On the Summability $\left|\bar{N}, \quad p_{n}\right|$ of a Fourier Series

Kazuo Iwai
(Received Octorber 27, 1969)

1. Introduction

Previously T. Pati has proved a following theorem for the absolute Nörlund summability of a Fourier series at a point.

Theorem. If $\varphi(t) \in B V(0, \pi)$, and $\left\{p_{n}\right\}$ is a positive, monotonic non-increasing sequence such that $P_{n} \rightarrow \infty$ as $n \rightarrow \infty$,

$$
\left\{(n+1) p_{n} / P_{n}\right\} \in B V
$$

and

$$
\left\{\sum_{\nu=1}^{n}(\nu+1)^{-1} P_{\nu} / P_{n}\right\} \in B V,
$$

then the Fourier series of $f(t)$, at $t=x$, is summable $\left|N, p_{n}\right|$.
Later on he has proved that in the theorem, "non-increasing" can be omitted.

In this note, we shall prove an analogous theorem for the summability $\left|N, p_{n}\right|$ of a Fourier series.

As is easily seen, the transformations $\left|N, p_{n}\right|$ and $\left|\bar{N}, p_{n}\right|$ take symmetric forms, hence we can expect the close relation between them. However, these transfomations are not equivalent in general.

2. Definitions and Notations

Let $\sum a_{n}$ be a given infinite series and $\left\{s_{n}\right\}$ the sequence of its partial sums. Let $\left\{p_{n}\right\}$ be a sequence of constants, real or complex, and let us write

$$
P_{n} \equiv p_{0}+p_{1}+\cdots+p_{n} ; P_{-k}=p_{-k} \equiv 0 \quad \text { for } k \geq 1
$$

The sequence-to-sequence transformation :

$$
\begin{equation*}
t_{n} \equiv \frac{1}{P_{n}} \sum_{i=0}^{n} p_{n-,} s_{\nu} \quad\left(P_{n} \neq 0\right) \tag{1}
\end{equation*}
$$

defines the sequence $\left\{t_{n}\right\}$ of Nörlund means of the sequence $\left\{s_{n}\right\}$, generated by the sequence of coefficients $\left\{p_{n}\right\}$.

The series $\sum a_{n}$ is said to be summable (N, p_{n}) to the sum s if $\lim _{n \rightarrow \infty} t_{n}$ exists and is equal to s, and is said to be absolutely summable (N, p_{n}), or summable $\left|N, p_{n}\right|$, if the sequence $\left\{t_{5}\right\}$ is of bounded variation, that is, the series $\sum\left|t_{n}-t_{n-1}\right|$ is convergent.

Similarly, the sequence-to-sequence transformation :

$$
\begin{equation*}
\bar{t}_{n} \equiv \frac{1}{P_{n}} \sum_{\nu=0}^{n} p_{\nu} s_{v} \quad\left(P_{n} \neq 0\right) \tag{2}
\end{equation*}
$$

defines the sequence $\left\{t_{n}\right\}$ of discontinuous Riesz means of the sequence $\left\{s_{n}\right\}$, generated by the sequence of coefficients $\left\{p_{n}\right\}$. The series $\sum a_{n}$ is said to be summable $\left(\bar{N}, p_{n}\right)$ to the sum s if $\lim _{n \rightarrow \infty} \bar{t}_{n}$ exists and is equal to s, and is said to be absolutely summable $\left(\bar{N}, p_{n}\right)$, or summable $\left|\bar{N}, p_{n}\right|$, if the sequence $\left\{\overline{t_{n}}\right\}$ is of bounded variation, that is, the series $\sum\left|\bar{t}_{n}-\bar{t}_{n-1}\right|$ is convergent.

Let $f(t)$ be a periodic function, with period 2π, and integrable in the Lebesgue sense over $(-\pi, \pi)$.

