相互誘導形角変位変換器に関する研究

山田 -*

(昭和44年5月28日受理)

1. 序 言

角変位の検出および計測は、サーボ機構やプロセス制御系において重要な役割を果して おり、今後その必要性はますます増大する傾向にある.最近の工業計装化では、機械量あ るいは物理量を角変位を媒介として電気信号に変換する方式が広く採用されている.

本研究で述べる相互誘導形角変位変換器は,工業計測の分野で広範に用いられている差 動変圧器の構造を角変位を検出しやすいようにわん曲したもので,筆者らによって開発さ 20~0

磁気回路的に考察すると,差動変圧器のほうが出現が早いにもかかわらず,差動変圧器 は本変換器の一変種とみなすことができる.

本研究では、まず相互誘導形角変位変換器の変換理論について述べている.この理論の 基盤となる考え方は、従来の磁気抵抗に主眼をおくものではなく、実際の巻線軸上の磁束 分布に着目して変換器の諸物理量の関係をあきらかにできる解析法である.この解析法 は、たんに誘導形変位変換器(たとえば、差動変圧器など)の設計に適用できるだけでな く、開磁路を構成している電磁石、磁性薄膜などの解析にもきわめて有効である.

2. 変換理論

2・1 開磁心の磁束分布

開磁路を解析するとき、力点のおき方により次の二通りの方法が考えられる.それは、 空気磁路法と磁束分布法とである.前者は、磁心の磁気抵抗が空気磁路のより無視しうる ほど小さいとして、もっぱら空気磁路の磁気抵抗から必要な変数を求める方法である.こ の方法は、空隙の小さい電磁石などの解析に成果をおさめている.しかし、変位変換器の ように大きな空気磁路をもつ系では、表現式が複雑になり、かつ高い精度が期待できにく い.後者は、磁心軸上に形成される磁束分布を反磁界を考慮して数学的に表現し、これを 用いて必要な変数を求める考え方である.この方法は、諸変数の関係を物理的に表現でき るだけでなく、計算精度も前者より高いものとなる.

