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1.  Definitions and notations

Let Za,, be a given infinite series with the sequence of partial sums {s,}
Let {p,} be a sequence of constants, real or complex, and let us write

P” = ])0 -+ ]71 A e "jl_pm P~l = p"l =0

The sequence-to-sequence transformation:

1 & ,
tn = P Z pll"’ Sy (Pn 3{: O) (1)
n y=()

defines the sequence {f,} of Nolund means of the sequence {s,}, generated by

the sequence of coefficients {p,}. The series E a, 1s said to be summable
1

(N, p,) to the sum s if lim¢, exits and is equal to s, and is said tc be abso-

2100

lutely summable (N, p,), or summable |N, p,| if the sequence {¢,} is of bounded
variation, that is

Z ltn - tn~1| < @,
H

or symbolically {¢,} € BV.
In the special case in which p, = 1, the (N, p,) mean reduces to the familiar
(C, 1) mean.

Also, the sequence-to-sequence transformation:

1
Yu = E(Sll—l + Sn)) n }\) ()7 S.y = 0 (2)
defines the sequence {y,} of the (Y)-means of tlzle sequence {s,}.
The series Z‘a,, is said to be summable (Y) to the sum s if lim y, exists
N=rc0

and is equal to s, and is said to be absolutely summable (Y), or summable | Y|
if the sequence {¥,} is of bounded variation. '
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Now, we definie the sequence-to-sequence transformation:

o= 31ps. (PO ¥

n y=(

— 1)) —
The series Za,, is said to be summable (N, p,) to the sum s if lim #,

Ji—rco

exists and is equal to s, and is also said to be absolutely summable (N, p,), or
summable |N, p,| if the sequence {f,} is of bounded variation, that is

Zit_n—*—t_n-«l! < ©o,

n

or symbolically {,} & BV.
The product of the (N, p,) matrix with a (C, 1) matrix defines the matrix

(N, p)+(C, 1). Thus the (N, p,)+(C, 1) matrix is given by
1 n py

dnk: ""—‘Z y-kl'

pn vl

The series Za,, is said to be absolutely summable (N, p,)+(C, 1), or
summable | (N, p,)+(C, 1)| if the sequence {u,} is of bounded variation, where

-~ H _ “1-“ 3 py v
u"#/z,z—,JodnkSk_P ZU—{'IZS‘“

n oy=( k=0

Then, the absolutely summable (N, p,)+(Y), or summable {(N, p)+(Y)] is
defined in the same way.
Let f(f) be a periodic function with period 2z and integrable in the sense

of Lebesque over (0, 2z) and let its Fourier series be

fty~ %ao +> J(a,cosnt + b, sinnt) =) A, ().

H=1 n=0

We write

olt) =5 LA+ 1) + flx— 0% o) = olt) — 5

13

A*(t):%(sn—'s)r nzl: 2, 3,"',

H

where s, =Z A,(¢) and s is an appropriate number independent of n.
k=0

Finally, as usual, K denotes a positive constant not necessarily the same

at each occurrence.
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2.  Introduction

Concerning the | N, p,|-summability of the series associated with a Fourier
series, that is 2 A, (x), H. P. Dikshit proved the following:

)
Theorem D. If |o*(t)|/t is integrable in (0, =) and {p,} is a positive sequence

such that {(n + 1)p,/P,} & BV, {P,* D Py/(k+ 1)} € BV, then > A} (x) is
k=0 n=1
summable |N, p,|.

In the part I of this note, we shall show that the same holds true in the
summability |N, p,| of such a Fourier series.

U. Kakka;) has obtained a number of results concerning the absolute
summability of the iteration product.

In the part II of this note, we shall give that some analogous results are
true in the summability |N, p,l.

3. Part]
We state our result as follows:

Theorem 1. If |@™(t)|/t is integrable in (0, =) and {p,} is a positive sequence
such that

{n+ VpJPe BV, {(P,1S]Pk + 1} BY,

k=0

then EA” ) is summable |N, p,|.

n=1

We require the following lemma for the proof of our theorem 1.
Lemma. If {p.} is a positive sequence such that {(n + 1)p,/P,} € BV,

s
{P, ' D Pyllk + 1)} € BV, then uniformly in 0 <t <,
k=0

= p” :
”El PP, Z%“};‘S’n (B +1/20t < K.

For the proof, reader should refer to the authur’s note (5] in the “Refer-
ences” shown below.

