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§ 1. We begin with some notations and definitions :
Let {¢n(x)} n =1, 2,---, be the system of Rademacher functions, i. e.

Uz e [0, 1/2)
$o(%) = o(x + 1) = Go(x), Ga(x) = $o(2"- ),
and let
da(x) =1 for n =0, and
n(X) = Pucd)(X)Pncd(®) ++ Puen(x) for = 27 4 27 4 ... 4-20()
where n(1) > n(2) > --- >n(r) > 0.

The functions thus defined are called the Walsh functions, which form a
complete orthonormal system over the unit interval. For basic properties of
Walsh functions, the reader is referred to N. J. Fine [2].

Following A. Beurling, g(x) is called a contraction of f{x) if

[g(x) — gz || (%) —fl&"){for %, #'e(0, 1).
A sequence {a,} is called a contraction of a sequence {c,} if
iam — an| <\ om — Cn for every m and n.

A denotes a positive absolute constant not always the same.
We have previously proved the following two theorems (see [5]):
Theorem 1. Let

f(x) ~ i Cn(/)n(x)

1=

and

g(x) ~ i angbn(x) e L, 1).

n=0
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Suppose that

[ lgte ) — gwidae < || 1fte 4 1) = s

for any %, and suppose that there exists a positive sequence {7.} such that

(1) l Cn l g rn and Z 7/7117 < e
11=()
(ii) i n_gp/z<2 p27-y2>17/2+ i n_pﬂ(i 7%)‘{’/2 < oo,
n=] p=] s=] y=34-1

then

Zl“n |2 < o0

=0
where 2/3 < p=<2.

Theorem 2, Let
F@) ~ 2 cadpn().
n=0

For a given {a.}, if a»— 0 and
1=0 7=0

where m(n, j)=n + 24, and if there exists a function 7(%) such that
(i) [ L r(x) and y(x) € LP(0, 1)
B 1 x /2 1 1 /2
(i) J x—3/>/2“ t272(t)dt> dx+J x~ﬁ/2< I mt)dt) dx < oo

0 0 0 x
where 1 << p <2, then there exists a function g(x) belonging to L?(0, 1)
such that

8®) ~ > an ().
=0

34

S H@men, i — @n |2 < D) Cucn, iy — €a|? for every integer j

Theorem 2 is the dual for Theorem 1. The case p =1 of Theorem 1 was
first proved by prof. C. Watari [8]. For the corresponding results for Fourier
series, see also [1] and [4]. Prof. G. Sunouchi [7] proved the following pro-

position 1:
Proposition 1. For 1 << p <2, the convergence of the series
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»2 . .
) is equivalent to the convergence of the series

oo n
> 1 n-dsr2 (2 V2,
=1 o=

i n—0/2 (i azv) p/?
3=] v=3

Hence the hypotheses of our theorems may be modified.
Now, N. J. Fine [3] introduced the generalized Walsh function

Py(x) = PryA*)drai(y)

where [x] = the greatest integer in x. Then for each 2z, we have ¢x(y + z)
= ¢z(y)px(2)a. . y. Further, by symmetry, we have ¢y(x) = ¢z(¥).

If f(x) is integrable on (0, o), then its Walsh Fourier transform is defined
by

Ay = TA9) = | F =)o),

It is well-known that the following facts are true;

(1°) (c2£)(®) = flx + 2) = T(cof) = ¢ f
(2°) fge=1af
(3°) Plancheral theorem.

We refer the reader to N. J. Fine [3], R. G. Selfridge [6] and C. Watari [9]
for detailed properties of Walsh Fourier transforms.

The purpose of this paper is to prove the Walsh analogue of theorem on
contraction of Fourier transforms (see [47]). The author thanks prof. C. Watari
for his valuable suggestions and encouragements in the preparation of this paper.

