On some Theorems concerning the Summability

$$
\left|\bar{N}, \quad p_{n}\right|
$$

Kazuo Iwai*
(Recieved March 27, 1970)

1. Definitions and notations

Let $\sum a_{n}$ be a given infinite series with the sequence of partial sums $\left\{s_{n}\right\}$. Let $\left\{p_{n}\right\}$ be a sequence of constants, real or complex, and let us write

$$
P_{n}=p_{0}+p_{1}+\cdots+p_{n}, \quad P_{-1}=p_{-1} \equiv 0 .
$$

The sequence-to-sequence transformation:

$$
\begin{equation*}
t_{n}=\frac{1}{P_{n}} \sum_{\nu=0}^{n} p_{n-\nu} s_{\nu} \quad\left(P_{n} \neq 0\right) \tag{1}
\end{equation*}
$$

defines the sequence $\left\{t_{n}\right\}$ of Nollund means of the sequence $\left\{s_{n}\right\}$, generated by the sequence of coefficients $\left\{p_{n}\right\}$. The series $\sum a_{n}$ is said to be summable $\left(N, p_{n}\right)^{1)}$ to the sum s if $\lim _{n \rightarrow \infty} t_{n}$ exits and is equal to s, and is said to be absolutely summable $\left\langle N, p_{n}\right.$), or summable $| N, p_{n} \mid$ if the sequence $\left\{t_{n}\right\}$ is of bounded variation, that is

$$
\sum_{n}\left|t_{n}-t_{n-1}\right|<\infty,
$$

or symbolically $\left\{t_{n}\right\} \in B V$.
In the special case in which $p_{n}=1$, the $\left(N, p_{n}\right)$ mean reduces to the familiar $(C, 1)$ mean.

Also, the sequence-to-sequence transformation:

$$
\begin{equation*}
y_{n}=\frac{1}{2}\left(s_{n-1}+s_{n}\right), n \geq 0, \quad s_{-1} \equiv 0 \tag{2}
\end{equation*}
$$

defines the sequence $\left\{y_{n}\right\}$ of the (Y)-means of the sequence $\left\{s_{n}\right\}$.
The series $\sum a_{n}$ is said to be summable $(Y)^{2}$ to the sum s if $\lim _{n \rightarrow \infty} y_{n}$ exists and is equal to s, and is said to be absolutely summable (Y), or summable $|Y|$ if the sequence $\left\{y_{n}\right\}$ is of bounded variation.

[^0]Now, we definie the sequence-to-sequence transformation:

$$
\begin{equation*}
\bar{t}_{n}=\frac{1}{P_{n}} \sum_{\nu=0}^{n} p_{y} s_{\nu} \quad\left(P_{n} \neq 0\right) . \tag{3}
\end{equation*}
$$

The series $\sum a_{n}$ is said to be summable $\left(\bar{N}, p_{n}\right)^{1)}$ to the sum s if $\lim _{n \rightarrow \infty} \bar{t}_{n}$ exists and is equal to s, and is also said to be absolutely summable (\bar{N}, p_{n}), or summable $\left|\bar{N}, p_{n}\right|$ if the sequence $\left\{\bar{t}_{n}\right\}$ is of bounded variation, that is

$$
\sum_{n}\left|\bar{t}_{n}-\bar{t}_{n-1}\right|<\infty,
$$

or symbolically $\left\{\bar{t}_{n}\right\} \in B V$.
The product of the $\left(\bar{N}, p_{n}\right)$ matrix with a ($C, 1$) matrix defines the matrix $\left(\bar{N}, p_{n}\right) \cdot(C, 1)$. Thus the $\left(\bar{N}, p_{n}\right) \cdot(C, 1)$ matrix is given by

$$
d_{n k}=\frac{1}{P_{n}} \sum_{v=h}^{n} \frac{p_{v}}{\nu+1} .
$$

The series $\sum a_{n}$ is said to be absolutely summable $\left(\bar{N}, p_{n}\right) \cdot(C, 1)$, or summable $\left|\left(\bar{N}, p_{n}\right) \cdot(C, 1)\right|$ if the sequence $\left\{u_{n}\right\}$ is of bounded variation, where

$$
u_{n}=\sum_{k=0}^{n} d_{n k} s_{k}=\frac{1}{P_{n}} \sum_{\nu=0}^{n} \frac{p_{\nu}}{\nu+1} \sum_{k=0}^{\nu} s_{k} .
$$

Then, the absolutely summable $\left(\bar{N}, p_{n}\right) \cdot(Y)$, or summable $\left|\left(\bar{N}, p_{n}\right) \cdot(Y)\right|$ is defined in the same way.

