On the Nörlund Summability of Laguerre Series

Kazuo IWAI*
(Received 26 October 1971)

1. Definitions and Notations

Let $f(t)$ be a Lebesgue-measurable function such that the integral

$$
\begin{equation*}
\int_{0}^{\infty} e^{-x} x^{\alpha} f(x) L_{n}^{(\alpha)}(x) d x, \quad \alpha>-1 \tag{1}
\end{equation*}
$$

exists, where $L_{n}^{(\alpha)}(x)$ denotes the nth Laguerre polynomial of order α.
The Laguerre series corresponding to this function $f(x)$ is

$$
\begin{equation*}
f(x) \sim \sum_{n=0}^{\infty} a_{n} L_{n}^{(\alpha)}(x) \tag{2}
\end{equation*}
$$

in which

$$
\begin{equation*}
a_{n}=\frac{1}{\Gamma(\alpha+1) A_{n}^{\alpha}} \int_{0}^{\infty} e^{-y} y^{\alpha} f(y) L_{n}^{(\alpha)}(y) d y \tag{3}
\end{equation*}
$$

and

$$
A_{n}^{\alpha}=\binom{n+\alpha}{n} \sim n^{\alpha}
$$

Let $\sum a_{n}$ be a given infinite series and $\left\{s_{n}\right\}$ the sequence of its partial sums. A sequence $\left\{s_{n}\right\}$ is said to be summable by harmonic means, ${ }^{1}$ if

$$
\lim _{n \rightarrow \infty} \frac{1}{\log n} \sum_{k=0}^{n} \frac{s_{n-k}}{k+1}
$$

exists.
Let $\left\{p_{n}\right\}$ be a sequence of real constants such that $p_{0}>0, p_{n} \geqq 0$ and let us write

$$
P_{n}=p_{0}+p_{1}+\cdots+p_{n}, \quad P_{-1}=p_{-1}=0
$$

[^0]The sequence-to-sequence transformations :

$$
\begin{equation*}
\tau_{n}=\frac{1}{P_{n}} \sum_{k=0}^{n} p_{k} s_{n-k}\left(P_{n} \neq 0\right) \tag{4}
\end{equation*}
$$

defines the sequence of Nörlund means of the sequence $\left\{s_{n}\right\}$ generated by the sequence of coefficients $\left\{p_{n}\right\}$.

The series $\sum a_{n}$ is said to be summable $\left(N, p_{n}\right)^{11}$ to the sum s if $\lim _{n \rightarrow \infty} \tau_{n}$ exists and is equal to s, and further is said to be regular ${ }^{1)}$ if it sums every convergent series to its ordinary sum.

In the special case in which $p_{n}=\frac{1}{n+1}$, the Nörlund mean reduces to the harmonic mean stated above.

2. Introduction

Recently B. S Pandey has proved the following theorem.
Theorem A. ${ }^{2)}$ For $-\frac{1}{2}>\alpha \geqq-\frac{5}{6}$, the series $\sum_{n} a_{n} L_{n}^{(\alpha)}(x)$ is summable to sum s by harmonic means at the point $x=0$, provided,

$$
\begin{aligned}
& \int_{0}^{t}|\varphi(y)| d y=o\left(t^{\alpha+1}\right), \text { as } t \rightarrow+0, \\
& \int_{w}^{n} e^{y / 2} y-\alpha / 2-3 / 4|\varphi(y)| d y=o\left(n^{-\alpha / 2-1 / 4}\right)
\end{aligned}
$$

and

$$
\int_{n}^{\alpha} e^{y / 2} y-1 / 3|\varphi(y)| d y=o(1),
$$

where

$$
\varphi(y)=\frac{1}{\Gamma(\alpha+1)} e^{-y}\{f(y)-s\} y^{\alpha} .
$$

In this note we shall prove a theorem concerning Nörlund summability which includes, as a particular case, theorem A stated avove.

