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1. Introduction

The information theory originated by C.E. Shannon was extended to the
case of finite memory channels by Hinchin®., Moreover the case of infinite
memory channels was also studied by Adler) and others. However, among
these generalized channels, there are not many which are useful for concrete
models. In this paper, we define a Markov channel which is a natural genera-
lization of the Markov chain and useful to make examples of generalized chan-
nels. We show that it is determined by a pair of vector valued mappings, and
give two representative examples of Markov channels and simulate how errors
occur in these channels. We also show that a stationary stochastic state
machine is a Markov channel and we can compute the capacity of this channel.

2. Notations

The input space and the output space are represented by the alphabet spaces
X=A! and Y=B! respectively, where A={ay,a;, ------ ,ar} and B={by, by, ------ L0}
are sets of finite letters (or states), and I={0,+=1,2,---} is a set of all integers
which represents the time, i.e., X and Y are the infinite dimensional product
spaces of the countable copies of finite measurable spaces A and B respectively.
Let .27and % be Borel fields generated by all cylinder sets of X and Y res-
pectively. For the element x in X, x, represents the »' th letter in 4, and for
yin Y, . represents the »/ th letter in B. In the followings, we omit the
explanation for y as it is same as x. The notation [«% x2,,, .-, x¥] represents a

thin cylinder on the time interval (s,s+1,--, %), 1Le.,

(28, a¥l={x e X: x, =2, n=ss5+1-,1}

2
where s, te/l (s<t). A o-subfield of 77 generated by all thin cylinders of the
form [«s, ¥s.1, -, %7] on the time interval (s,s+1, -, ?) is denoted by ® ;L. 27,
and a ¢-subfield generated by all thin cylinders of the form [xs] is denoted by
s and is called the time-s partition, as it is also seen as a finite partition of
X. Let 2x be a trivial partition of X, ie., 2x = {X}. A shift transformation S
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(or T) on X (or Y) represents time advance and is defined by the formula (Sx).
= Zus1 (T¥)n = Yu.1). The shift transformation S (or 7T)is a measurable trans-
formation on the measurable space X (or Y'). The input source is an S-invarariant
probability measure p on the measurable space X, i.e., which satisfies p(S1E)
= p(E) for all E e _2°. The ouiput source is defined similarly. We denote a set
of all input sources by /1.

A channel from an input space X to an output space Y is a two variable
numerical function vz (F) of x € X and F & 2/ and satisfies the followings:

1. If we fix x € X, then vi(-) is a probability measure on (Y, %),

II. if we fix F € %7, then v (F) is a measurable function on X,
and III. forall x € X and Fe %/, vs: (F) =vz (SIF).

An input source p € I and a channel v determine an output source g(-);

a(F)=| pu(F)p(dn) (Fe 2).

Let X®Y, 2 & Z) be the direct product measurable space of (X, .2°) and
(Y, %), then we call it a compound space, which is also an alphabet space
(A ® B). A shift transformation S ® 7 on the compound space is defined by (S ®
TY(x,9) = (Sx, Ty). A compound source is an S & T-invariant probability measure
on the compound space. An input source p and a channel » also determine a

compound source 7;
HG)=| »e(G)pld) Ge 20 2)

where G, is an x-section of the set G. The sources ¢(-) and 7(-) determined by
an input source p and a channel » are sometimes denoted by g¢(-; »,») and #(-;
b, v), respectively. We sometimes abbreviate va([¥s, Ysi1, -, Y£]) t0 va(VsVssrts-Ve).

If there exists an integer m such that f(-) = v.(y1ye-¥n)is a ® 2, Z-
measurable function for all positive integer # and for all letters i, ¥s, -+, ¥n,
and if f(-) is constant for »# smaller than 1-—m, then the channel v is called a
Jfinite memory channel or an m-memory channel,

For any finite partitions .9 and &7 of X, we write

N Fe={A1N At A1 ¥, ArE e},

which is a new partition of X. Then the entropy hp(S) of the transformation S
relative to an input source p < II is defined by

halS)=lim — H (25 \/ §7 23/ /S 27,

where %, is the time-0 partition, and H (%) is the sum —Ex p (A) log p (A).
A€ o
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If ¢ and 7 an output source and a compound source respectively, then we
can also define the entropy %4(7T') and %, (SQT) of the transformation T relative
to an output source ¢ and of the transformation S®T relative to a compound
source . Then the transmission rate Rp(v) of a channel v relative to an input
source p is given by

Rp(v) = hp(S) + ho(T) — h(SQT)

where both ¢{(+) = ¢(+; p,v) and #(-) = 7{-; p,v) are determined by p and ». The
(stationary) capacity Cs(v) of a channel v is defined by

Cs(v) = sgg Ry (v).