We assume, without any loss of generality, that the constant term in the Fourier series of $f(t)$ is zero, so that

$$
\int_{-\pi}^{\pi} f(t) d t=0
$$

and

$$
f(t) \sim \sum_{1}^{\infty}\left(a_{n} \cos n t+b_{n} \sin n t\right) \equiv \sum_{1}^{\infty} A_{n}(t) .
$$

We write throughout

$$
\begin{gather*}
s_{n}=s_{n}(t) \equiv \sum_{\nu=1}^{n} A_{\nu}(t), \\
\varphi(t)=\varphi_{x}(t) \equiv \frac{1}{2}\{f(x+t)+f(x-t)\} . \tag{3}
\end{gather*}
$$

Moreover, by " $\left\{t_{n}\right\} \in B V$ " we shall mean that $\left\{t_{n}\right\}$ is a sequence of bounded variation. Similarly, by " $f(x) \in B V(a, b)$ " we shall mean that $f(x)$ is a function of bounded variation over the interval (a, b).

Finally, as usual [τ] denotes the greatest integer not greater than τ.

3. Theorem and Proof

We state our result as follows:
Theorem. If $\varphi(t) \in B V(0, \pi)$, and $\left\{p_{n}\right\}$ is a positive, monotonic sequence
such that $P_{n} \rightarrow \infty$ as $n \rightarrow \infty$,

$$
\begin{equation*}
\left\{(n+1) p_{n} / P_{n}\right\} \in B V \tag{4}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\{\sum_{\nu=1}^{n}(\nu+1)^{-1} P_{v} / P_{n}\right\} \in B V, \tag{5}
\end{equation*}
$$

then the Fourier series of $f(t)$, at $t=x$, is summable $\left|N, p_{n}\right|$.
We require the following lemmas for the proof of our theorem.
Lemma I. If q_{n} is non-negative and non-increasing, then, for $0 \leqq a \leqq b \leqq \infty, 0 \leqq t \leqq \pi$, and any n,

$$
\begin{equation*}
\left|\sum_{k=a}^{b} q_{k} e^{i(n-k) t}\right| \leqq Q_{z}, \tag{6}
\end{equation*}
$$

where $\tau \equiv[1 / t]$ and $Q_{m} \equiv q_{0}+q_{1}+\cdots+q_{m}$.
The result is originally due to Hill and Tamarkin.
Lemma 2. For $\nu \geqq 0$,

$$
\begin{equation*}
\sum_{n=\nu+1}^{\infty} \frac{p_{n}}{P_{n} P_{n-1}}=\frac{1}{P_{v}} . \tag{7}
\end{equation*}
$$

This is evident, since $p_{n}=P_{n}-P_{n-1}$, and $P_{n} \rightarrow \infty$ with n.
Lemma 3. Uniformly in $0<t \leqq \pi$,

$$
\left|\sum_{k=0}^{\nu} \sin (k+1) t\right| \leqq \pi t^{-1} .
$$

The proof of this is easy.
Proof of the theorem. We have, by (2)

$$
\begin{aligned}
\bar{t}_{n}-\bar{t}_{n-1} & =\sum_{\nu=0}^{n} \stackrel{p}{\nu}_{P_{n}} s_{\nu}-\sum_{\nu=0}^{n-1} \frac{p_{\nu}}{P_{n-1}} s_{\nu} \\
& =\sum_{\nu=0}^{n}\left(\frac{1}{P_{n}}-\frac{1}{P_{n-1}}\right) p_{\nu} s_{\nu}+\frac{p_{n}}{P_{n-1}} s_{n} .
\end{aligned}
$$

For the Fourier series of $f(t)$, at $t=x$

$$
s_{\nu}=s_{\nu}(x)=\frac{2}{\pi} \int_{0}^{\pi \sin \left(\nu+\frac{1}{2}\right) t} \frac{2 \sin \frac{1}{2} t}{} \varphi(t) d t
$$

