On the Absolute Cesàro Summability Factors of Fourier Series

Kazuo IWAI*
(Recieved March 27, 1970)

1. Definitions and Notations

Let $\sum a_{n}$ be a given infinite series and let s_{n} denote its n-th partial sum. Let s_{n}^{α} denote the n-th Cesàro means of order $\alpha(\alpha>-1)$ of the sequences $\left\{s_{n}\right\}$.

The series $\sum a_{n}$ is said to be absolutely summable (C, α), or summable $|C, \alpha|$, if $\left\{s_{n}^{\alpha}\right\} \in B V$, that is to say,

$$
\sum\left|s_{n}^{\alpha}-s_{n-1}^{\alpha}\right|<\infty .
$$

Also, the series $\sum a_{n}$ is said to be absolutely summable (C, α) with index k, or simply summable $|C, \alpha|_{k}(k \geqq 1, \alpha \geqq-1)$, if

$$
\sum n^{k-1}\left|s_{n}^{\alpha}-s_{n-1}^{\alpha}\right|^{k}<\infty .
$$

Summability $|C, \alpha|_{1}$ is the same as summability $|C, \alpha|$.
A sequence $\left\{\lambda_{n}\right\}$ is said to be convex if $\Delta^{2} \lambda_{n} \geqq 0, n=1,2, \cdots \cdots$, where $\Delta \lambda_{n}$ $=\lambda_{n}-\lambda_{n+1}$ and $d^{2} \lambda_{n}=\Delta\left(\Delta \lambda_{n}\right)$.

Let $f(t)$ be a periodic function with period 2π and integrable in the sense of Lebesque over $(-\pi, \pi)$.

Let the Fourier series of $f(t)$ be given by

$$
f(t) \sim \frac{a_{0}}{2}+\sum_{n=1}^{\infty}\left(a_{n} \cos n t+b_{n} \sin n t\right) \equiv \sum_{n=0}^{\infty} A_{n}(t)
$$

where we can assume, without loss of generality, that $a_{0}=0$.
We shall use throughout this note the following notations.

$$
\begin{aligned}
& \varphi(t)=\frac{1}{2}\{f(x+t)+f(x-t)-2 f(x)\}, \\
& s_{n}(x)=\sum_{\nu=0}^{n} A_{\nu}(x) .
\end{aligned}
$$

[^0]Throughout this note K will denote positive constant which will not necessarily be the same at different occurrences.

2. Introduction

Recently Pati has proved the following theorems.
Theorem A [1: Theorem 1]. if $\left\{\lambda_{n}\right\}$ be a convex sequence such that $\sum n^{-1} \lambda_{n}<\infty$, then a necessary and sufficient condition for $\sum \lambda_{n} A_{n}(t)$ to be summable $|C, 1|$, when

$$
\begin{equation*}
\int_{0}^{t}|\varphi(u)| d u=o(t) \tag{1}
\end{equation*}
$$

is that

$$
\begin{equation*}
\sum n^{-1} \lambda_{n}\left|s_{n}(t)-f(t)\right|<\infty . \tag{2}
\end{equation*}
$$

Theorem B [1: Theorem 2]. If $\left\{\lambda_{n}\right\}$ be a convex sequence such that $\sum n^{-1} \lambda_{n}(\log n)^{1 / 2}<\infty$, then at every point $t=x$ at which (1) holds, $\sum \lambda_{n} A_{n}(t)$ is summable $|C, 1|$.

Subsequently Singh ${ }^{2)}$ obtained the following result which generalizes Theorem A to the theorem concerning summability $|C, 1|_{k}$.

Theorem C [2: §1.4]. If $\left\{\lambda_{n}\right\}$ be a convex sequence such that $\sum n^{-1} \lambda_{n}<\infty$, then a necessary and sufficient condition for $\sum i_{n} A_{n}(t)$, at $t=x$, to be summable $|C, 1|_{k}, k \geqq 1$, when

$$
\begin{equation*}
\int_{0}^{t}|\varphi(u)|^{k} d u=o(t), \quad \text { as } t \rightarrow 0 \tag{3}
\end{equation*}
$$

is that

$$
\sum n^{-1} \lambda_{n}^{k}\left|s_{n}(x)-f(x)\right|^{k}<\infty .
$$

For $k=1$, it may be observed that theorem A of Pati mentioned above is a particular case of Theorem C.

Now, in this note we shall show that theorem B of Pati mentioned above is also generalized to the theorem concerning summability $|C, 1|_{k}$.

3. Theorem and Proof

In what follows, we shall prove the following theorem.
Theorem. If $\left\{\lambda_{n}\right\}$ be a convex sequence such that,

$$
\begin{equation*}
\sum n^{-1} \lambda_{n}(\log n)^{1-k / 2}<\infty \quad \text { for } 1 \leqq k<2 \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\sum n^{-1} \lambda_{n}<\infty \quad \text { for } \quad k \geqq 2 \tag{5}
\end{equation*}
$$

then at every point $t=x$ at which (3) holds, $\sum \lambda_{n} A_{n}(t)$ is summable $|C, 1|_{k}$ for every $k \geqq 1$.