3. Markov Channels

We begin with the definiton of a Markov channel.
Definition. A channel v from the input space X to the output space Y is
called an m-fold Markov channel if there exists a positive number m such that

IV. va(¥n | Yo Yn-1) = va(Vn ] VnemYn-1)
for all x € X, for all yi, -+, ¥, € B and for all positive integer # (n>m), where
va(¥s-Yssp | Yoo soa) = (valeYsup) [ vl Yo Ys-1)

- if va(ye--¥s_1) # 0,
0 o 1 va(yeee-ys-1) = 0.

The errors which occur in the m-fold Markov channel depend on the only m
steps in the past.

Next let us see that the Markov channel is characterized by a pair of
measurable mappings. Now for every element x in X, we consider a stochastic
vector on B»

Q(x) = (g5 (%)) (b B™
and we also consider a stochastic matrix
Q) = (@b3(x)),

whose row is indexed by b in B and whose column is indexed by & in B™,
Moreover we assume that g5 (x¥) and s (¥) are measurable functions of x on
(X, 2°), and assume that

Ayn-me1+In (Sx} = E qyn 1 J’n-m‘“yn—1(x)q3’n~m"'yn~l(x>- (1)
Yn-m EB

The pair (Q (x), @ (x)) is called a stochastic pair.
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Theorem 1. Let (Q(x),@ (%)) be a stochastic pair. Then it defines an m-fold
Markov channel. Conversely every m-fold Markov channel defines a stochastic
pair.

Proof. For a stochastic pair (@(x), @ (x)), we can construct an m-fold Mar-
kov channel by the following proceedure:

We put

vr (Y1 Yn) = | @y ymlX) sz-ln Tymeit piymeiey (STTE) - if #—mm >0,
2 Gyi e ym (X) - if n—m <0.

Y

Assumming #—m >0, we see

2 Yx (yly") Z /ETS ym<x) ]];l—;nqymﬂ 1 ¥ Ym+i-1 (x)

ynEB

— 1 -
= 4yiym (x)]]n o Aym+il yiYmai=a (Sl 1x)

= Ux(yl‘“yn-ﬂ.

As a similar equality also holds in case of #—m <0, we conclude that vx(-) can
be extended to a probability measure on & ;2; 2/i by the Kolmogorov extension
theorem. Next, for any thin cylinder [y, -, y.]in ¥ >1>1, n>m),

va(yr-Yn) = Z va(Pie V)

YUy,

Z qy1--ym x) H”—m q}'mlrz'J’z Ymvi—1 (Sl 1x>

Yy

2 qyzYm+1 (Sx) Hn—m aym-kz ] Vi Ym+i-a (Si‘ix)
Vi

= | 4y~ Ym oy S x)H:l—;)Z aym+z|yz Ym+i- 1(81 lx) lf %—Wl_>__l,

Z Ayn-m-In-1 (Sn—mx) . lf n—m < l.

Yn-m=¥y
In both cases of # >m and #n <m, we get
va (V1Y) = vsla (THLY1Yul). (2)
Replacing / in (2) by [—1, we get
vsx (T [yre-yu]]) = vst-1sexX(TH=1T [92, -, y2])
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= I)S[x (Tl [yl) R y"])

as T [y, -, ¥=]is a thin cylinder on the time interval (/—1,---,7n—1). Hence

ve (Y- Yn) = vsx (T [ Y1)
holds. We extend v«(-) from & ,Z; 2/ to 2/ = ®; 2, %/, by the formula

va (Yt ) = ve=1x (T [y-1,++, ¥u]).

Then v satisfies the condition III of the channel. For any [y, -, ¥ul, v. (¥ ¥x)
is /77-measurable on X, as this is defined by the product of the measurable
functions ¢i (%) and @5 (x). And for any measurable set I (€ 27), ».(F)is also
measurable, as F can be approximated by a countable sequence of cylinder sets
with the measure vz (+). Therefore the condition II is also clear.