$$
\equiv{ }^{2} \int_{0}^{\pi} \varphi(t) D_{2}(t) d t
$$

so that,

$$
\begin{equation*}
\bar{t}_{n}-\bar{t}_{n-1}=\frac{2}{\pi} \int_{0}^{\pi} \varphi(t) \sum_{\nu=0}^{n}\left(\frac{1}{P_{n}}-\frac{1}{P_{n-1}}\right) p_{\nu} D_{0}(t) d t+\frac{p_{n}}{P_{n-1}} \frac{2}{\pi}_{0}^{\pi} \varphi(t) D_{n}(t) d t \tag{8}
\end{equation*}
$$

where

$$
D_{\nu}(t) \equiv \frac{\sin \left(\dot{\left.\psi+\frac{1}{2}\right) t}\right.}{2 \sin \frac{1}{2} t}=\frac{1}{2}+\cos t+\cdots+\cos \nu t
$$

Now, by Abel's transformation,

$$
\begin{align*}
& \sum_{\nu=0}^{n}\left(\frac{1}{P_{n}}-\frac{1}{P_{n-1}}\right) p_{\nu} D_{\nu}(t) \\
& \quad=\sum_{\nu=0}^{n-1}\left(\frac{1}{P_{n}}-\frac{1}{P_{n-1}}\right) P_{\nu} \Delta D_{\nu}(t)+\left(\frac{1}{P_{n}}-\frac{1}{P_{n-1}}\right) P_{n} D_{n}(t) \\
& \quad=P_{n} P_{n-1} \sum_{\nu=0}^{n-1} P_{\nu} \cos (\nu+1) t-p_{n} P_{n} P_{n-1} D_{n}(t) \tag{9}
\end{align*}
$$

where

$$
\Delta D_{z}(t) \equiv D_{v}(t)-D_{v+1}(t) .
$$

From (8) and (9),

$$
\begin{aligned}
\bar{t}_{n}-\bar{t}_{n-1} & =\frac{2}{\pi} \int_{0}^{\pi} \varphi(t)\left\{\begin{array}{c}
\left.p_{n} P_{n-1}-\sum_{\nu=0}^{n-1} P_{\nu} \cos (\nu+1) t-\frac{p_{n}}{P_{n-1}} D_{n}(t)+\frac{p_{n}}{P_{n-1}} D_{n}(t)\right\} d t \\
\\
\end{array}{\frac{2}{\pi} \int_{0}^{\pi} \varphi(t) \Omega(n, t) d t}^{r}\right.
\end{aligned}
$$

where

$$
S(n, t) \equiv P_{P_{n}}^{P_{n-1}} \sum_{\nu=0}^{n-1} P_{0} \cos (\nu+1) t
$$

Thus, in order to prove the theorem, we have to establish that

$$
\sum_{n}\left|\bar{t}_{n}-\bar{t}_{n-1}\right|=\frac{2}{\pi} \sum_{n}\left|\int_{c}^{\pi} \varphi(t) Q(n, t) d t\right| \leqq K
$$

where K is used throughout to denote an absolute positive constant, but it is not necessarily the same at each occurrence.

We observe that

$$
\begin{aligned}
\int_{0}^{\pi} \varphi(t) \Omega(n, t) d t & =\left[\left(\int_{0}^{\pi} \Omega(n, u) d u\right) \varphi(t)\right]_{0}^{\pi}-\int_{0}^{\pi}\left(\int_{0}^{t} \Omega(n, u) d u\right) d \varphi(t) \\
& =-\int_{0}^{\pi}\left(\int_{0}^{t} \Omega(n, u) d u\right) d \varphi(t)
\end{aligned}
$$

so that,

$$
\begin{aligned}
\sum_{n}\left|\bar{t}_{n}-\bar{t}_{n-1}\right| & \left.\leqq \frac{2}{\pi} \sum_{n} \right\rvert\, \int_{0}^{\pi}\left(\int_{0}^{t} \Omega(n, u) d u\right) d \varphi(t) \\
& \leqq \frac{2}{\pi} \sum_{n}\left|\int_{0}^{\pi} d \varphi(t)\right|\left|\int_{0}^{t} Q(n, u) d u\right|
\end{aligned}
$$