3. The main theorem

We establish the following theorem which includes, as a particular case, the theorem due to B. S. Pandey. ${ }^{2)}$

Theorem. we write

$$
\varphi(y)=\frac{1}{\Gamma(\alpha+1)} e^{-y}\{f(y)-s\} y^{\alpha},
$$

and let $e^{y / 2} y^{-1 / 3} \varphi(y)$ be Lebesgue integrable over $(1, \infty)$.
If

$$
\begin{equation*}
\int_{0}^{t}|\varphi(y)| d y=o\left(t^{\alpha+1}\right) \tag{5}
\end{equation*}
$$

as $t \rightarrow+0$, and

$$
\begin{equation*}
\int_{\omega}^{n} e^{y / 2 y-\alpha / 2-3 / 4}|\varphi(y)| d y=o\left(n^{-\alpha / 2-1 / 4}\right) \tag{6}
\end{equation*}
$$

as $n \rightarrow \infty$, then for $-\frac{1}{2}>\alpha \geq-\frac{5}{6}$ Laguerre series

$$
\sum_{n=0}^{\infty} a_{n} L_{n}^{(\alpha)}(x)
$$

is summable to the sum s by regular Nörlund means $\left(\mathrm{N}, p_{n}\right)$ at the point $x=0$.

4. Preliminary lemmas

Lemma 1. ${ }^{3)}$ Let α be arbitrary and real, c and ω be fixed positive constants. Then for $n \rightarrow \infty$

$$
L_{n}^{(\alpha)}(x)=\left\{\begin{array}{ll}
x-\alpha / 2-1 / 4 & O\left(n^{\alpha / 2-1 / 4}\right)
\end{array} \text { if } \frac{c}{n} \leqq x \leqq \omega, ~ \begin{array}{ll}
n\left(n^{\alpha}\right) & \text { if } 0 \leqq x \leqq \frac{c}{n}
\end{array}\right.
$$

Lemma 2. ${ }^{3)}$ Let α be arbitrary and real, $\omega>0,0<\eta<4$. We have for $n \rightarrow \infty$

$$
\max e^{-x / 2} x^{\alpha / 2+1 / 4}\left|L_{n}^{(\alpha)}(x)\right| \sim\left\{\begin{array}{l}
n^{\alpha / 2-1 / 4} \quad \text { if } \omega \leqq x \leqq(4-\eta) n \\
n^{\alpha / 2-1 / 12} \quad \text { if } x \geqq \omega
\end{array}\right.
$$

5. Proof of the Theorem.

Let s_{n} denote the nth partial sum of the series $\sum_{n=0}^{\infty} a_{n} L_{n}^{(\alpha)}(x)$ at the point $x=0$, and τ_{n} denote the Nörlund means of the sequence $\left\{s_{n}\right\}$.

In order to prove the theorem, it is sufficient to demonstrated that

$$
\tau_{n}-s=o(1), \text { as } n \rightarrow \infty
$$

Since the integral in the left side of (6) increases with the increase of n, we have obviously $\alpha<-\frac{1}{2}$.

Now we have

$$
\begin{aligned}
s_{n} & =\sum_{k=0}^{n} \frac{1}{\Gamma(\alpha+1)} \frac{1}{A_{k}^{\alpha}} L_{k}^{(\alpha)}(0) \int_{0}^{\infty} e^{-y} y^{\alpha} f(y) L_{k}^{(\alpha)}(y) d y \\
& =\frac{1}{\Gamma(\alpha+1)} \int_{0}^{\infty} e^{-y} y^{\alpha} f(y) L_{n}^{(\alpha+1)}(y) d y .
\end{aligned}
$$

Hence by the definition (4)

$$
\begin{aligned}
\tau_{n}-s & =\frac{1}{P_{n}} \sum_{k=0}^{n} p_{k}\left(s_{n-k}-s\right) \\
& =\frac{1}{P_{n}} \sum_{k=0}^{n-1} p_{k}\left(s_{n-k}-s\right)+\frac{p_{n}}{P_{n}}\left(s_{0}-s\right) .
\end{aligned}
$$

But, by (1)

$$
\begin{aligned}
s_{0} & =\frac{1}{\Gamma(\alpha+1)} \int_{0}^{\infty} e^{-y} y^{\alpha} f(y) L_{0}^{(\alpha+1)}(y) d y \\
& =\frac{1}{\Gamma(\alpha+1)} \int_{0}^{\infty} e^{-y} y^{\alpha} f(y) d y \\
& =O(1), \text { for } \alpha>-1
\end{aligned}
$$

and hence, by the regularity for Nörlund means, we have for $\alpha>-1$,

$$
\frac{p_{n}}{P_{n}}\left(s_{0}-s\right)=o(1), \text { as } n \rightarrow \infty
$$