Let $f(t)$ be a periodic function with period 2π and integrable in the sense of Lebesque over ($0,2 \pi$) and let its Fourier series be

$$
f(t) \sim \frac{1}{2} a_{0}+\sum_{n=1}^{\infty}\left(a_{n} \cos n t+b_{n} \sin n t\right) \equiv \sum_{n=0}^{\infty} A_{n}(t) .
$$

We write

$$
\begin{gathered}
\varphi(t)=\frac{1}{2}\{f(x+t)+f(x-t)\} ; \quad \varphi^{*}(t)=\varphi(t)-s ; \\
A_{n}^{*}(t)=\frac{1}{n}\left(s_{n}-s\right), \quad n=1, \quad 2, \quad 3, \cdots,
\end{gathered}
$$

where $s_{n}=\sum_{k=0}^{n} A_{k}(t)$ and s is an appropriate number independent of n.
Finally, as usual, K denotes a positive constant not necessarily the same at each occurrence.

2. Introduction

Concerning the $\left|N, p_{n}\right|$-summability of the series associated with a Fourier series, that is $\sum_{3)} A_{n}^{*}(x)$, H. P. Dikshit proved the following:

Theorem D . If $\left|\varphi^{*}(t)\right| / t$ is integrable in $(0, \pi)$ and $\left\{p_{n}\right\}$ is a positive sequence such that $\left\{(n+1) p_{n} / P_{n}\right\} \in B V,\left\{P_{n}^{-1} \sum_{k=0}^{n} P_{k} /(k+1)\right\} \in B V$, then $\sum_{n=1}^{\infty} A_{n}^{*}(x)$ is summable $\left|N, p_{n}\right|$.

In the part I of this note, we shall show that the same holds true in the summability $\left|\bar{N}, p_{n}\right|$ of such a Fourier series.
U. Kakkar has obtained a number of results concerning the absolute summability of the iteration product.

In the part II of this note, we shall give that some analogous results are true in the summability $\left|\bar{N}, p_{n}\right|$.

3. Part I

We state our result as follows:
Theorem 1. If $\left|\varphi^{*}(t)\right| / t$ is integrable in $(0, \pi)$ and $\left\{p_{n}\right\}$ is a positive sequence such that

$$
\left\{(n+1) p_{n} / P_{n}\right\} \in B V, \quad\left\{P_{n}^{-1} \sum_{k=0}^{n} P_{k} /(k+1)\right\} \in B V
$$

then $\sum_{n=1}^{\infty} A_{n}^{*}(x)$ is summable $\left|\bar{N}, p_{n}\right|$.
We require the following lemma for the proof of our theorem 1 .
Lemma. If $\left\{p_{n}\right\}$ is a positive sequence such that $\left\{(n+1) p_{n} / P_{n}\right\} \in B V$, $\left\{P_{n}^{-1} \sum_{k=0}^{n} P_{k} /(k+1)\right\} \in B V$, then uniformly in $0<t \leqq \pi$,

$$
\sum_{n=1}^{\infty}\left|\frac{p_{n}}{P_{n} P_{n-1}} \sum_{k=1}^{n-1} \frac{P_{k-1}}{k} \sin (k+1 / 2) t\right|<K .
$$

For the proof, reader should refer to the authur's note [5] in the "References" shown below.