Conversely let v be an m-fold Markov channel. We define a stochastic pair

(Q (x), @ (%)) by the following;
Iy, (%) = vz (3))
and
Qymar15(%) = va(Ims1]D)

where b = [¥1, ¥z, ---¥m ). Clearly the pair is well defined by the condition III of
the channel.

;B aymﬂ | Y1 Ym (x) Qyy-ym (x) = Z Yx (yl"'ym) Yz (ym+1 I yl"'ym)

1 neEBRB

= 2 ve (Y1 Ymst) = vx (Voo Yiar) = vou (T (Yoo Yms1))
neSB

= yeeeImer (Sx)

The above chain of formulae shows that the pair satisfies the condition of the
stochastic pair. Q.E.D.

This theorem tells us that any Markov channel is determined by a suit of
mappings, which resembles to the fact that a memoryless channel (cf.2) p. 154)
is determined by a stochastic matrix. Let (cqms) be a stochastic matrix which
determines a memoryless channel, then taking ¢s(x) = cxpp and @u5(X) = cx,p,
we see that the memoryless channel is a kind of Markov channels.

4. Examples

We put A= B=1{0,1%, i.e., we consider a binary case. For a stochastic
pair, let us choose
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Q (x) = ( 2 )ZQ(O) oo if %o =0,
1—9p
1-p,=@Q) e if xe =1,
)
Q (x) = q 1—7, =@ (00) v if %y=0, %, =0,
Lo, )
- - if % =0, x, =1,
<1——q 7 >:Q(Ol)
q 1—7
<1—r q .=?Q(10) e if k=1, x =0,
¥ 1—11)
¥ 1—qg,=@ (11) e if xg =1, 2 =1,
Lo, )

and assume that Q(00)Q0) = Q0) i.e.,p= (r—1)/(r +q—2). Then we find
that QI1Q(L) = Q(1), Q01)Q(0) = Q(1) and Q(10)Q(1) = Q(0). Hence (Q(x), Q(x))

is a stochastic pair, so that we can define a Markov channel, which we call
an additive noise channel. Errors in this channel occur as shown in Fig. 1.
Fig.2 is a result of a simple simulation in the case of ¢ =9/10, » =1/2 and

p=5/7.

C: correct
E: erroneous

Fig. 1

input sequence 1011001011001011100110000101110100101

V

output sequence 0111001011001011111011111001110100101

Fig. 2
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Next we give another example;

s 2]

H]

Q(x).—_(l):Q for any x € X,

Qx) = ( b 1_P):Q(O) if =0,
1—-p
< q 1—‘]):@(1) if x,=1.
1—q ¢
Then we can also define a Markov channel as shown in Fig. 3, which we call
a stationary stochastic state machine channel (SSSM channel). Fig. 4 is a result
of simulation when p =3/4 and g = 1/4. In Fig. 4, the output letters seem to
have little correlation with the input letters, but we can show later that the

capacity of this channel is not zero, therefore, the transmission of the infor-
mation is possible through this noisy channel by the Shannon-Hinchin theorem.

P 1-p D
O O
Kl_/
-P
q 1-q
S

Fig. 3

>
i}

input sequence 1011001011001011100110000101110100101

|

output sequence 1101110010110010001011000010110111001

Fig. 4

5. Capacity of SSSM Channels

The second example of the previous section can be extended to a more
general case, i.e., the letters need not be binary. Let @(x) be independent of

x & X. And we assume that a(x) is only dependent on x, hence we can write

Qx) = Z?(xl), and assume that Z?(xl)Q =& for all x € A, where @ = Q(x). We
call this generalized one an SSSM channel also. We can compute the capacity



8 Yatsuka NAKAMURA

Cs (v) of an SSSM channel v. First, we give a proposition in a more general
situation.
Proposition 1. Let v be a finite memory Markov chanwnel, then

Ry=ho(T)+ | 23 Gyiesnl®) 5@smosiznesm (8)B (d2)

X p1-yme
where 7(t) = — t log t.
Proof. By the definition of R,
Rp=hpS) + ho(T) = (SQ T)

= hlT) + BS) — lim = H( 270 ® 7 o/ §71 250 @ T 4\
7z

\/ S~71+1(/<Z/"0 ® T-n+1 7 0)
= ho(T) + hp(S)

~ lim i— H(Sm=1 27 ® 24 \/ S 770 @ 2 \/
ki3

NS 2NV 2V Z0Q 2oV S QT 27N
e\ Sl 920 @ T-u+l 2/y)

n oy x oy
1-m n

= k(D) h(S) + lime 23 3 [ salrepp(dn).

