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Synopsis
It is known that the function defined by Walsh series with monotone coef
ficients is very delicate in a neighborhood of the origin. The purpose of this
note is to prove Integrability theorems for Walsh Fourier series.

J. Introduction

Let the Rademacher functions be defined by
$o(2) = LOZ 2 <o), () = —1 (=2 1),
Bolx + 1) = Po(%), Galx) = §,(2". %) (n =1, 2, ++-).
Then the Walsh functions are given by
o) = 1, gal) = dn@ac renl®).

for m = 27() 4 2u() ... 9#(") where the integers n{i) are uniquely determined
by n(i + 1) <n(i). As is well known, {gn(x)}. form a complete orthonormal
system. Every periodic function f(x) which is integrable on (0, 1) can be expa-
nded into a Walsh Fourier series

(1 f@) ~ 2] anipal)
k=0 )
where the coefficients are given by

@ . an = S:f(x)gbn(x)dx (= 0,1,2 ).

If f(x) has (1) as its WFS, we shall set
n-1 . P
sa(%) = Sa(x; ) = D) p(x) (m=1,2;00 ).

k=0

The “Dirichlet kernel” of WFS is defined by
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(3) » © Da(x) = @ (x) + dy(x) oo + Gpr().
The size of D (x) is given by

(4) IDa(%)] <2/
We write

(4) Jn(x) = S:djn(t)dt (n=0,1,2, - ).

For basic properties of Walsh functions, the readers are referred to N. J.
Fine (3). A denotes a positive absolute constant that is not always the same.

H. Preliminary theorems

To prove main theorems, we shall state the necessary theorems;

Theorem 1. (S. Yano (5)). If ¢x> ¢nyy = 0 and the series Z} Cnn(x) con-
n=0

verges, save for x = 0, to an integrable function f(x), then the series chgbn(x)
n=0

is the Fourier series of fx).

Theorem 2. \N.‘J Fine (3)). Let

Slx) ~ i php(%).

k=0

Then

S (t)dt = Zak]k(x

Theorem 3. (G. Sunouchi (4)). If f(x)>0, s>0and Szf(t)dt = F(x), then

S: (-Z—?;(me))x“‘dx = %S:of(x)x‘sdx.

Theorem 4. Let f(x) be a non-negative function defined for x>0, and let
be p>1, s<p-1. Then if f(x) is integrable over (0, o) so is {x 'F(x)}x’,
where F(x) = So fiHdt. Moreover,

e (2 s

This is due to A. Zygmund (6).

Lemma 1. (N. J. Fine (3)). If Jix) = SZgbk(t)dt, then
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Jufx) = 20 g () — Ez g 4]

where 2= 2"+ &, 0 R < 27
From the lemma above, we obtain

(6) e <Y

Lemma 2. Suppose that @, 2> a; > - —> 0 and
flx) = Zlan(pn(x) e Lo, 1).
n=

Then we have

where F(x) :SZf(t)dt
Proof
It follows from Theorem 4 that

P = | At = ﬁ]lakfm

Thus

F<—i“l) = gak]k(él) = 2 ak]k<zl>+ Z k]le( 2,)

k=1

By the properties of Walsh functions, we get

](;l) ~for 0= k<2 —1

fk(é—,): 0 for 20 < k< oo.

Hence we have
2i—1

F(é)zz"kh(é‘z) Zzz =y 21

k=1

a1
= él (2¢ _1)‘2_2@31-

Lemma 3. If f(x) is positive and decreases in (0, 1), and a» are Walsh Fourier
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coefficients of f(x), then we have

(i)  lal §3F(%) (n _ 1,‘ 2 o)
(i) f(%)gszn (0 =0, 1)

-1

where F(x) :SI St)dt and s» = ) la .
0 k=0

Proof
Since
1 _1 1
an = | fign(@dx = |7 fgunidx + {1 fngunan,
[ 0 n
we get
1 "
@l (7 Ax)dx + | § gty dx
0 n
(7) |
1y, i |
=P()+ [ ods

n
By the second mean theorem, we have
£ 1
7w
Hence we obtain by lemma 1
(1

(8) 1 Angn(dx

| <7 am@r + 1 ()25 (=),

On the other hand,
F(3) = stz ()
0

By (8) and (9), we have
lszf(x)w(x)dx | < 2F<—1~)

n

(10)

!n

Therefore, it follows from (7) and (10) that

[, A s = f(%;)s% o = f() (e - () (= e <),

No. 26
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| an| __<=3F(%>.