Proof of theorem 1. For $\sum_{n=1}^{\infty} A_{n}^{*}(x)$ we have

$$
\overline{t_{n}}=\frac{1}{P_{n}} \sum_{k=0}^{n} p_{k} s_{k}^{*}=\frac{1}{P_{n}} \sum_{k=0}^{n}\left(P_{n}-P_{k-1}\right) A_{k}^{*}(x)
$$

where

$$
s_{k}=\sum_{n=1}^{k} A_{n}^{*}(x)
$$

Therefore, we have

$$
\begin{aligned}
\overline{t_{n}}-\overline{t_{n-1}} & =\frac{1}{P_{n}} \sum_{k=0}^{n}\left(P_{n}-P_{k-1}\right) A_{k}^{*}(x)-\frac{1}{P_{n-1}} \sum_{k=0}^{n-1}\left(P_{n-1}-P_{k-1}\right) A_{k}^{*}(x) \\
& =\sum_{k=0}^{n} A_{k}^{*}(x)-\frac{1}{P_{n}} \sum_{k=0}^{n} P_{k-1} A_{k}^{*}(x)-\sum_{k=0}^{n-1} A_{k}^{*}(x)+\frac{1}{P_{n-1}} \sum_{k=0}^{n-1} P_{k-1} A_{k}^{*}(x) \\
& =A_{n}^{*}(x)+\left(\frac{1}{P_{n-1}}-\frac{1}{P_{n}}\right) \sum_{k=0}^{n-1} P_{k-1} A_{k}^{*}(x)-\frac{1}{P_{n}} P_{n-1} A_{n}^{*}(x) \\
& =\frac{p_{n}}{P_{n}} A_{n}^{*}(x)+\frac{p_{n}}{P_{n-1} P_{n}} \sum_{k=0}^{n-1} P_{k-1} A_{k}^{*}(x)
\end{aligned}
$$

But, It is easy to see that ${ }^{6)}$

$$
A_{n}^{*}(x)=\frac{1}{k \pi} \int_{0}^{\pi} \varphi^{*}(t) \frac{\sin (k+1 / 2) t}{\sin t / 2} d t
$$

Hence, we have

$$
\begin{aligned}
\overline{t_{n}} & -\overline{t_{n-1}}=\frac{p_{n}}{P_{n}} \frac{1}{n \pi} \int_{0}^{\pi} \varphi^{*}(t) \frac{\sin (n+1 / 2) t}{\sin t / 2} d t+\frac{2}{\pi} \int_{0}^{\pi} \varphi^{*}(t) \sum_{k=1}^{n-1} \frac{p_{n}}{P_{n-1} P_{n}} P_{k-1} \frac{1}{k} D_{k}(t) d t \\
& \equiv I+J, \text { say }
\end{aligned}
$$

where

$$
D_{k}(t)=\frac{\sin (k+1 / 2) t}{\sin t / 2}=\frac{1}{2}+\cos t+\cos 2 t+\cdots+\cos k t
$$

Obviously, in order to prove the theorem 1, we have to establish that

$$
\sum_{n}\left|\bar{t}_{n}-\bar{t}_{n-1}\right| \leqq \sum_{n}|I|+\sum_{n}|J|<\infty
$$

Under the hypotheses of the theorem, we have

$$
\sum_{n}|I| \leqq \frac{1}{\pi} \sum_{n} \frac{p_{n}}{n P_{n}} \int_{0}^{\pi} \frac{\left|\varphi^{*}(t)\right|}{t} \frac{t}{\sin t / 2} d t
$$

$$
\begin{aligned}
& \leqq K \sum_{n} \frac{p_{n}}{n P_{n}} \\
& \leqq K \sum_{n} \frac{1}{n(n+1)}\left|\frac{(n+1) p_{n}}{P_{n}}\right| \\
& \leqq K \sum_{n} \frac{1}{n(n+1)} \\
& <\infty
\end{aligned}
$$

Let us write

$$
g(n, t)=\sum_{n=1}^{\infty} \frac{p_{n}}{n P_{n}} \sum_{k=1}^{n-1} \frac{P_{k-1}}{k} \sin (k+1 / 2) t
$$