Our result is as follows:

Theorem 3, Suppose that F(x) & LP(0, o), where 1< p =<2, and that its
Walsh Fourier transform is f(x). Further, suppose that g(x) is a contration of
f(x), that is,

[ gt 4 1) — gtopdr < [l 1) — fol*dx for any b,

satisfying either, for the case p =1,

lim g(x) =0
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or, for the case 1< p <2,

g(x) € LY(A, )

where A is a positive finite real number and ¢ = p/(p—1).
If there exists a function 7(x) such that

@) | F(x)| < 7(x) and y(x) € L*(0, <o)
(i1) 2r2(t) e L(0, ) and 73(f) € L(J, co) for any § >0

(i) J:x—sﬁ/z( jo tz-f?(z‘)dty/ Ui < oo or K"x-—m< J jﬂ(t)dt)ﬁ “Ux < oo,

then g(x) is Walsh Fourier transform of a function G(x) which belongs to
L?(0, ), where 1< p<2.
As this theorem is proved along the line of [4], its proof is somewhat more

tedious.
§ 2. We begin with the equivalency of the convergence of the two integrals

of the assumption (iii) in Theorem 3.

Theorem 4. For 1< p <2, the convergence of the integral
oo x »/2
J x—31>/2< J Erz(t)dt> dx
0 0
. . ‘ . © o /2
is equivalent to the convergence of the integral J x—1>/2< J 7'2(t)dz,‘> dx.
0 X
Proof. First, we shall prove the inequality

J:x—sm(j: t2r2(z‘)dt) Ux< A J . z>/2< ij%t)dt)j)/zdx,

By dissecting the range of integration and using Jensen’s inequality, we have

me,..gp/z( J; tzrz(t)dt>p/2dx _ njgoo J2n+lx_3ﬁ/2( J: tzrz(t>dt>p/2dx

!

9 o
©0 2 1 2
<4 3] g—ncsp/z—n( M 22’8J2k+ rz(f)df)p/
FL== OO k=co 2k
<A Z -n(30/2—1) E 2k1]< J 2(t>dt)
222 — 00 k=—co 2k
<A E <J2k+ )dt) »/2 Z 2=n(3p/2—1)
= —o00 n=k
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=)

E 2kp.g—k(3p/2—1)<JZTZ(t)dt) =A Z‘, 2—k(p/2— I)Hk 2(t)dt

= k=—oco

A
N

)P/Z

o

<4 3|

k=—co

| ‘:ﬂt)dz)” ix = Aj‘:x—m jjﬂt)dt)m dx.

2k—1

Concerning the converse inequality, we proceed with the same method. In
fact, we have

J;ox—p&“jﬁ(t)dt) < 3] J x—b/zdx(J;rz(t)dt)p/

P 7= - OO

<A Z} 2 —n(p/2~ 1)(22 sz'k t"yz(t)dt)m

H=—00 k=1

o o h p/z
<A 3] a-non- Sok( M i)

n=—co k=n

<A 2 2- kp(Jok 2 Zt)dt) Z 2 —n(p/2—1)

=00

<4 >3 a-ramn( [*epwar)”
0

=4 i\, J’2k+2x—3p/2< J: tzrz(t)dt>f’/2 dx = A J:x_.g,w( L: 127‘2(t)dt>p/2dx.

2k+l

k= —co

Therefore this completes the proof of Theorem 4.

§ 3. To prove Theorem 3, we collect here various preliminary results
which we will need.

Proposition 2 [3]. If f(x) is integrable on (0, o), then

lim f(y) = hm J J(x)py(x)dx = 0.

y—oo
Proposition 3 [6]. If 0<a< 2" then
on 2 .
J Sflxydx = J Aa + x)dx
0 0

Proposition 4 [9]. If the function Xgo2™(x) is the characteristic functions
of the interval [0, 2"), then we have

2o, 2H(9) = Jo Xro, 2" (%)@ y(x)dx = 2"Xro,27"(y)

where 7 is every integer.
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Proposition 5 [6]. If F(x) & LP(0, )(1 < p<L2), then there is a function
f(y) & L0, o) such that

