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                      1. DefinitieRs and Notations

   Let Za. be a given infinite series and let s. denote its n-th partial sum.

Let sf, denote the n-th Cesaro means of order ex (a>-1) of the sequences {s.}.

   The series Za. is said to be abs61utely summable (C, a>, or summable

IC, al, if{s5,}EBV, that is to say,

                         Xls,cr, -s,a,-,l<oo. ･

   Also, the series Xa. is said to be absolutely summable (C, a) with index

le, or simply summable i C, a lk ( le 2. 1, cr .>.m -1 ), if

                       X nk"i l s: -s,a,ml lk<oo,

   Summability IC, cvli is the same as summability IC, cvl.

   A sequence {R.} is said to be convex if A21.kO, n=: 1, 2,･･････, where `dA.

= 2"L-etR"f'<it>abn
ed aA23"eril･oAd(iAc2'i)ltnction with period 2r, and integrabie in the sense

of Lebesque over (-rr, rr).

   Let the Fourier series of f(t) be given by

                      o3 oo            fKt) .v g" + tin. (a. cosnt + b. sinnt) !! li,il..]eAn(t),

where we can assttme, without loss of generality, that ae =O.

   We shall use throughout this note the following notations.

                        1
                  9(t) - E{f(X + t> + f(X - t> - 2flx)},

                         n                   s.<x) =: ;li ]A.(x).

                         p =.- O
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   Throughout this note K will denote positive constant which will not neces-

sarily be the same at different occurrences.

                            2. Introduction

   Recently Pati has proved the following theorems.

   Theorem A [1: Theorem 1]. if {R.} be a convex sequence sacch that
IXn-i2. < oo, then a necessary and st4z77cient condition for X R.A.(t) to be

summablelC, 1[, when

                           sglg(u)ldu- o(t), a)

                                             'is that

                       £nM12nlSn(t>'.IC<t>l<co･ (2)

   Theorem B [1: Theorem 2]. if {2.} be a convex sequence such that

IE]n-i2. (logn)i12< co , then at every Point t =x at which(1> holds, Z1.A.(t) is

sttmmable 1C, 1l.

   Subsequently Singh2) obtained the following result which generalizes

Theorem A to the theorem concerning summability 1 C, 1 lk.

   Theorem C [2: g1. 4]. ILIe {a.} be a convex sequence such that £n-i2.< oo,

then a necessary and szofcient condition for X2.A.(t), at t = x, to be summable

]C, llk, le ). 1, when

                   !g [g(u) ik du =: ,(t), .,t. o, ' (3)

is that

                     ]E] n"' 2ts, 1 s.(x) - f(x) lk < oo.

   For fe == 1,it may be observed that theorem A of Pati mentioned above

is a particular case of Theorem C.

   Now, in this note we shall show that theorem B of Pati mentioned above

is also generalized to the theorem concerning summability 1C, 1 lk.

                         3. Theorem aRd Preef

   In what follows, we shall prove the following theorem.

   Theorem. jlLIC {2.} be a convex sequence such that,

                   Xn-`2.(log n)i-lt'2< oo for 1;:ll fe<2, (4)

and

,
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                   Xnmi2.<oo for fel.il2 (5)
then at every pointt=x at which (3) holds, IZ) 2.A.(t) is summable 1C, 1lk for

every k kww 1.

   For the proof of our theorem we shall require a number of lernrnas.

   Lemma1[3: Lemma 1]. Lf {2.} is a convex sequence secch that IXnmi2. is

convergent, then 2. is non-negative and decreasing, nA2. == o(1) and 2.logn == o(1),

as n -, oo.

   Lernma 2. Under the same conditiens as in Lemma 1, .fbr every h>ww. 1,

                  J Jn

                   XA(28,) log(n+1><oo, as n--. oo. (6)
                   n==1

   The casek=iis referred to Pati and k>l is referred to Prasad, re-

spectively, where references are given.

   Lemma 3 [4: g4]. ILIC

                          S:ig(u)Ida -: o(t), (7)

then

            ;i.Ii],isv<x)-f(x)jk-(:1:l:gZ),i12,l tll, LStgLZ.;Si2･ [g]

   Proof of the Theorem. In order to prove our theorem, we have to establish

by Theorem C that, for fe l.k. I,

                      XnM' RS, 1 s.(x) - f(x) Ik < oo.

   By Abel transformation, we have

         ?n
         2] n'iR£ ls.(`u) - f(x) lk

         n-l

            f7t-i }Z 171          = X A (n-" '2tv, )Z 1 s.<x) - f(x) ik -F m-'1,fe. X l s.(x> - f(x) lk

            n=1 p=1 v±=l            m-1 n          =: llE] {n(n + l)}-ilS X l s,(x) - f(x) Ik

            n==1 y==1
              in-1 n jn            + 2 (n +1)m" li2ty, X 1 s.(x) -f(xMk + m-`2ts. £ l s.(x) - f(x) lk

              n=1 p==1 yz=1
       =-Ii ÷ I2 + I3, say.