Therefore we have

$$
\begin{aligned}
\tau_{n}-s & =\frac{1}{P_{n}} \sum_{k=0}^{n-1} \frac{p_{k}}{\Gamma(\alpha+1)} \int_{0}^{\infty} e^{-y} y^{\alpha}\{f(y)-s\} L_{n-k}^{(\alpha+1)}(y) d y+o(1) \\
& =\frac{1}{P_{n}} \sum_{k=0}^{n-1} p_{k} \int_{0}^{\infty} \varphi(y) L_{n-k}^{(\alpha+1)}(y) d y+o(1)
\end{aligned}
$$

We now divide the integral into four parts such that

$$
\begin{aligned}
& \int_{0}^{\infty} \varphi(y) L_{n-k}^{(\alpha+1)}(y) d y \\
& =\left\{\int_{0}^{c /(n-k)}+\int_{c /(n-k)}^{\omega}+\int_{\omega}^{n-k}+\int_{n-k}^{\infty}\right\} \varphi(y) L_{n-k}^{(\alpha+1)}(y) d y \\
& =A_{1}+B_{1}+C_{1}+D_{1}, \text { say. }
\end{aligned}
$$

Furthermore we set

$$
\begin{aligned}
\tau_{n}-s & =\frac{1}{P_{n}} \sum_{k=0}^{n-1} p_{k}\left(A_{1}+B_{1}+C_{1}+D_{1}\right)+o(1) \\
& =A+B+C+D+o(1), \text { say } .
\end{aligned}
$$

In the estimation of A, we use Lemma 1 and our hypothesis (5), then

$$
\begin{aligned}
|A| & \leqq \frac{1}{P_{n}} \sum_{k=0}^{n-1} p_{k} \int_{0}^{c /(n-k)}|\varphi(y)| L_{n-k}^{(\alpha+1)}(y) d y \\
& =\frac{1}{P_{n}} \sum_{k=0}^{n-1} p_{k} O(n-k)^{\alpha+1} O(n-k)^{-(\alpha+1)} \\
& =o(1), \text { as } n \rightarrow \infty .
\end{aligned}
$$

Similarily, by Lemma 1

$$
\begin{align*}
&|B| \leqq \frac{1}{P_{n}} \sum_{k=0}^{n-1} p_{k} \int_{c /(n-k)}^{\omega}|\varphi(y)| L_{n-k}^{(\alpha+1)}(y) d y \\
&=\frac{1}{P_{n}} \sum_{k=0}^{n-1} p_{k} \int_{c /(n-k)}^{\omega} y-(\alpha+1) / 2-1 / 4|\varphi(y)| O(n-k)^{(\alpha+1) / 2-1 / 4} d y \\
&=\frac{1}{P_{n}} \sum_{k=0}^{n-1} p_{k} O(n-k)^{\alpha / 2+1 / 4} \int_{c /(n-k)}^{\omega}|\varphi(y)| y-\alpha / 2-3 / 4 \tag{7}\\
& \omega
\end{align*}
$$

Next, by integration by parts and hypothesis (5) we get

$$
\left.\left.\begin{array}{rl}
\int_{c /(n-k)}^{\omega}|\varphi(y)| y^{-\alpha / 2-3 / 4} d y & =\{\Phi(y) y-\alpha / 2-3 / 4\}_{c /(n-k)}^{\omega}+\left(\frac{\alpha}{2}+\frac{3}{4}\right) \int_{c /(n-k)}^{\omega} \Phi(y) y-\alpha / 2-7 / 4
\end{array}\right]\right\} \text {. } o\left(\frac{C}{n-k}\right)^{\alpha / 2+1 / 4}+\int_{c /(n-k)}^{\omega} o\left(y^{\alpha / 2-3 / 4)} d y\right]
$$