Since, by hypothesis,

$$
\left|\int_{0}^{\pi} d \varphi(t)\right| \leqq K
$$

it suffices for our purpose to show that, uniformly for $0<t \leqq \pi$,

$$
\sum_{n}\left|\int_{0}^{\pi} \Omega(n, u) d u\right| \leqq K
$$

or what is the same thing, uniformly for $0<t \leqq \pi$,

$$
J \equiv \sum_{n}\left|P_{P_{n}} P_{n-1} \sum_{\nu=0}^{n-1} P_{\nu} \frac{\sin (\nu+1) t}{\nu+1} d t\right| \leqq K
$$

In order to deal with J, we consider two cases separately.
Case (i) Let $\left\{p_{n}\right\}$ be a posiitve, monotonic non-increasing sequence.

Then,

$$
\begin{aligned}
J & \leqq\left(\sum_{n=1}^{\tau}+\sum_{n=\tau+1}^{\infty}\right)_{P_{n}}^{p_{n-1}}\left|\sum_{\nu=0}^{n-1} \frac{P_{\nu}}{\nu+1} \sin (\nu+1) t\right| \\
& \equiv L_{1}+L_{2}, \text { say }
\end{aligned}
$$

where $\tau \equiv[1 / t]$.
Since,

$$
|\sin (\nu+1) t| \leqq(\nu+1) t \leqq n t
$$

and by hypothesis,

$$
0<\frac{n p_{n}}{P_{n}}<1, \quad \frac{1}{P_{n-1}} \sum_{\nu=0}^{n-1} \frac{P_{\nu}}{\nu+1}<\infty
$$

we have

$$
\begin{aligned}
L_{1} & \leqq t \sum_{n=1}^{\top} \frac{n p_{n}}{P_{n} P_{n-1}} \sum_{\nu=0}^{n-1} \frac{P_{\nu}}{\nu+1} \\
& \leqq K t \sum_{n=1}^{\tau} \frac{n p_{n}}{P_{n}} \leqq K t \tau \leqq K .
\end{aligned}
$$

But, since $\left\{p_{n}\right\}$ is positive monotonic non-increasing, $\left\{\frac{P_{\nu}}{\nu+1}\right\}$ is so, too.
Hence, we have, by Lemma I,

$$
\begin{aligned}
& \left|\sum_{\nu=0}^{n-1} \frac{P_{\nu}}{\nu+1} \sin (\nu+1) t\right| \leqq \sum_{\nu=0}^{\tau} \frac{P_{\nu}}{\nu+1}, \\
& \quad L_{2} \leqq \sum_{n=\tau+1}^{\infty} \frac{p_{n}}{P_{n} P_{n-1}} \sum_{\nu=0}^{\tau} \frac{P_{\nu}}{\nu+1} .
\end{aligned}
$$

Also, we have, by Lemma 2,

$$
L_{2} \leqq \frac{1}{P_{=}} \sum_{\nu=0}^{\tau} \frac{P_{\nu}}{\nu+1} \leqq K
$$

Thus, we obtain that the Fourier series of $f(t)$, at $t=x$, is summable $\left|\bar{N}, p_{n}\right|$.
Case (ii) Let $\left\{p_{n}\right\}$ be a positive, monotonic increasing sequence.
Then, we have

$$
L_{1}=\sum_{n=1}^{\tau} \frac{p_{n}}{P_{n} P_{n-1}}\left|\sum_{\nu=0}^{n-1} \frac{P_{\nu}}{\nu+1} \sin (\nu+1) t\right|
$$

$$
\begin{aligned}
& \leqq t \sum_{n=1}^{\tau} \frac{n p_{n}}{P_{n} P_{n-1}} \sum_{\nu=0}^{n-1} \frac{P_{\nu}}{\nu+1} \\
& =t \sum_{n=1}^{\tau} \frac{n p_{n}}{P_{n}}\left(\frac{1}{P_{n-1}} \sum_{\nu=0}^{n-1} \frac{P_{\nu}}{\nu+1}\right) \\
& \leqq K t \sum_{n=1}^{\tau} \frac{n p_{n}}{P_{n}} \\
& <K t \sum_{n=1}^{\tau} \frac{(n+1) p_{n}}{P_{n}} \\
& \leqq K t \tau \\
& \leqq K
\end{aligned}
$$