Then, we have, by lemma,

$$
|g(n, t)|<\infty, \quad \text { uniformly in } 0<t \leqq \pi .
$$

Thus, we obtain

$$
\sum_{n=1}^{\infty}|J| \leqq \int_{0}^{\pi} \frac{\left|\varphi^{*}(t)\right|}{t} \frac{t / 2}{\sin t / 2}|g(n, t)| d t<\infty .
$$

Consequently, collecting the above estimations we obtain

$$
\sum_{n}\left|\bar{t}_{n}-\bar{t}_{n-1}\right|<\infty
$$

that is,

$$
\sum_{n=1}^{\infty} A_{n}^{*}(x) \text { is summable }\left|\bar{N}, \quad p_{n}\right|
$$

This completes the proof of our theorem 1.

4. Part II

O. Szász ${ }^{2)}$ obtained a number of results concerning (Y)-summability. Recently K. Ishiguro has also obtained some results for (Y)-summability.

In what follows, we shall prove a result concerning the summability $\left|\bar{N}, p_{n}\right|$.
Theorem 2. If $\left\{p_{n}\right\}$ is a non-negative sequence of bounded variation and if $\sum_{\nu=1}^{\infty}\left|\alpha_{\nu}\right| / P_{\nu}<\infty$, then the sequence $\left\{\alpha_{\nu}\right\}$ is summable $\left|\bar{N}, p_{n}\right|$.

Proof of theorem 2. We have, by the definition,

$$
\overline{t_{n}}-\overline{t_{n-1}}=\frac{1}{P_{n}} \sum_{\nu=0}^{n} p_{\nu} \alpha_{\nu}-\frac{1}{P_{n-1}} \sum_{\nu=0}^{n-1} p_{\nu} \alpha_{\nu}
$$

$$
\begin{aligned}
& =\frac{1}{P_{n}} p_{n} \alpha_{n}-\left(\frac{1}{P_{n}}-\frac{1}{p_{n}}\right) \sum_{\nu=0}^{n-1} p_{v} \alpha_{\nu} \\
& \equiv I_{1}-I_{2}, \text { say. }
\end{aligned}
$$

But, by the hypotheses we have

$$
\sum_{n=1}^{\infty}\left|I_{1}\right| \leqq K \sum_{n=1}^{\infty} \frac{\left|\alpha_{n}\right|}{P_{n}}<\infty
$$

While, for every $m \geqq 1$, we have

$$
\begin{aligned}
& \sum_{n=1}^{m}\left|I_{2}\right| \leq \sum_{n=1}^{m}\left|\frac{1}{P_{n-1}}-\frac{1}{P_{n}}\right|\left|\sum_{\nu=0}^{n-1} p_{\nu} \alpha_{\nu}\right| \\
& \leqq K \sum_{n=1}^{m}\left(\frac{1}{P_{n-1}}-\frac{1}{P_{n}}\right) \sum_{\nu=0}^{n-1}\left|\alpha_{\nu}\right| \\
& \leqq K \sum_{\nu=0}^{m-1}\left|\alpha_{\nu}\right|_{n=\nu+1}^{m}\left(\frac{1}{P_{n-1}}-\frac{1}{P_{n}}\right) \\
& =K \sum_{\nu=0}^{m-1}\left|\alpha_{\nu}\right|\left(\frac{1}{P_{\nu}}-\frac{1}{P_{m}}\right) \\
& \leqq K \sum_{\nu=0}^{m-1} \frac{\left|\alpha_{\nu}\right|}{P_{\nu}} \\
& <\infty .
\end{aligned}
$$

Hence,

$$
\sum_{n}\left|I_{2}\right|<\infty
$$

Consequently, collecting our estimations we have

$$
\sum_{n}\left|\bar{t}_{n}-\overline{t_{n-1}}\right|=\sum_{n}\left|I_{1}-I_{2}\right|<\infty .
$$

That is, the sequence $\left\{\alpha_{v}\right\}$ is summable $\left|\bar{N}, p_{n}\right|$.
This completes the proof of our theorem 2 .
Next, in analogy to U. Kakkar's results, we shall give some results concerning the iteration product, for the convenience of the reader and for the sake of completeness.

