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                                Synopsis

   The object of this note is to prove that the extension of Szasz's theorem

(1) on the absolute convergence of Fourier series a!so holds for the Walsh

Fourier series, and we consider some applications for the theorem.

                            I. Introduction

   llY8,SRZi3,b.eg,i:,Y}S.g,O,M.X,".o.2at32",;,a,"d,,9efinitifps:

               ¢o(x) == i (o .<,m x< -IL), ipe(x> =: - i (1;:$ x< i)

                               22
               ¢e(X) -- ¢o<x + 1), ipk(x) == ¢o(2k･ x) (le = 1, 2, ･･･).

The Walsh fqnctions are then given by

                 ¢e(X> EiEE 1, ¢k(X) == ¢k(1)(X>iph(2)(X)･･･ iph(v)(X)

for k = 2fe(i) + 2k(2) + ･･･ + 2le(v> wwrv>. 1, where the' integers fe(i) are uniqueiy deter-

mined by k(i + 1) <k(i).

For basis properties of Wa!sh functions, the reader is referred to N. J Fine <2).

Let us write, for the integral modulus of continuity and the best approximation

respectively,

            w(p)(o") = tv(p)(6, f) =: sup [!:lf(x F y) - f<x)]p dx]i!P

                              O$yEO .
             E,(,P) =EE,")<f> =: inf (SiIf(x) - p.(x) l pdxli/P

where the infimum is taken over all Walsh polynomials P. of degree not

exceeding n.

Let

                   w(o") = w(o', f> = secPif(x -;- h) - f<xM

                                 OShS" ,                          ･ T--tt..tt.t.tt-t.tt-ttttt.tNtttm.-./tt.. . t tt. tt tt
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If for some a>O we have w<6);$C6ct, with C independent of S, we shall say

that f(x> belongs to the class A. ; in symbols

                              f<x) G Aa.

If w(p)(O) == O(6"), we write f<x) e Ae.

Finally, A denotes a positive absolute constant that is not always the same in

each occurrence. ,
                                                '

                          XI. Several theorems

Th,.O,",r,.Flla.'"L.`theiOtkeEl:02Y g a,d,Z,aeStfh021al 1:;) Eii Lp(o, i> and

                                 co
                           f(X> "VZan¢n<X)･
                                n=O

If the series .IZOO Inr"i!aw(P)(-i;, f) converges, then the series S,=inria.Iconverges

for r<i/, where i/p "- '/, == 1. However, the conciusion ceases to be true if

2<P< oo.

To prove this theorem, we require following two statements;

Theorem (F. Riesz). Let 1<PS2. If f<x> e LP(O, 1>, then the Walsh Fourier

coethcients

             a, == igf<x)ip,(x>dx, fe = o, 1, 2, ･･･

satisfy the inequality

                      (kZcom,la,la]ila :.s (S)f(x)lpdx}Yp

where i/p -- i/, == 1.

This theorerri is weli known (see<6)).

Le!nma. The following inequality holds :

             lfn 1             I, (¢k(N) nv 1>2dy lli: -ifork lll 2n.

Proof

If the dyadic expansion of the integer n is

            n = 2n(1) + 2n(2) + ･･･ + 2n(v) ll; 1, n(1)>n(2) >･･･> n(v) ;-}l O,

then we have
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                          2n lit 2}i(i)+i > 2n(i).

By the definitions of Walsh functions, we always have

                         ,iif2n(i)+iipk(y)dy == o.

Thus

              !Y'`sb,(y)dy = S8!2n(i'"i sbk(y)dy + Slili.,,,., sbk<or)dy

                       == Slll'.,,,., gbk(y)dN

and

           !i,i" gbk(y)dy s. Sl/ili,,,,., dy : -il; - 2.(})+T S- +jl,iH in "'22. ==

Hence we have

      sY2t(ip,(y> - o2dy .., 2S;lnd>, - 2 Sil"¢,(y)dy k.un 2.-il,i - 2 ･ i =

Proof of Theorem 1.

The case P == 1 is ciear, and so we suppose that i<P ;:El 2.

Let

                                 oo                           f(x) ･'- ll.l2, akipk(X)'

Then

                          -oo                      .fi<x -t- N) rN･Xakgbk(Y)gbk(X)･ '
                               k--O

Hence

                                oo                    .                 f<x -y N) - f<x) N :Iil] ak<¢k(y> - i)sbk(x)･

                               kewO

                               'By F. Riesz's theorem, we have

            (,zO..e, la,,lgl¢,<y) - 1igli!" ;:$ (!tlf<.. ;nv y) - f(.)pd. IilP.

From this .
           /tt t                    '
            #, laklgigbk <y) - ug :.sl (S"flx ; y) - f<.) ipd. ]alP.

 1
--- . 2n

1

=n

ll
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Thus

                                           '
            #.,. iakl9l¢ft(y> - llg :s (!gtf(x ; y> - f(x) lpdx]afP.

                                          '
We integrate both the sides of this inequality with respect to y within the

limits (O, i!.) and we have

                                                 '  (1) ,#.,. Iaklg S:/" igbh<y) - 1 lgdy s. Sif" (ii If(x -i! N) - f(x)lpdx]q/"dy.

