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Synopsis
The object of this note is to prove that the extension of Szasz’s theorem

(1) on the absolute convergence of Fourier series also holds for the Walsh
Fourier series, and we consider some applications for the theorem.

I. Introduction

We shall begin with some notations and definitions:
The Rademacher functions are defined by. ’

fo(x) = 1(ogx<—;—>, dol#) = — 1 <é—__<z 2 < 1)

Polx) = do(x -+ 1), da(x) = o2k x) (k= 1,2, ).
The Walsh functions are then given by
Po(x) = 1, du(®) = dray)(x)Pr@)(x) -+ Pre)(x)
for k= 2k 4 9k(2) 4 ... 4 2k®) > 1 where the integers k(i) are uniquely deter-
mined by k(G + 1) < k(7).
For basis properties of Walsh functions, the reader is referred to N.J Fine (2).

Let us write, for the integral modulus of continuity and the best approximation
respectively,

wo(3) = we6, ) = sup ({1 x5 — fn)e ax}"?

O=yss

E;(ip) :Eflp)(f) =nf {S:lf(x) — pax) | pdx}l/P

where the infimum is taken over all Walsh polynomials P, of degree not
exceeding n.
Let

w@) = w(@, f)=sup|f(x+ k) — f(x)]
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If for some « >0 we have w(d) <Cs*, with C independent of 3, we shall say
that f(x) belongs to the class 4, ; in symbols

f(x) € Aa.

If w®(0) = 0(8*), we write flx) & A5,
Finally, A denotes a positive absolute constant that is not always the same in
each occurrence.

II. Several theorems

Qur main theorem now reads as follows;
Theorem 1. Let 1< p < 2. Suppose that f(x) € L?(0, 1) and

MMi%Mn

. = 1 X 2
If the series » Jnr—1/aw(» (—, f ) converges, then the series » n7|a,|converges
n=1 n =1

for </, where !/, 4!/, = 1. However, the conclusion ceases to be true if

2 p oo,
To prove this theorem, we require following two statements;

Theorem (F. Riesz). Let 1< p =<2 If f(x) = L?0, 1), then the Walsh Fourier
coefficients

a, = fopnz, k=0, 1, 2, -

satisfy the inequality

(Sawie} ™ = {firmieas)”

where !/, + 1/, = L
This theorem is well known (see(6)).

Lemma. The following inequality holds :
1/n 1
[ @) — 12y = = for b = 2n
Y n

Proof
If the dyadic expansion of the integer # is
no= 2 2n(2) o 20(0) > 1, (1) > n(2) >--->n(v) =0,

then we have
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21 = on{1)+1 > on(1),
By the definitions of Walsh functions, we always have

'83/2'2(1)“‘7”;&(3’)‘1}’ —0

Thus
1/n _ 1/2)1(1)—)—1 1/n
o sanidy = { O gpdy + 117 outs)dy
1/z
= 81/211(1)+1 d(y)dy
and
yn yr 1 1 11 1
dy| < dy = & — — < e
So 9u() y‘_ S‘/en(l)ﬂ 4 n 2PFLT 4 2n n
Hence we have
1/% el/n 1/n 1 1 1
[ @) —ray =2 "ay 2 {Mounay z 2t — 2. S =
0 0 0 n 2n »n

Proof of Theorem 1.
The case p =1 is clear, and so we suppose that 1< p < 2.
Let

J(x) ~ ZJ App(x).
=0
Then
Aty ~ 2 G enlx).
Hence

fx + 9) — flx) ~ 7};: ay(Pa(y) — 1a(%).

By F. Riesz’s theorem, we have

/p

Biaieigon -1} = {(§15e 5 9 - s rac}”
From this

Saltige ) — 102 { 1w £ ) — Ao 12ax )
Y o

1
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Thus

oo

ST laltigan) — 117 = {17 £ ) = Fx) 12da}

a/b
k=2n

We integrate both the sides of this inequality with respect to y within the
limits (0, !/,) and we have

n ” . a/
®  Siale e - vy = (0§ ) - s ay

k=2n

On the other hand,

if 1< p =<2, then 2=q. Thus since |@x)— 1] =0 or 2,
we have

(o) — 117 = [dly) — 112
By lemma, we have
1/n 1/n 1
@) | 710 — 117y = | 7 1u(v) — 1120y = — for k=2,
0 0 n
Therefore, we find out from (1) and (2) that

® nl/CI(kZQ;n |ak[‘1> = -7—{117{;w @ (%’ f)'

We now have

et

k .
where {5] as usual denotes the largest integer =< #/,.