Theorem 3. If $\left\{p_{n}\right\}$ is a non-negative sequence of bounded variation and sequence $\left\{a_{n}\right\}$ is summable $\left|\bar{N}, p_{n}\right|$ then

$$
\left|\left(\bar{N}, p_{n}\right) \cdot(Y)\right| \rightleftarrows\left|\bar{N}, p_{n}\right| .
$$

The result follows from the identity

$$
y_{n}=s_{n}-\frac{1}{2} a_{n} \text {. }
$$

Theorem 4. If $\left\{p_{n}\right\}$ is a non-negative sequence of bounded variation and $\sum\left|a_{n}\right| / P_{n}$ is convergent, then

$$
\left|\left(\bar{N}, p_{n}\right) \cdot(Y)\right| \rightleftarrows\left|\bar{N}, p_{n}\right| .
$$

The result follows from the Theorems 2 and 3 .
Theorem 5. Let $\left\{p_{n}\right\}$ be a non-negative sequence of bounded variation and

$$
\sum\left|s_{\nu}\right| /\left\{(\nu+1) P_{\nu,}\right\}<\infty
$$

Then,

$$
\left|\left(\bar{N}, \quad p_{n}\right) \cdot T(y)\right| \rightleftarrows\left|\left(\bar{N}, p_{n}\right) \cdot(C, 1)\right|
$$

where T is the transformation from the sequence $\left\{y_{n}\right\}$ to $\left\{v_{n}\right\}$ and

$$
v_{n}=\frac{1}{n+1}\left(\frac{1}{2} y_{0}+y_{1}+\cdots+y_{n}\right) .
$$

Proof of theorem 5. By the definition, we have, obviously, $y_{n}=s_{n}-\frac{1}{2} a_{n}$, so that,

$$
\begin{aligned}
v_{n}+\frac{s_{n}}{2(n+1)} & =\frac{y_{0}+2 y_{1}+\cdots+2 y_{n}}{2(n+1)}+\frac{s_{n}}{2(n+1)} \\
& =\frac{s_{0}+\left(s_{0}+s_{1}\right)+\left(s_{1}+s_{2}\right)+\cdots+\left(s_{n-1}+s_{n}\right)+s_{n}}{2(n+1)} \\
& =\frac{s_{0}+s_{1}+\cdots+s_{n}}{n+1}
\end{aligned}
$$

Hence, we have

$$
\sigma_{n} \equiv \frac{s_{0}+s_{1}+\cdots+s_{n}}{n+1}=v_{n}+\frac{s_{n}}{2(n+1)}
$$

Obviously T is absolutely regular (i.e., transforms every absolutely convergent sequence into a seqence absolutely convergent to the same limit). Hence to prove the result we have to show that the sequence $\left\{s_{n} /(n+1)\right\}$ is $\left|\vec{N}, p_{n}\right|$ summable. Now the result directly follows from the application of our theorem 2 with $\alpha_{\nu}=s_{\nu} /(\nu+1)$.

References

1) H. Hardy, "Divergent Series," Oxford, 1949.
2) O. SzĀsz, "Introduction to the Theory of Divergent Series," Cincinnati, 1952.
3) H. P. Dikshit, "Absolute Summability of a Series associated with a Fourier Series,". Proceedings of the American Mathematical Society, Vol. 22, 1969, pp. 316-318.
4) U. Kakkar, "A Note on Absolute Summability (Y) of an Infinite Series," Indian Journal of Mathematics, Vol. 10, Jan., 1968, pp. 73-82.
5) K. Iwar, "On the Summability $\left|\bar{N}, p_{n}\right|$ of a Fourier Series," Journal of the Faculty of Engineering, Shinshu University, Nagano, Japan, Vol. 27, December, 1969, pp. 1-8.
6) E. C. Titchmarsh, "The Theory of Functions," Oxford, 1957.
7) K. Ishiguro, "On the Summability Method (Y)," Proceedings of the Japan Academy, Vol. 40, 1964, pp. 482-486.

[^0]: * Assistant Professor of Mathematics, Faculty of Engineering, Shinshu University, Nagano, Japan.