For the proof of our theorem we shall require a number of lemmas.
Lemma 1 [3: Lemma 1]. If $\left\{\lambda_{n}\right\}$ is a convex sequence such that $\sum n^{-1} \lambda_{n}$ is convergent, then λ_{n} is non-negative and decreasing, $n \Delta \lambda_{n}=o(1)$ and $\lambda_{n} \log n=o(1)$, as $n \rightarrow \infty$.

Lemma 2. Under the same conditions as in Lemma 1, for every $k \geqq 1$,

$$
\begin{equation*}
\sum_{n=1}^{m} A\left(\lambda_{n}^{k}\right) \log (n+1)<\infty, \quad \text { as } n \rightarrow \infty \tag{6}
\end{equation*}
$$

The case $k=1$ is referred to Pati and $k>1$ is referred to Prasad, respectively, where references are given.

Lemma 3 [4: §4]. If

$$
\begin{equation*}
\int_{0}^{t}|\varphi(u)| d u=o(t) \tag{7}
\end{equation*}
$$

then

$$
\sum_{\nu=1}^{n}\left|s_{\nu}(x)-f(x)\right|^{k}= \begin{cases}o\left\{n(\log n)^{k / 2}\right\} & \text { if } \quad 1 \leqq k \leqq 2 \tag{8}\\ o\left\{n(\log n)^{k-1}\right\} & \text { if } k \geqq 2\end{cases}
$$

Proof of the Theorem. In order to prove our theorem, we have to establish by Theorem C that, for $k \geqq 1$,

$$
\sum n^{-1} \lambda_{n}^{k}\left|s_{n}(x)-f(x)\right|^{k}<\infty
$$

By Abel transformation, we have

$$
\begin{aligned}
\sum_{n-1}^{m} & n^{-1} \lambda_{n}^{k}\left|s_{n}(x)-f(x)\right|^{k} \\
= & \sum_{n=1}^{m-1} \Delta\left(n^{-1} \lambda_{n}^{k}\right) \sum_{\nu=1}^{n}\left|s_{\nu}(x)-f(x)\right|^{k}+m^{-1} \lambda_{m}^{k} \sum_{\nu=1}^{m}\left|s_{\nu}(x)-f(x)\right|^{k} \\
= & \sum_{n=1}^{m-1}\{n(n+1)\}^{-1} \lambda_{n}^{k} \sum_{\nu=1}^{n}\left|s_{\nu}(x)-f(x)\right|^{k} \\
& \quad+\sum_{n=1}^{m-1}(n+1)^{-1} \Delta \lambda_{n}^{k} \sum_{\nu=1}^{n}\left|s_{\nu}(x)-f(x)\right|^{k}+m^{-1} \lambda_{m}^{k} \sum_{\nu=1}^{m}\left|s_{\nu}(x)-f(x)\right|^{k} \\
\equiv I_{1} & +I_{2}+I_{3}, \text { say. }
\end{aligned}
$$

By Hölder inequality we get at once (7) of Lemma 3 from our hypothesis (3).

Accordingly, it may be permitted to make use of Lemma 3 throughout in what follows.

Now, we consider two cases separately for index k.
Case (i): when $1 \leqq k<2$.
From (8) of Lemma 3, we observe that there exist a positive number K such that

$$
\sum_{\nu=1}^{n}\left|s_{\nu}(x)-f(x)\right|^{k} \leqq K n(\log n)^{k / 2}, \quad(n=1,2, \quad 3, \cdots \cdots) .
$$

Therefore, we have

$$
\begin{aligned}
I_{1} & =\sum_{n=1}^{m-1}\{n(n+1)\}^{-1} \lambda_{n}^{k} \sum_{\nu=1}^{n}\left|s_{\nu}(x)-f(x)\right|^{k} \\
& \leqq \sum_{n=1}^{m-1}(n+1)^{-1} \lambda_{n}^{k} K(\log n)^{k / 2} \\
& =K \sum_{n=1}^{m-1} n^{-1} \lambda_{n} \lambda_{n}^{k-1}(\log n)^{1-k / 2}(\log n)^{k-1} \\
& =K \sum_{n=1}^{m-1} n^{-1} \lambda_{n}(\log n)^{1-k / 2}\left(\lambda_{n} \log n\right)^{k-1} \\
& \leqq K \sum_{n=1}^{m-1} n^{-1} \lambda_{n}(\log n)^{1-k / 2} \\
& <\infty, \text { as } m \rightarrow \infty,
\end{aligned}
$$

by virtue of Lemma 1 and hypothesis (4) of our theorem.
Similarly, we have

$$
\begin{aligned}
I_{2} & \leqq \sum_{n=1}^{m-1}(n+1)^{-1} \Delta \lambda_{n}^{k} \sum_{\nu=1}^{n}\left|s_{\nu}(x)-f(x)\right|^{k} \\
& \leqq K \sum_{n=1}^{m-1}(n+1)^{-1} \Delta \lambda_{n}^{k} n(\log n)^{k / 2} \\
& \leqq K \sum_{n=1}^{m-1} \Delta \lambda_{n}^{k}(\log n)^{k / 2} \\
& \leqq K \sum_{n=1}^{m-1} \Delta \lambda_{n}^{k}(\log n) \\
& <\infty, \text { by Lemmas } 3 \text { and } 2 .
\end{aligned}
$$