Ca ©
) =11 m [ Fgsds and 15 1e 1 F 15

where 1/p + 1/g = 1.
The following lemma is of particular importance in the proof of Theorem 3.
Lemma. Suppose that the function F(x) belongs to L0, o) and f{x)

@ o
= Li. mj F(y)dx(v)dy. If the function g(x) is a contraction of a function f(x),

w—ro0 0
then there exists a function G(x) belonging to L? (s, o) for any positive

number ¢ such that

H—o0

@ 2n
Li. m{ [ " £(x)gse) - Dgs(x)de]
=G(y)($i(y) — 1).
Moreover, this function G(x) satisfies the following inequality:
¢ ¢ o
J xziG(x)lzdx;AH | F(x)|*x%dx -+ tzj ]F(x)[2dx},
0 0 £
Proof. Since g(x) is a contraction of f(x), we have, by Plancheral theorem,

18+ 2) — gopde< [ 1w 4 29) — A

= [ 1P @) — D12y < oo
Hence we have

(%) J:[g(x + 27) — g(x)|?%dx < oo for every integer j.

Put

7

G(y) = J @

Then, using proposition 3 for #» > j, we obtain

n 77

JO 2(x F 2)gy(x)dx = JO @) y(x 4 2)dx
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7

= [ etopswpsiar = 92 | gigsoas

—950) [} g@sle)dx = 101G,
Thus we have
2" .
Ca (510 =1 = | Letx + 2) — g(®Ips (0.
Therefore, by (x)

@ @ o
Li m{GaO)ei) = D} =L 1 m{ [ gtpergio) — 1}

o0 300 0

which we can write as follows

= GO} pi(») — 1), say,
where GG (y) is defined for almost all y belonging to the set
Ej={ylk+ (20-1)/2i" < y<k-+20/2*; v=1,2, -2/, k=0, 1, 2,---}.

Since

9i(y) = ¢j(») = —1 for ye EiNE;j((,j=12,--),

we have clearly

GW(y) = GUXy) for almost all y e EinE;(i==j).

As the union of the sets E; is (0, o), let us define the function G(y) on the
open interval (0, o) according to the following rule :

G(y) = GD(y) for yekEi(j=12 )

Thus G(y) is well-defined almost everywhere in the open interval (0, oo).
It is clear from the definition of the function G(») that

@ o ,

Lim{ | 2Gagi — Dgsds] = GONi) — 1),

LT m{ [ 601600 ~ Dgxt)ds} = gt + 2)

oo

and
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G(y) € L¥e, o) for every positive number e.

To prove the inequality in the Lemma, the proof proceeds in two steps.

The first step. As the proof of this step is similar to that used by Y. Oku-
vama [5], we give here a proof for the sake of completeness. Since g(x) is a
contraction of f(x) and

@ 2n . '
Liom{ | F)(6i0) — Dgatedx| = A + 2) — ftx),

o

we have

[ 1600 — 1)1 = [ 1t + 2) — g(x) 2

< |17 20) — F@)x = [ F@)@i) — 1))
0 0

Hence
J; 1661 — DI%dx < [T IF@G) — D).
Therefore we obtain

2~k
[ 1G@@k - 1ltax < |

9-4-1 N E@) g (x) — 1) |Pdx

1
2-k-
+ [ 1@ @) — 1)

By the definition of Rademacher function, we have

e(x) =1 (02 <2787, dp(x) = —1 (2761 <Zx<{27h)

Thus we obtain

[ o< |

2-k-1

| F(x)|%dx + flnx)wdx

1
9-k=1
a 2-i 2 “ 2
= ;})L | F(x)|2dx + L | F(x)|dx.

