"Z 4y.." yi...y.,i-., (si-lx) ･`･if n-m l}) l,

                  Z qy.m.･･･y.-,(S"-MX) ･･･if n-m<l.
                Yn-･m""Yl-.1

In both cases of n>m and num<m, we get

                   vx (Yl'''Yn) :vslx(Tl [Yl'''Yn]). <2>

Replacinglin (2) by l-1, we get

              vsx (T [Yl'''Yn]) == vsl-1(sx)(Tl-iT [Yt, ''', yn])
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                              u' vslx (Tl [Yl,''', Yn])

as T[yt,･･･,yn] is a thin cylinder on the time interval (l-1,･･･,n-1). Hence

                       vx (Yl'''Yn) = vsx (T [Nl'''Yn])

holds. We extend vx(･) from (Ebioo..i SIxi to :'U -- opi--corm.. Yi, by the formula

                    vx (Y-l'''Yn) == vs"lx (T-l IY-l, ''', Yn]).

Tken v satisfies the condition III of the channeL For any [yi,･･･,yn], v.(yi･-･yn)

is .c20-measurable on X, as thls is defined by the product of the measurable

functions q5(x) and ab,s(x). And for any measurable set F <E Y), v.(F) is also

measurab!e, as F can be approximated'by a countable sequence of cylinder sets

with the measure yx(･). Therefore the condition II is a!so clear.

   Converse!y let vbe an m-fold Markov channel. We define a stochastic pair

(Q(x),-Q" (x)> by the following;

                   qyi (x) == vx (Y,>

and

                          ijy.., 1 Zl(x) = vx(y..A Zi)

where S = [),i,y2,･･･ym]. Clearly the pair is well defined by the condition III of

tke channel.

        X aym+i[yi･･･yn; (X)qyi･･･ynt (X) ": £ vx (Yi'''Y,n) vx (Mn+dYi'''Ynt)

       )'i EB yi EB
             := ]Z] vx(yi'''ytn+,t> =vx(y2'''ym+i)=vsx(T(y2'''ym+i))

              yi EB

             == qy2･･-y.+, (Sx).

The above chaiR of formulae shows that the pair satisfies the condition of the

stochastic pair. Q. E. D.
   This theorerri tells us that any Markov channeHs determined by a suit of

mappings, which resembles to the fact that a memoryless channel (cf. 2) p. 154)

is determined by a stochastic matrix Let (cab) be a stochastic matrix which

determines a memoryless channel, then taking qb(x) = cxib aRd 'q'bis(x) =r cx,b,

we see that the memoryless channel is a kind of Markov channels.

                              4. Examples

   We put A =xx B == {O, 1}, i. e. , we consider a binary case. For a stochastic

pair, Iet us choose
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            Q(x) wr (1 il p)= o<o) ･･･ if x, .. o,

                    (i5ab)== Q(') ''' if xe -= i,

     -Q- (X) == (1Sq 1;")=. Q-" <OO) ''' if xo == O, xi=o,

                             -. ･･･ if xo =O, xl=1,
             (i1q i1,)=:e(oi)

             (1 -;r 1ilq)=" Qi (10) ''' if xe= 1, xt == o,

             (i 11 r i li- q)= Zl> (ii) ''' if xe = i, xi = i,

and assume that Q(OO)Q(O) =Q(O) i.e.,P=(r-1)/(r+q-2). Then we find

that Q(11)Q(i) =- Q(1), Q(Ol)Q(O) == Q(1) and Q(10)Q(1) :: Q(O). Hence (Q(x), Q(x))

is a stochastic pair, so that we can define a Markov channei, which we call

an additive noise channel. Errors in this channel occur as shown in Fig.1.

Fig.2isaresuit ofa simple simulation in the case ofq=9/10, r=1/2 and
P == 5/7.

                   q 1--q r

                          CE

                                1-r

                            C: correct

                            E: erroneous

                                Fig. 1

         input sequence IOIIOOIOIIOOIOIIIOOIIOOOOIOIIIOIOOIOI
                ･

         output sequence OIIIOOIOIIOOIOIIIIIOIIIIIOOIIIOIOOIOI

                                Fig. 2
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   Next we give another example;

                    Q(x> =(;/ )=:Q for anyxc! X,

                   Q(X) =- (, [ll p i 1] P) -= Q(O)                                                lf x, = o,

                           (, iZ, iII` q) =Q<i) if xi := i.