                              tt

On the other hand, if1<P:.:;!2, then2S.q. Thus since !¢k(x)-11 =O or 2,
we have

                       i gbk<y) - 1lg 21i l gbk(y) - l. I2.

By lemma, we have

  (2) i:!"lipk(y) - ilgdy 2;l.l iil" i¢k(y) - Y2dy ll). -jli- for le lkl 2n.

                                                '
Therefore, we find out from (1) and (2) that

  (3) vnl!q(le;.2.Iakig)lfa l$ n}qw(P)(Jili-, f)･

We now have

                                   '                           i<[g]s-e･

 'where [l}] as usuai denotes the largest integer S. k12.

Hence by changing the order of surnmation and using H61der's inequality, we

have

                                   '     ill.Il,hTiakt=;;ooll..l,[lli.iikikaii,$A,£o.e.,tA?hr2ak'i' .' '. ,,

                     L2j
             =At)Il.iik;.2.lernilaklS-A'tt.i(ktlak(r-i)p)ifP(kE.i2.iakig)ifa

             $A.20=Oinrrmiia(fei.ll2. Iakig)ifa ;:SA.i.O.inr-i/q w(p)(-jli-, f) ' ' by (3>

                                    '                                   '                    t .t tttt                                   t/twhich is convergent by the assumption of The6rem. '
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Next we suppose that 2 < P < co. It is known that there exists a function .f<x)

                                           1.satisfying the Lipschitz condition of order a = -li such that the Walsh Fourier

series is not absolutely convergent (see (4) and (5)>.

Using this function f(x) and putting r == O in Theorem 1, we obtaiR

                         1
                 Il,ii..lW(Pi(i-i",'f> "O(il,ll..l niiii/2 )<oo'

and so Theorem does not hold. '

Applying Theorem 1, we can prove the following two theorems, which are

the Walsh-analogues of results due to A. Zygmund (6);

Theorem 2. Suppose that f(x) E A., O<a;:$ 1 and

                                 co    ' i '' f(x)'liv2anipn(x>･
                                nmO

Then IS)nP-}ta.i convergbs for p<a.

     tt==1

Proef

If we put r=:p--IL and p==2 in Theorem 1, then we get r<i/2. Thus we

                 2
can apply Theorem 1 tq.,T. heorem 2. Hence we have

             tlll.}inr-r2L w(q)(-i¥, f) i: t/i.inp""vi"-}･ n-a = i,l}minp"a-i< co,

which implies the conv6,r'  g6n'ce of the series l,ll...lnp'Sla.i.

Theorem 3. Let 1SPS. 2. Sqppose that f<x) E A; for O<cr ;;ll1 and

                                   co
                            f(X) N ,X an¢n(X)･
                                  7Z=O

Then Xnrla.l conve'rges for r<tr - i!p.

     n=1

ii2C: 2<-; a-<= lg )li%e)? [h:naw-e'ifiatllig.ig Hence we can use Theorem i if we put

                                         '
       ;,li..l nr-yaw(p)(-il;-, f) = ;,llde!na-ifpmemiia. n-cr =tl=in"i-e<co,



                                          co
which implies the convergence of the series ]Z]nria,,l.

                                         n=1
In the case r wr O of Theorem l, we particularly have the following theorem;

Theorem 4. Let 1 :!! P g$ 2. Suppose that f(x) e LP(O, 1> and

                                  oo
                            f<x) 'N' i2]an¢n(X)･
                                  n=rO

If the series

                           .Xco..in-ilaw(p)(-ii-, f)

                                          ooconverges for any number P, then the series Z la.i converges.

                                         n=:O
Recently Prof. C. Watari proved

Theorem 5. For 1 :hfl{PSq< oo, there is a constant A=: A(P, q) such that

                    oo oo                    Z]n-ifq' E.(a)(f) s AliE]n-i/P'E.(p)(f>

                    n=.Tl n==:1
where ilp -- ifp, == 1 and ifg + Y,f r 1.

Also See M. H. Taibleson (3). ･
Since the finiteness of tfl.}inmifp'w(p)(-il;-, f) is equivalent to the finiteness of

oo
Xn-i/P'E.(P)(f) (see(5)>, we see from Theorem 5 that Theor,em 4 is really a
u=1
corollary to the Waish-analogue of Szasz's theorem (see(1)) whlch is the case

P = 2 in Theorem 4. By Theorein 2, we have the following corollay;

                                           ooCorollary. If f(x) e A.,a> '12, thenthe series Z] la.l converges.

                                          n==O
This is well known (see(2)).

Finally we note that Theorern 1 can be extended

Theorem 6. Let 1 :S P S. 2. Suppose that f<x) EE LP (O, 1) and

                                   oo                            f(x) 'N' ]E]an9n(X)･

                                  uveO

If the series #,=Tnr-Sfa(tv(p)(-lll, f))p converges, then the series tW.inria.IP

converges for r<Pf, where i/p + if, == 1 and B<q.

The proof can be proved by the same argument of Theotiem 1.
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