If x=2"% then we have

[Feicwia =317 sonira< s ool
j - =k -

j=k <27

-7

oo poo2-t

:<=A{Z Z“ijgj [ F@) 1t + g‘, 9-2/ JT|F(’f)ith}

i=k 2=t
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gA{gj(k;:Jrg)z di 1F<t)12dt+1§_}:,2 o [Pty at)
gA{Z"%ﬁle(t )|*dt + 22 Jz F@)] 2dt+j}f£2 -JJ !F(t)]%’t}
gA{Z’ZkEk]F(t )|2dt + i}] 52|Fz)|2dt+22k[ |F(t)|2dt}
=A{jz t2|F(t)l2dt+2"kJ2 [F(t){zdt}
Next, we suppose that
9-k"1 < x & 2F,

Then we obtain

x 2=k
j tﬂG(t)]zdth £1G()|2dt
0 0

2
gA{JO £ F)|2dt + 2- 2ka [F(t)|3 dt}
On the other hand, we have '
2=k X 2=k
: j t2|F(t)|2dt=J t2|F(t)|2dt+J | F(t)|2dt
0 0 X
x 2~k
< jo 2| F(t)|2dt + 2-2kj | F(t)| %dt.

Thus we have

jo £1G()|2dt < A H: 12| F(t)|2dt + 2 J:olF(t);ﬂdt}.

Hence the case 0 <{x <1 is proved. We must prove the case 1 < x < oo,
The second step. Since g{(x) is a contraction of f(x), we have clearly

[ 160 et) = 117t = | 1g(t - 2) —g(0) e

< |17+ 2 — A)ear = I F@@0) - Dt
0 0
Thus

[ 16@1m=t0) — 17ar < [TV F @) 1Ha) — 1
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We integrate both the sides of this inequality with respect to z within the
limits [27%#-1, 2-%) and we obtain

W [ a2 [ 16010 — par < [

dz || F@)|ga(t) — 10t
2=k -0
Using proposition 4, we see that

|7 e =1z =2 (= gultndz =220 = [ gu@az)
2-p=1 9-p-1

9-k=1
=202 — | rgeres pony (2)gulz) d2) = 2277 — Hpmkes po(D)
0, 02k

= 27k¥1 Ok <t < Qk*1
27k 2k <t < o0,

Hence we have by (1)

© Ez Gt < AJ:]F(t)lzdt — 4 JZ}F(t)Hdt + j;|F<t)i‘~’dt}

1 9i+1

- A{E L]_ |F()|2dt + J;[F(t)wdt}.

If x = 2", then we have

n—1

on 1
j £1G@)|2dt = j |Gt |2t + Ej £1GW 12dt = I, + L, say.
0
According to the proof of the first step, we obtain
1 rl oo
3) flzj z‘Z]G(t)izdtgA{J £ F(t) |2t + | 1F<t)[2dz}
0 0 J1
n co
g_A{J tle(t)lzdt+22”J IF(t)]zdt}.
0 27

On the other hand, we have by (2)

-

1J £16() 2dz<A{§j J |2dt}

fe=

gA{T_l o2 :1 |7 1Fwa + :ijzk |, ey 2at]
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A

A ﬁjj 2dt2 20k 22"j lF(t)lzdt}

J k=0

o

n~1

A

IA

9% E |F(t)|%dt + 22" “F(tmdt}

J=

o

IA

J=

7

[

A

I

£IF(8))dt + 27 j }F(t)]zdt}
1 7t

{
»
A@J o1 Rt + 2[Rt
{
A

J
¢

||/\

£|F() 2dt+22ﬂj ;F(t)}zdt}.
0 X3

Combining (3) and (4), we have

| z"tz 16(t) 1t < A jintz |F(t)|2dt + 22 D F\2at).

Finally, we suppose that

271 < x < 2”-}'1'

Then we obtain
r 2160 |Mdt < Jz"“tz \G() |2t
0 0

<Al

On the other hand, we have
27l+l X 271‘(-1
j 2| F(t)| 2dt =J 2| F(t)| 2dt +J 2| F(t)) 2t
0 0 x
x on+t
< [CeF@at+ 200 77 Fy at,
0 x
Thus we obtain

jo £160)|2dt < A{ [0 2| F(t)|2dt 4 2500+0 D F(b)| Zdt}

gA{ jo £ F(t)|dt + x° DF(t)Pdt},

£ F(f)|2dt + 220741 j;H]F(t)wdt}.