by virtue of the hypothesis (4) and (5) of the theorem.
Also, $\left\{\frac{P_{\nu}}{\nu+1}\right\}$ is positive monotonic increasing sequence, by hypothesis. Hence, by Abel's transformation,

$$
\begin{aligned}
& \sum_{\nu=0}^{n-1} \frac{P_{\nu}}{\nu+1} \sin (\nu+1) t \\
& \quad=\sum_{\nu=0}^{n-2}\left\{\sum_{k=0}^{\nu} \sin (k+1) t\right\}\left(\frac{P_{\nu}}{\nu+1}-\frac{P_{\nu+1}}{\nu+2}\right)+\frac{P_{n-1}}{n} \sum_{k=0}^{n-1} \sin (k+1) t \\
& \quad=-\sum_{\nu=0}^{n-2}\left\{\sum_{k=0}^{\nu} \sin (k+1) t\right\}\left(\frac{P_{\nu+1}}{\nu+2}-\frac{P_{\nu}}{\nu+1}\right)+\frac{P_{n-1}}{n} \sum_{k=0}^{n-1} \sin (k+1) t,
\end{aligned}
$$

whence applying Lemma 3,

$$
\begin{aligned}
\left|\sum_{\nu=0}^{n-1} \frac{P_{\nu}}{\nu+1} \sin (\nu+1) t\right| & \leqq \frac{\pi}{t}\left(\frac{P_{n-1}}{n}-P_{0}+\frac{P_{n-1}}{n}\right) \\
& \leqq K(\tau+1) \frac{P_{n-1}}{n}
\end{aligned}
$$

where

$$
\tau \equiv[1 / t] \leqq 1 / t \leqq \tau+1
$$

Thus, we have

$$
L_{2} \equiv \sum_{n==\tau+1}^{\infty} \frac{p_{n}}{P_{n} P_{n-1}}\left|\sum_{\nu=0}^{n-1} \frac{P_{\nu}}{\nu+1} \sin (\nu+1) t\right|
$$

$$
\begin{aligned}
& \leqq \sum_{n=\tau+1}^{\infty} \frac{p_{n}}{P_{n} P_{n-1}} \frac{P_{n-1}}{n} K(\tau+1) \\
& =K(\tau+1) \sum_{n=\tau+1}^{\infty} \frac{p_{n}}{n P_{n}} \\
& =K(\tau+1) \sum_{n=\tau+1}^{\infty} \frac{(n+1) p_{n}}{P_{n}} \frac{1}{n(n+1)} \\
& \leqq K(\tau+1) \sum_{n=\tau+1}^{\infty} \frac{1}{n(n+1)} \\
& =K
\end{aligned}
$$

Therefore,

$$
J \leqq L_{1}+L_{2}=K
$$

Thus, we obtain that the Fourier series of $f(t)$, at $t=x$, is summable $\left|\bar{N}, \quad p_{n}\right|$.

This terminates the proof of our theorem.

References

1) T. PATI, "On the Absolute Nörlund Summability of a Fourier Serjes," Journal of the London Mathematical Society, vol. 34, 1959, pp. 153-160.
2) , "Addendum : On the Absolute Nörlund Summability of a Fourier Series," ibid., vol. 37, 1966, p. 256.
3) K. ISHIGURO, "The Relation between $\left(N, p_{n}\right)$ and $\left(\vec{N}, p_{n}\right)$ Summability," Proceedings of the Japan Academy, vol. 41, 1965, pp. 120-122.
4) , "The Relation between $\left(N, p_{n}\right)$ and $\left(\bar{N}, p_{n}\right)$ Summability, II," ibid., pp., 773-775.
5) L. MCFADDEN, "Absolute Nörlund Summability," Duke Mathematical Journal, vol. 9, 1942, pp. 168-207.
6) H. Hardy, "Divergent Series," Oxford, 1949.