   By H61der inequality we get at once (7) of Lemma 3 from our hypothesis

(3).

wha5CfCo?Jotrnsg. iY' it rriaY be Permitted to make use of Lemma 3 throughout in

    Now, we consider two cases separately for index k.

    Case (i): when 1Sk<2.

   From (8) of Lemma 3, we observe that there exist a positive number K

such that

                                                                 tt
             v't
            X l s.(x) - fKx) Ik l$ll Kn (log n)hf2, (n == 1, 2, 3, ･･････).

            p==i

   Therefore, we have

                     m-1 n                 Ii = Z] {n (n + 1)}-i2ty, iX] l s.(x) - f(x) Ik

                     n=l y==1
                    nt-1
                   .-<m X (n + 1)-i2,le, K (log n) kf2

                     it=lll-1

                   =K IZ] n-i2. 2,k,-' (log n)1-itY2 (log n)h-i

                      n==1

                      m-1
                   = K IE] n-i2. (log n)i-fe12 (2. Iog n)k-i

                      n=1
                                               '                      7n-1
                  :-f{: K £ n-i 2. (log n) i-k/2

                      n=ti1

                   < oo, as m- co,

by virtue of Lemma 1 and hypothesis (4) of our theorem.

   Similarly, we have

                   vn-1 n               J2 :gl IE] (n + 1) '-iA2ty, X [ s.(x) - f(x) Ik

                   n=1 u=1
                    vn-1
                 ;S.gK X (n + !)-'Alts n (log n)k12

                    n=1

                    ?n-1
                 ;:ill K X AIk, (log n)k!2

                    }t=1

                 ;:{NKtt'idkts,(iogn)

                    n=1

                 < co, by Lemmas 3 aBd 2.

   Next, by Lemrnas 3 and 1 we have
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                             )ll                    I3 ;E.g m-i2ts. X l s.(x) - f(x> lk

                            v==1

                     S-{ Km""!2fi. m (log m)kf2

                     ISI KRts,, (log m)ie/2

                      =o(1), as m-oo.

   Collecting above estimations, we have, for 1 ;Sl le < 2,

                  X n-iRfi l s.(x) - f(x) ik < co.

   This fact proves our theorem in the casel ;l:{ fe < 2.

   Case (ii): When k2.- 2.

From (9) of Lemma 3, we observe that'there exist a positive number

that

                                                        '                  II                  iX] I S.(x) H f(x) lk ;S Kn (log n) k-i.

                  p=-1

   Hence, we have

                        tn-1
                   fi $- K ]E) n- i 2£ (log n)k '" i

                         n tr-i 1

                     ;sl K 'iZi n'i2.(2. log n)k- i

                        n=i

                        in-1
                     gS K X nan iR.

                         ntz1

                     < oo, as m- oo,

by virtue of Lernma 1 and hypothesis (5) of our theorem.

   Next, we have

                        in-1
                   J2 5. K X zllf, (log n)k-i

                        fttr:1        '
                     SK[ ,#.1 1fi, A{(log n)k-i} + 1i,t, (log m)k-i].

   But, by virtue of Lemrna 1,

        ftts.(logm)k-i;-sC&"-'1-i-9g-g.M-)k== o(i), as m-oo.

   Otherwise, we have

5

K sttch

   -



             "i tn            X 2ty, A {(log n)k-i} S- KX Rk n"i(Iog n)k"2

            n==1 n=1
                          ="tt/,XZz,gO,g.aglk

                          :-i:Ktlt',n<lolgn)E

                         < oo}

by virtue of Lemma 1 again.

   FiRally, from (9) of Lemma 3 we have

                         f3 tL. KRts. (log m)k-i

                              (1. Iog m)k
                           <K
                           -･=---- logM

                           -- o(1.), as m-. op.

   Collecting above estimations, we kave, for k tLt.g., 2,

 ' Xn-i 2fr, Is.(x)-f<x) Ik<oo.

   This proves the theorem for the case ktL. 2.

   Thus, we obtained that at every pointt:rx at which (3) holds, IZ)2.A.<t)

is summable IC, llk, for k>. ]..

   This completes the proof of our theorem.

   The author is very muck indebted to professors T. Tsuchikura and K. Kanno

for their k{nd iRterest and valuable guidance in the preparation of this note.

                              aeferenees

1) Tribikram Pati, "On an Unsolved Problem in the Theory of Absolute Summability

 Facfors of Fourier Series," Matli. Zeitscbr., Vol. 82, 1963, pp. 106-114.

2) Niranjan Singh, "On IC,1lk Sttmmability Factors of Fourier Series,'' Kodai Math. Seni.

 Rep. 19, 1967, pp. 289-298.

3) Babban Prasad Mishna, "On the Absolute Cesbro Summability Factors of Infinite Series, "

 Rend. Circ. Dv([atem. Paiermo, Serie ,II, Tomo XIV, 1965, PP. 189-194.

4) G. H. Hardy and J. E. Littleweod, "The Strong Surnmability of Fourier Series," Funda-

 menta Mathematicae, Voi. 25, 1935, pp. 162-187.