Then we can also define a Markov channel as shown in Fig. 3, which we cail

a stationarN stochastic state machine channel (SSSM . channel). Fig. 4 is a result

of simulation when p == 3/4 and q= 1/4. In Fig. 4, the output letters seem to

have little correlation wlth the input letters, but we can show later that the

capacity of this channel is not zero, therefore, the transmission of the infor-

mation is possible through this noisy channel by the Shannon-Hinchin theorem.

                  ×,-ob,trPO

                                       1-p

                  x,-ibot"qO

                                       1--q

                                 Fig 3

         input sequence 10110010110010111001100001011aOIOOIOI
                 e

         output sequence 1101110010110010001011000010110111001

                                 Fig. 4

                      5. Capacity of SSSM Ckannels

   The second example of the previous section can be extended to a more

general case, i.e., the letters need not be binary. Let Q(x) be independent of

xeX. And we assume that Q"V (x) is only dependent on x, hence we can write

Q(x) == Q(xi), and assume tlaat Q(xi)Q--Q for all xEA, where Q==: Q(x). We

cail this generalized one an SSSM channel also. We can cornpute the capacity
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Cs(v) of an SSSM ckannel v. First, we give a proposition in a more general

situation.

   Proposition 1. Let v be a finite memory Markov channel, then

           Rp == hq(T) + lx y,li.IIII.y..q,yi･･･ym(x) rp(ay,.+iiyi･･･y. (x))p (dx)

where rp<t) == -tlog t.

   Proof. By the definkion of Rp,

 Rp = hp(S) + hq(T> - hr<S & T)

    = hq(T) + hp(S> - lim -IL U( ;Z' 'o X fZi oVS-i,,2"o (El) T-i fZ/ eV

                   n71
                                     ･･･ V S-n+i ,,sZe"e (Ei) T-n+i :Z/ Q)

    = hq(T) + hp(S)

    - lim -IL H(sm-i2oe (g) 2y V Sm,s2oe (g> 2y V

      nn
                 '''VS.,S" eV2yV.;2lfe (El) WoVS"i,ff'o (E9 T-i f?iieV

                   '･ '''VS'7i'i,..20e (Eg) T-"Mi C}l/e)

     :hq(T)÷hp(S)+ li,m, i. I!iEl... ,;E.).., rp( I vx(yi'''y")P(dx>)･

                        X-flt n 1 ll                                  X ""X                                   1- tn il

Here we assume thatvis m-foid Markovian and of m-memory with the com-

mon integer m, which does not lose generality.

Rp =hq(T>+hp(S)+<iiml Z Z rp(P(xi-"t'''Xn) vx<Yi'''Yn))

                  u nx -･x .v --y
                      IH ?)z n l n

  =:h,(T)+hp(S)+lim-l- Z] Z q(P(xi-m'''xn)qyi･･･ym(X)

                 n ?2x -･pt ", -.>i
                      1-･71t n 1 n

                                      ' llla)klTlit Nqyi+tn 1 yi･･･yi÷nt-i(X))

   = hq(T) + hp(S)

  -i- lim -!L X Z p(xit..'''x.>qy,･･y.(x> ll'i-M'q-y,+m l y,-･yi+tn-i(x>×

     n nx -･x )T ･-.v it-1         l-m nl n
                                 n-m.
  ×(log P(xi-jn･･･xn) + log qy,･･･y.(x> + X. Iog ayj+. i yj･･･yj"nt-i<X))
                                 J==1



                        On Marl<ov Channels 9

  ==h,(T>+lim-l- lli]i Z] p(xi--m'''xn)qyi'''ym(x)

           n VZ x -･x ), --J,
                1-m nl n
                                        n-m
                  ･ll'it=-1'i ijyi+,. I yi･J･yi÷mmi(x)) (Xj..i log "q'yi+m I yj'･･･yi+,n-i(X))