Here we assume that v is m-fold Markovian and of m-memory with the com-

mon integer m, which does not lose generality.

Rp = ho(T) + hp(S) + (1}{7“% . EU y

X
12 n

EY WP imXn) va(Yi- V)

n

.1
= ho(T) + hp(S) + lim— 37 23 9(B(FsmZn)y1o-ym()
24 A ¥ oy

ey
1= n 1 n

IR P
° H;xlﬂ qyiem | yi"‘yi-l-m—z(x))

= ho(T) + hp(S)

=i

.1 -
-+ hlm P Z Z P20y 9l %) TT ) Qvism | viwyiem-1(%) X
5 x x oy ey i=
1-m n 1 n

H—IN

X(log p(xl—m"'xn) + lo.g qyl“'ym<x> + Z 10g Zij+m I yj"'yj+m—1<x))

J=1
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(T) + lll'ni2 Z] Z p(xl m* Mz)‘]yl ym( )

x X
1- 7)1 y 71

n—m

.Hzl'-;” Ayivm | pi-Yitm- 1(x>) (2 . IOg qyj.*.nl | yj-uyj,;_m_l(x))

j=

n—m

(T) + hm"‘*{ Zl} . E Z} p(xl -t n) Vx(yl"'yn) lOg a-V,i‘l'm ! J’j"'ym-fj—x(x)}

-

ho(T) + llm— { Z 2 2 DX jom X jm)

“7 lx] m. ]+m ] Y J+m—l

e va(¥jo-Yiem-1) log Zlijn | y!"'ym+j—-x(x) }

H—

= ho(T) + hm—— { E H(S*2, @ Ti*" 2/,

Jtm—1
VT st e iy S0 T )

Pl k=j

= 1lT) 4 | 23 Gyiean®) 1o s e lNDE),

X
which completes the proof, where H(.o7| &% ) means H( o7/ \/ <7 )—H(<% ).

Q.E. D.
Next we give another proposition:

Proposition 2. Let v be an SSSM channel defined by Q = (q,) and @(xl) =
(@o1or (%1)).  If py is a Bernoulli input source, i.e., time independent probability
measure on X = Al, then the output source qo-) = q(-; by, v) is & Markov measure
on Y=51,

Proof. Let us prove that
qolLya ] | Lyr--yn-1]) = qo([9n] | [3n-11)- (3)
We abride the brackets [ ] in the following formulae. Then,
QoY | Y10 Yu-1) = qo(Ir+Yna1 Yn) / QoI Y1)

= q(91)ya19:(%2) Tyn 1 yuer(Fn) DX D(x0) /(P12 1 9:(x2)
"'ayn—ﬂ [ Yn~ 2( n—~1>p(x1) (xn 1))

= Zlyn | yn~1(x7l>p(x”) = CIo(yn l yn~1),
which proves the equality (3). Q.E.D.
Theorem 2. Let v be an SSSM channel, then the capacity of v is given by
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Co») = sup{ 3 auin 11s (@)p0(as) 10g (@ns 10, (@) /(3] w1l (),

Do\ gobibe
where py moves on all probability measures on A.

Proof. Let p be any input source, then by Proposition 1,
Ry =ho(T) + %} I9.7(@y2 1 3:(%2)) P(%2).
The following inequality and equality are well known (cf.2) p.82 and p.78):
ho(T) = lijrlnH(S V0|Vl ST 2 ) S H(S 27| Z70).

Thus,

ho(T) < 2 a(¥0) 7 (@(y1| 30)) = Z} dye 7 (2 gy 1 yo (X1)D(%1))
Yo Yo X1

Now let py be a Bernoulli source given by
Do%1-%n) = P(x1)P(%2) - P(%n),
then by Proposition 2, denoting g¢+) = q(+; b, v),
H(S™ 2/ ] Z70) = haoT).

Therefore

Ry =ho(T) + 31 q5: 7@y, 1 5:(%2))p(%2)

Y1

< haolT) + 2305 7(@yar 3, (%2)Dol%a) (= Rp,)

= Z 06,45, 151 (@2)Po(a2) log (5@1%(“2))/(2 @b, 1 5:(a2") polaz')),

azbiba

which proves the result. Q.E.D.

Therefore we can easily compute the capacity of the channel shown in
Fig. 2 of the previous section, which is about 0.1886 bit/step.
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