Hence by changing the order of summation and using Holder’s inequality, we
have

fk]kr‘jakj [%]kf I

=i [_] A kR
2

437 St = 433 2pe-2)" ( il )

n=1 k=2n k=2n k=2n

Skl = 3
=2 h=2#

i

_SAZIW va Eiam) " <a énr—w wo (=, 5) by (3)

k=2n

which is convergent by the assumption of Theorem.
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Next we suppose that 2 < p < co. It is known that there exists a function f(x)
satisfying the Lipschitz condition of order a = ) such that the Walsh Fourier

series is not absolutely convergent (see (4) and (5)).
Using this function f(x) and putting y =0 in Theorem 1, we obtain

= Wi, 1)

=T nl/q

— 1
= () <

n=1

and so Theorem does not hold.

Applying Theorem 1, we can prove the following two theorems, which are
the Walsh-analogues of results due to A. Zygmund (6);

Theorem 2. Suppose that f(x)e 4,, 0 <{a =<1 and
F(x) ~ Dlaupa ().
n=0

<o -1 s

Then Z}nﬂ *la,| converges for g < a.
n=1

Proof

If we put vy =8 —% and p =2 in Theorem 1, then we get y <Y, Thus we

can apply Theorem 1 to Theorem 2. Hence we have
— P 1 — [ I - — ——
CSw 2w(2)(~., f) = Srtd pre = Shret Lo,
=1 n

which implies the convergence of the series > né"%|a,|.
' n=1

Theorem 3. Let 1< p < 2. Suppose that f(x) € Ay for 0 <<a <1 and

flx) ~ ZO @, ().
Then Enrfa,,l convérgés for r < a—1,.
=1
Proof

Since 0 <{a =<1, then y<{a-—1,=<1, Hence we can use Theorem 1. If we put

r=a— %— ¢ (¢ >0), then we have

oo

1 fe) o
nr——l/(lw(ﬂ)<—, f) = S peVpme=la, pea = S Ip-1-¢ < oo,
St wrvewn(L, )= 53 Sieime

u=1 n=1 n=1
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which implies the convergence of the series Z‘n? la,l.
n=1
In the case y = 0 of Theorem 1, we particularly have the following theorem;

Theorem 4. Let 1 =< p =<2, Suppose that f(x) = L?0, 1) and

Flx) ~ f}(}ansb,.(x).

If the series

Y n—l/qu)(}.., f)
n

n=1

f=)
converges for any number p, then the series Z} la,| converges.
n=0

Recently Prof. C. Watari proved

Theorem 5. For 1< p < ¢ <oo, there is a constant A = A(p, ¢) such that

S B £) < A3 01 E,0)(f)
n=1 n=1

where Y/, + Yy =1and Y, + Yy =L
Also see M. H. Taibleson (3).

. . st 1 . R .
Since the finiteness of Zn—l/b'w(p)<-—, f ) is equivalent to the finiteness of
n=1 n

Zn—l/ﬁ’En(w( f) (see (5)), we see from Theorem 5 that Theorem 4 is really a

#=1
corollary to the Walsh-analogue of Szasz’s theorem (see (1)) which is the case

p = 2 in Theorem 4. By Theorem 2, we have the following corollay;

Corollary. If f(x) € 4,,a>1/,, then the series E ; |a,| converges.
n=0
This is well known (see (2)).

Finally we note that Theorem 1 can be extended

Theorem 6. Let 1 < p < 2. Suppose that f(x) € LP(0, 1) and

Fx) ~ i;oam).

o0

- 1 .
If the series )| nT-ﬂ/4<w(ﬁ><—~, f))ﬂ converges, then the series )| nr|a,|?
n

n=1 n=1

converges for y < ¢/, where ¥/, + 1/, =1 and B<q.

The proof can be proved by the same argumient of Theorem 1.
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