Next, by Lemmas 3 and 1 we have

$$
\begin{aligned}
I_{s} & \leqq m^{-1} \lambda_{m}^{k} \sum_{\nu=1}^{m}\left|s_{\nu}(x)-f(x)\right|^{k} \\
& \leqq K m^{-1} \lambda_{m}^{k} m(\log m)^{k / 2} \\
& \leqq K \lambda_{m}^{k}(\log m)^{k / 2} \\
& =o(1), \text { as } m \rightarrow \infty
\end{aligned}
$$

Collecting above estimations, we have, for $1 \leqq k<2$,

$$
\sum n^{-1} \lambda_{n}^{k}\left|s_{n}(x)-f(x)\right|^{k}<\infty .
$$

This fact proves our theorem in the case $1 \leqq k<2$.
Case (ii): When $k \geq 2$.
From (9) of Lemma 3, we observe that there exist a positive number K such that

$$
\sum_{\nu=1}^{n}\left|s_{u}(x)-f(x)\right|^{k} \leqq K n(\log n)^{k-1} .
$$

Hence, we have

$$
\begin{aligned}
I_{1} & \leqq K \sum_{n=1}^{m-1} n^{-1} \lambda_{n}^{k}(\log n)^{k-1} \\
& \leqq K \sum_{n=1}^{m-1} n^{-1} \lambda_{n}\left(\lambda_{n} \log n\right)^{k-1} \\
& \leqq K \sum_{n=1}^{m-1} n^{-1} \lambda_{n} \\
& <\infty, \text { as } m \rightarrow \infty,
\end{aligned}
$$

by virtue of Lemma 1 and hypothesis (5) of our theorem.
Next, we have

$$
\begin{aligned}
I_{2} & \leqq K \sum_{n=1}^{m-1} \Delta \lambda_{n}^{k}(\log n)^{k-1} \\
& \leqq K\left[\sum_{n=1}^{m} \lambda_{n}^{k} \Delta\left\{(\log n)^{k-1}\right\}+\lambda_{m}^{k}(\log m)^{k-1}\right]
\end{aligned}
$$

But, by virtue of Lemma 1,

$$
\lambda_{m}^{k}(\log m)^{k-1} \leqq \frac{\left(\lambda_{m} \log m\right)^{k}}{\log m}=o(1), \quad \text { as } \quad m \rightarrow \infty .
$$

Otherwise, we have

$$
\begin{aligned}
\sum_{n=1}^{m} \lambda_{n}^{k} \Delta\left\{(\log n)^{k-1}\right\} & \leqq K \sum_{n=1}^{m} \lambda_{n}^{k} n^{-1}(\log n)^{k-2} \\
& =K \sum_{n=1}^{m} \frac{\left(\lambda_{n} \log n\right)^{k}}{n(\log n)^{2}} \\
& \leqq K \sum_{n=1}^{m} \frac{1}{n(\log n)^{2}} \\
& <\infty
\end{aligned}
$$

by virtue of Lemma 1 again.
Finally, from (9) of Lemma 3 we have

$$
\begin{aligned}
I_{3} & \leqq K \lambda_{m}^{k}(\log m)^{k^{-1}} \\
& \leqq K \frac{\left(\lambda_{m} \log m\right)^{k}}{\log m} \\
& =o(1), \quad \text { as } \quad m \rightarrow \infty .
\end{aligned}
$$

Collecting above estimations, we have, for $k \geq 2$,

$$
\sum n^{-1} \lambda_{n}^{k}\left|s_{n}(x)-f(x)\right|^{k}<\infty
$$

This proves the theorem for the case $k \geqq 2$.
Thus, we obtained that at every point $t=x$ at which (3) holds, $\sum \lambda_{n} A_{n}(t)$ is summable $|C, 1|_{k}$, for $k \geqq 1$.

This completes the proof of our theorem.
The author is very much indebted to professors T. Tsuchikura and K. Kanno for their kind interest and valuable guidance in the preparation of this note.

References

1) Tribikram Pati, "On an Unsolved Problem in the Theory of Absolute Summability Facfors of Fourier Series," Math. Zeitschr., Vol. 82, 1963, pp. 106-114.
2) Niranjan Singh, "On $|C, 1|_{k}$ Summability Factors of Fourier Series," Kodai Math. Sem. Rep. 19, 1967, pp. 289-298.
3) Babban Prasad Mishna, "On the Absolute Cesàro Summability Factors of Infinite Series," Rend. Circ. Matem. Palermo, Serie II, Tomo XIV, 1965, PP. 189-194.
4) G. H. Hardy and J. E. Littlewood, "The Strong Summability of Fourier Series," Fundamenta Mathematicae, Vol. 25, 1935, pp. 162-187.

[^0]: * Assistant Professor of Mathematics, Faculty of Engineering, Shinshu University, Nagano, Japan.