                 }t-f･11           n iI g'rm-1x -x y･-y  =: hq<T)÷lim- £ X X P(Xi"m'''Xn) vx(Yi'''Nn) 10g ay"'+mfyi･･yn,÷j'--i<X)l

                    1-flt n 1 11
                 lt-?n  umnv hq(T) + ii,m -h ( ,Z･..,l.,.mli, ],....,..., ,l.ll],..,,...e[Xi-"z'''X""m)

                  . yx<yt･･yl'+m-1) log 'q"yj+. 1 yi･･･ynt÷J'--i(X) l

                 il.-'tll.   == hq(T) + iipa -h I ,]Z...l H'(si"m2x (g) Ti+m c}eit,

                 ¥,.-l-mui. si,･/z･--･, op Ti 2.v v'k/L.iliwws'fe.,sz., (g} Tk :y,)]

  -= hq(T) + I y ¥..,, qyi･･Jy.(x) rp(qy.., i y,･･ty.(x))p(dx),

             1 M÷I           X
   which completes the proof, where H(.orl S') means ff(,.9fV,.KZ. ")-ff<.(Z, i

                                                       Q.E.D.
   Next we give another proposition:

   Proposition 2. Let v be an SSSM channel defated by Q== (qb> and Q(xi)=

(ablbt (xi)>. if Pe is a Bernoulli izzPntt source, i.e., time independent probability

measure on X=: Ar, then the outPztt source qo(･)= q(･;Po,v) is a Marfeov measure

on Y= Bi.

   Proof. Let us prove that

                qe([Nn]1[Yr''Nn-i]) == qo([Yn]1[Yn-i])･ (3>

We abride the brackets [] in the following formulae. Then,

 qe(Yn l Yi'''Y"-･i) ='nt qG(Yi'''Yn--iMi)/ae(Yi'''Y"-i)

 = q( Yi>'q"y2iyi(X2)'' "q- yn l y..i(Xn)P(XD'''P(Xn) / (q(Yi)'q'y, I y,( C2)

                         ' '''ij3'n--iiJ'n-2(Xn-1)P(Xl)'''P(X"-1))

  := i7yn1yn-i(Xn)P(Xn) = ae(YnIYn-･i),

which proves the equality (3). Q. E. D.
   Tlteorem 2. Let v be an SSSM channel, then the capacity of v is given by
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                                                '  CS(") = SS,P( .?}t],b,qbiab2[bi (a2)Po(a2) 10g (ab,lb, (a2))/<III,;, 4b,1b,(a2i)Po (a2t))],

where Pe moves on all Probability measures on A.

    Proof. Let P be any iRput source, then by Proposition 1,

                    Rp == hq(T) + Z ay,rp(ay,Iyi(X2))P(X2)･

                                Yl
The following inequality and equality are well known (cf. 2) p. 82 and p. 78) :

            hq(T)=limH(S :ZiieIViml'oS-i CZ/o);:i{H(S CZie1 CZ;io)･
                     n

Thus,

                          '
            hq(T> -< Z q(ye) rp (q<yi 1 yo>> == £ qy, ty (:Ii ) ayi i y, <xi)P(xi))･

                    ye yo ,xl
Now Iet Pe be a Bernoulii source given by

                       Pe(Xi'''Xn) =: P(Xi>P(X2)'''P(Xn),

then by Proposition 2, denoting qe(･>-- q(･;Po,v),

                         H<S-i ZieI 7o) " hae(T)･

Therefore

         Rp =: hq(T) + X qyt ny(4y2 i yi(X2))P(X2)

                      J'1

           E{: hq,(T) + X qy, rp<ay, i y, <x2))Pe(x2) < = Rp,)

                     Yl

            =: Z qb,4b,lb, (a2)Pe(a2) 10g (4b,lb,(a2))/<E4b,ib,(a2t)Po(a2i)),

              a2bib2 a2'
which proves the result. Q. E. D.
   Therefore we can easily compute the capacity of the channel shown in

Fig.2 of the previous section, which is about O. 1886 bit/step.
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