Proof of theorem 1. For » A (x) we have
==

- 1 N .
t:z:F/Epks/e == B E Pn—"PLlAk( )a
n =0 k=0

where
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Sy = Z}A; (=)
=]
Therefore, we have
. . 1 n—1
by — 1, = Z} — Pr)Af (x) P, ’Z (P,oy — Pya)Af (x)
o= () n-1 k=g
i 1
=2 1AL )~ 5= }j Py A (x Z‘, Al (x P Z}Pk LA (%)
k=0 n n-1 =
" 1 1 VA . 1 .
=A,; () + (ﬁ“’: - j'f) §)ka1 Aj (%) — P P, A (x)
- %L A (x) + Z PiiAZ(x
n n 1

ey — L (7 sin(k 4+ 1/2)t
R e

yO_F pn _L i EY im___(?%+ l/z)t 3 ﬂ S ”_1“ pn __]_:_
=ta= g | 0T () 3} 2 Pacig Dult de
=[- ], say,
where
D, (#) :w- _ 1 -+ cost 4+ cos 2t +---+ cos At

sint/2 2
Obviously, in order to prove the theorem 1, we have to establish that

DG =L IS DT+ D11 < o

Under the hypotheses of the theorem, we have

b lo™(®)] ¢
Z = Z} nP, S ! sin #/2 di
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Let us write

Then, we have, by lemma,
g, t)] < oo, uniformly in 0 <t=n.

Thus, we obtain

il]lés !('Dﬁ;(m 2 e Bldt < <o,

~- 0 sin 1/2
Consequently, collecting the above estimations we obtain

Z IZ; w—-.Zn-—ll < 0,
n

that is,
DA% (x) is summable |N, p,!.
=1
This completes the proof of our theorem 1.

4. Part II

e

0. Széasz obtain%d a number of results concerning (Y)-summability.
Recently K. Ishiguro has also obtained some results for (Y)-summability.

In what follows, we shall prove a result concerning the summability |N, p,|.

Theorem 2. If {p,} is a non-negative sequence of bounded variation and if

>1la,|/Pv< oo, then the sequence {a,} is summable |N, p,|.
y==]

Proof of theorem 2. We have, by the definition,

=t = Z}pa EPrr

ny 711;
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Fonn—{) o

=], — I, say.

But, by the hypotheses we have

n=1 n=} n
While, for every m_> 1, we have
W 2 1 Hn—1
1‘)
Zl —p ||z

nll

n=1 Pn-—l n y=()

lei$y (L1
<KXl (== )

y=( =yl P"—l P"

Hence,
2112! < oo,
n

Consequently, collecting our estimations we have

Z}tn_ ‘n-1 :Z]II“IZ]<OO

That is, the sequence {a,} is summable |N, p,].

This completes the proof of our theorem 2.
P
Next, in analogy to U. Kakkar’s results, we shall give some results con-

cerning the iteration product, for the convenience of the reader and for the

sake of completeness.
Theorem 3. If {p,} is a non-negative sequence of bounded variation and

sequence {a,} is summable|N, p, | then

l(N_; pn) ( >[ — |N Pn ‘
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The result follows from the identity

Theorem 4. If {p,} is a non-negative sequence of bounded variation and
Dl a, | /P, is convergent, then

](N) pn)'(Y)i < 2 [Ny l)n i

The result follows from the Theorems 2 and 3.
Theorem 5. Let {p,} be a non-negative sequence of bounded variation and

SVs A+ VP < co.
Then,
(N, p) T == ID, p=(C, 1,

where T is the transformation from the sequence {y,} to {v,} and

1 1
U, = n + 1 (7}}0 + M1 7}7 t + yn>'
. . 1
Proof of theorem 5. By the definition, we have, obviously, y, =35, 5 @
so that,
. Sa . y0+2y1 ++2yn Sy
bt I DT 2w+l 24D
_ So (S0 4 81) & (S1 A Sa) Ao (S0 +8) 5,
2(n -+ 1)
_ St S s,
- n+1
Hence, we have
,__SO+31 +"'+sn__ a Sy
In= nt 1 Y P T

Obviously T is absolutely regular (i.e., transforms every absolutely con-
vergent sequence into a seqence absolutely convergent to the same limit).
Hence to prove the result we have to show that the sequence {s,/(n + 1)} is
| N, p,| summable. Now the resuit directly follows from the application of
our theorem 2 with a, = s,/ (v + 1).
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