where

$$
\Phi(t)=\int_{0}^{t}|\varphi(y)| d y .
$$

Hence we have for $\alpha<-\frac{1}{2}$

$$
\begin{aligned}
|B| & \leqq \frac{1}{P_{n}} \sum_{k=0}^{n-1} p_{k} O(n-k)^{\alpha / 2+1 / 4}\{K+o(n-k)-\alpha / 2-1 / 4\} \\
& =o(1), \text { as } n \rightarrow \infty
\end{aligned}
$$

by (7) and (8).
In the estimation of C, we use Lemma 2 and hypothesis (6), then

$$
\begin{aligned}
|C| & \leqq \frac{1}{P_{n}} \sum_{k=0}^{n-1} p_{k} \int_{\omega}^{n-k}|\varphi(y)| L_{n-k}^{(\alpha+1)}(y) d y \\
& \leqq \frac{K}{P_{n}} \sum_{k=0}^{n-1} p_{k} \int_{\omega}^{n-k}|\varphi(y)| e^{y / 2} y^{(\alpha+1) / 2-1 / 4}(n-k)^{(\alpha+1) / 2-1 / 4} d y \\
& =\frac{K}{P_{n}} \sum_{k=0}^{n-1} p_{k} \int_{\omega}^{n-k}|\varphi(y)| e^{y / 2} y^{-\alpha / 2-3 / 4}(n-k)^{\alpha / 2+1 / 4} d y \\
& \leqq \frac{K}{P_{n}} \sum_{k=0}^{n-1} p_{k}(n-k)^{\alpha / 2+1 / 4} o(n-k)-\alpha / 2-1 / 4 \\
& =o(1), \text { as } n \rightarrow \infty
\end{aligned}
$$

Lastly we shall estimate D.
By hypothesis on $\varphi(t)$ we get

$$
\int_{n}^{\infty} e^{y / 2} y^{-1 / 3}|\varphi(y)| d y=o(1), \text { as } n \rightarrow \infty
$$

Hence we use Lemma 2, then for $-\frac{1}{2}>\alpha \geq-\frac{5}{6}$,

$$
\begin{aligned}
& |D| \leqq \frac{1}{P_{n}} \sum_{k=0}^{n-1} p_{k} \int_{n-k}^{\infty}|\varphi(y)| L_{n-k}^{(\alpha+1)}(y) d y \\
& =\frac{1}{P_{n}} \sum_{k=0}^{n-1} p_{k} \int_{n-k}^{\infty}|\varphi(y)| e^{y / 2} y^{-(\alpha+1) / 2 \cdots 1 / 4}(n-k)^{(\alpha+1) / 2-1 / 12} d y \\
& =\frac{1}{P_{n}} \sum_{k=0}^{n-1} p_{k} \int_{n-k}^{\infty}|\varphi(y)| e^{y / 2} y-\alpha / 2-3 / 4(n-k)^{\alpha / 2+5 / 12} d y \\
& =\frac{1}{P_{n}} \sum_{k=0}^{n-1} p_{k}(n-k)^{\alpha / 2+5 / 12} \int_{n-k}^{\infty}|\varphi(y)| e^{y / 2} y-1 / 3 \frac{1}{y^{\alpha / 2+5 / 12}} d y \\
& \leqq \frac{1}{P_{n}} \sum_{k=0}^{n-1} p_{k} \int_{n-k}^{\infty}|\varphi(y)| e^{y / 2} y^{-1 / 3} d y
\end{aligned}
$$

$$
=o(1), \text { as } n \rightarrow \infty .
$$

Collecting above estimations we have

$$
\tau_{n}-s=o(1), \text { as } n \rightarrow \infty .
$$

This completes the proof of our theorem.
The author takes this opportunity of expressing his gratitude for Prof.
T. Tsuchikura for his helpful suggestions.

References

1) G. H. Hardy, "Divergent series', Oxford, 1949.
2) B. S. Pandey, "On the harmonic summability of Laguerre series", Israel J. of Math. Vol. 7,1969, pp. 299-302.
3) G. Szegö, "Orthogonal Polynomials", Amer. Math. Soc. Colloquim Publications, New York, 1959.

[^0]: * Assistant Professor, Institute of Mathematics, Faculty of Engineering, Shinshu University, Nagano-shi.