2" -1

If we set s = Z}lakl, then we obtain
=0
a1 af_1 a1 . o
S = Esof(xm (x)dx = Sof(x>(2¢k<x))dx
k=0 k=0 k=0

1
:S;ﬂxﬂhﬂwdx=:fgﬁﬂxwx

1

or(2) e 7(2)

2" 2"
Hence
1
f (?)é Szn.
IiI. Main theorems
TheoremA. Suppose that @, = g2 - — 0 and

fx) =Z‘_{ Anfn(X)-

Then for: (1) p=1, (i) 1-p<p<l1; D)} € L? (0, 1) if and only if the series

-
Snria,l
pr=1

converges.

This theorem is the Walsh-analogue of results due to Y. M. Chen ((1), (2)) and
G. Sunouchi (4).

Proof of Theorem A.

First we shall prove the‘ case p =1 in Theorem A. f x7f(x) e LO, 1), then
flx) e L0, 1).

We now set

P = | swat, 1) = §11dr.

Then we have by lemma 2

o o 271-&-1_1 - n+y
Z‘{nf“la,, =31 ST ke <Sha SR
jr= o =

n=0 k=2" =0 =21
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(11) gAZz”’aq"<AZ]2”’F< )+ AS | F(x) | dx

n=0

gAZz"rH( )+ Al S,

n=1

On the other hand, we get

(12) S:{{t{gﬂ)}x"dx = és :lnl {H;x)}x rdx
and
 n 2
(13) 8221” ‘{mj?x-)}x*’dx > H(~21—n) Szzi ¥ ldx > A2"TH< )

v (11), (12) and (13), it follows that

inr—lan_g_Ai ng<_1~) + A Sl | fx)| dx
=1 #=1 2 0

gAg]lS;i{{%—)}x dx+AS | f(x)] dx
=pi

<Al rar 1 () Anlar < o,

and so the necessity of the condition is established.
To prove that the condition is sufficicient, we observe that

A
[ A2} SZ} a; + | 2 @) <s,* 'S Eak)

k=1 k=n41
Then we get

1 1
w1

[flx)] < As,*, for

Hence we have by Theorem 3

1 1

oo hd

S;x""tf(x)]dx:ES" 5T fw) | du < A s, kS"l xTdx

=1 7l #=1 I
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§A2 s, (n + 1)t — n"l) éAEnr—zsn*
n=1 =1

s, *

= Ani:}ln“‘ ( > =A gln’—lan < oo,

n
If we use Theorem 4 in place of Theorem 3, the remainning case is proved by
the similar method to the proof of the case p =1 in Theorem A.

The following theorem is the dual for Theorem A.

Theorem B. If f(x) is positive and decreases in (0, 1), and a, are Walsh-Fourier
coefficients of f(x), then for: (i) p>1, (i) 1-p <y <1; the series f}n"“?‘z{anlf’
converges if and only if x7"f(x)? € L(0, 1). -

Though our method of proof is essentially the same that is used in Theorem
A, we shall prove this theorem for the convenience of the reader.

Proof of Theorem B.

We shall prove the sufficient condition. If -we put F(x) = Szf(t)dt, then we get
by Theorem 3

8= o

0

Therefore, we have by lemma 3

1
o 1
oo > SIF(x)x‘l"’dx =] S F(x)x~t"dx
0 n=2v _1_
n

1
gi}F (%) Sn:lx‘l"dx

=2

»

__>;A}Ci} F(%)(nr — (= 1))

n=2

>43] F(i)nm > A4S 1a,).
=2 »n n=1

Next we shall prove the necessary condition. If we set

a(x) = la,| forn — 1< x<nmn=1, 2,--)

s(x) = Sz at)dt,

then the finiteness of Zn’ “!{a,| implies the finiteness of S x""la(x)dx.
n=1 0
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By using Theorem 3, we obtain

W [ <o
Hence
o 27+ - -~
e ' B Z"‘S s(x)x""2dx = 3 ] s(2") S a7 2dx
=0 2" Py o
onr

=AY,
n=0

On the other hand, since f(x) is monotone and s;" << As(2"), we have

1 1
1 & 27'-_171 B Gt 1y 2P 1 .
Sox Tf(x)dx —”EIS“I Vx Tf(x)dx§§f<?)g_1‘ X 7dx
2!1
(=] 2717’ 1 oo 2nr
<A () =AY e
oo ony

By (14), (15) and (16), it follows that

S : x7Tf(x)dx gAS:{E»;(;Q}xT“ldx _S_Agja(x)x’“ldx < oo,

Hence the case p =1 of theorem is proved. The remainning case is also done
by the same method.
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