. E

21
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§ 4. Proof of Theorem 3. Now we are in position to prove our Theorem.
We may suppose that 1 < p< 2. By the assumption of Theorem 3, we have

F(x) e L? (5, o) for every positive number e.
Hence
F(x)(gj(x) — 1) € L? (0, o) for every integer j.

Since g(x) is a contraction of f(x), we have, by Plancheral theorem,

[ 18t 2) - g e < |1t +20) — S 1

= [ 1P — 12 < oo,
Thus we have

J;olg (x +20) — g(x)|2dx< oo for every integer j.

Therefore, by Lemma, we have a function G(x) which is well-defined almost
everywhere on the open interval (0, o). Now we shall show that this function
G (x) belongs to L?(0, o),

We put

x
eo(x) = | 12121G(t) 7t
By Holder’s inequality and the lemma, we have

oplx) < w1012 {: 1£121G(®) |2dt)”/ 2

< Axl-pP2 J | )| 2dt + 22 ﬁF(twdt}m
co /2
[ oedr + 2 "pnat), ey )

x
0
x

x

{
) < Axl—b/z{
( /2

< Axi-»/2 j ﬁ(x)ﬂdt)”ﬁ Ao J )
X

0

by Jensen’s inequality.
By the assumption (iii) and Theorem 4, for each « (0, «) we obtain

Az ﬁax—sp/z< j: tzrz(t)dt) o
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Qa o »/2
> j x—a,»/zdx(j tzrz(t)dt\)
a 0

) pal—w/z( J:tzﬂ(t)dt) "

Hence
(6) (J':ﬁr?(t)dt)p/z: 0(x30/2-1),
Also

sz o o

/2

v

J:/Zx—p/za’x( J:oﬂ(t)dt)

o0

= Aﬁal—D/Z( J rz(t)dt)m,

o

and hence we have
o /

@ (| rea)” = oo,
X

Combining (6) and (7), we have

(8 op(%) = O(xP).

Now we can show that this function G(x) belongs to L? (0, oo);
that is,

[ 16 12dx = Le-tepa)] + | “wr i)
=K, + K,, say

where K is 0(1) by (8) and K: is, by (5), less than

A J :x—p-z_ xI—D/Z{ J : r2(E)eedt + %2 J :orz(t)dt} mdx

éA{ J :x—3p/2< L: tzrz(t)dt>z>/2dx + J':x—p/z< J :}z(t) d l‘)mdx}

which is finite because of the assumption (iii) and Theorem 4.
Therefore we see that G(x) belongs to L?(0, o).
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Using proposition 5 and the definition of Walsh-Fourier transform, we
define the Walsh-Fourier transform g*(y) of G(x) in the following way respec-

tively:

( 7
g*() =Lim JZ Cx)dy(x)dx, for 1< p<2
n—roo 0
and
g*0) = | Glegs(ndx, for p=1.
0

Since G(x)}{(d;(x) — 1) & L0, <o), we have
. @ 2n
g4 +2) — g*0) = Lim | CE@ ) —Dgs(xds.

On the other hand, we get, by Plancheral theorem

. @ (o
gy +2)—g0) =Lim| CENGix) - Dos(ds.

Hence we obtain
gy +27) — g*(9) = g(y + 27) — 20y) a.e.
For the case p =1, by proposition 2, we have
lim g*(y +2)=0 and lim g(y +2/) =o0.

Therefore
g¥y) =g a.e

For the case 1 < p< 2, we have to recall the facts that
g) e L? (A. o) and g*(y)eL? (0, o).

Take any finite interval (q, b). If y  (a, b), then y +oe (27 — b, 27+b). Thus
we have

b b . .
| 186) = g*)ldy = [ 12ty + 2) — g*(y + 20)|%ay
<[ 120) — g*)l dy

which tends to zero as j— o. Therefore we have



No, 34 On Contraction of Walsh Fourier Transforms 25

gy —g*» =0 a.e.

which completes the proof of Theorem 3.
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