円弧状磁心について以上の考え方を適用すると、磁心軸上の原点から任意の角度 Θ の関数としてその磁束密度 $B(\Theta)$ は、

* 電気工学教室助教授

68

記号表

	= <i>k</i> _θ /θ:結合係数に関する比例定数	T_{i}	:周期LS」
$B(\varTheta)$:円弧状磁心軸上の磁束密度 [T]	V_2	:出力電圧(負荷時)〔V〕
С	:磁束分布に関係する係数	v_{2s}	:静的な出力電圧(瞬時値)[V]
d	: 磁心直径 [m]	v_{2d}	:動的な出力電圧(瞬時値)〔V〕
D	:コイルの平均直径[m]	x	:変位[m]
E_2	:出力電圧(無負荷時)〔V〕	x_0	: 直線範囲[m]
f	:周波数 [Hz]	y(x)	: 出力特性曲線
F_a	:磁心に作用する吸引力〔g-w〕	Z_1	: 一次インピーダンス [Ω]
H_0	:一次磁界 [A/m]	Z_2	:二次インピーダンス〔Ω〕
i_1	:一次電流(瞬時値)〔A〕		
I_1	:一次電流(実効値) [A]	α	$=\theta_s/\theta_m$
k	:反磁界係数に関係する係数	β	$=\theta_c/\theta_s, \ \beta^2=C$
k_{θ}	:一次・二次巻線間の結合係数	r	$=\theta_c/\theta_m = \alpha\beta$: 磁心 · 巻線寸法比
lc	: 磁心の長さ[m]	ε	:直線性,偏差,誤差
l_m	:全巻線のほどこしてある長さ〔m〕	θ	:角変位 [rad], [deg]
L_1	: 一次インダクタンス [H]	θ_0	:直線範囲,特定な角変位[rad], [deg]
L_2	: 二次インダクタンス [H]	θ_0'	:一定範囲[rad], [deg]
m	$=r\theta_c/d$: 磁心の寸法比	θ_c	:磁心角度[rad], [deg]
M	$=r heta_m/D$:巻線の寸法比	θ_m	: 卷線角度[rad], [deg]
M_{θ}	:一次・二次両巻線間の相互インダク	θ_s	:巻線軸上でφ(Θ) =0 となる位置 [rad]
	タンス[H]	Θ	:巻線軸上の位置 [rad]
Ν.	:一次巻線の全巻回数の 1/2 〔回〕	K	:長岡係数
÷,1			
N_2	:二次巻線の全巻回数の 1/2 〔回〕	μ_0	= 4π × 10 ⁻⁷ [H/m] : 真空の透磁率
N_2 N_d	:二次巻線の全巻回数の 1/2 [回] :反磁界係数 (減磁率)	μ_0 $\hat{arsigma}$	= 4π × 10 ⁻⁷ [H/m]:真空の透磁率 =d/D:磁心・巻線直径比
N_2 N_d p	:二次巻線の全巻回数の 1/2 [回] :反磁界係数 (減磁率) =40/θ。	$egin{array}{c} \mu_0 \ \hat{arsigma} \ \phi(artheta) \end{array}$	= 4π × 10 ⁻⁷ [H/m]:真空の透磁率 =d/D:磁心・巻線直径比 :巻線軸上の磁束[Wb]
N_2 N_d p r	:二次巻線の全巻回数の 1/2 [回] :反磁界係数(減磁率) = Δθ/θ ₀ :円弧状磁心の平均半径 [m]	$egin{array}{c} \mu_0 \ \hat{arsigma} \ \phi\left(\Theta ight) \ \phi_0 \end{array}$	= 4π × 10 ⁻⁷ [H/m] : 真空の透磁率 =d/D : 磁心・巻線直径比 : 巻線軸上の磁束[Wb] : 磁心の中央磁束[Wb]
N_2 N_d p r R_1	:二次巻線の全巻回数の1/2[回] :反磁界係数(減磁率) = Δθ/θ ₀ :円弧状磁心の平均半径[m] :一次巻線抵抗〔Ω〕	$egin{array}{c} \mu_0 \ \hat{arsigma} \ \phi \left(\Theta ight) \ \phi_0 \ arphi \ arph $	 = 4π × 10⁻⁷ [H/m]:真空の透磁率 = d/D:磁心・巻線直径比 : 巻線軸上の磁束[Wb] : 磁心の中央磁束[Wb] : 位相角 [rad]
N_2 N_d p r R_1 R_2	 :二次巻線の全巻回数の1/2[回] :反磁界係数(減磁率) = Δθ/θ₀ :円弧状磁心の平均半径[m] :一次巻線抵抗〔Ω〕 :二次巻線抵抗〔Ω〕 	$egin{array}{l} \mu_0 \ \hat{\xi} \ \phi\left(\Theta ight) \ \phi_0 \ arphi \ arph$	 = 4π × 10⁻⁷ [H/m]:真空の透磁率 =d/D:磁心・巻線直径比 : 巻線軸上の磁束[Wb] : 磁心の中央磁束[Wb] : 位相角 [rad] : 磁束鎖交回数 [Wb],位相角 [rad]
N_{2} N_{d} p r R_{1} R_{2} R_{l}	 :二次巻線の全巻回数の1/2〔回〕 :反磁界係数(減磁率) = Δθ/θ₀ :円弧状磁心の平均半径[m] :一次巻線抵抗〔Ω〕 :二次巻線抵抗〔Ω〕 :負荷抵抗〔Ω〕 	$egin{array}{l} \mu_0 \ \hat{\xi} \ \phi\left(\Theta ight) \ \phi_0 \ arphi \ \psi \ arphi \ $	 = 4π × 10⁻⁷ [H/m]:真空の透磁率 =d/D:磁心・巻線直径比 : 巻線軸上の磁束[Wb] : 磁心の中央磁束[Wb] : 位相角 [rad] : 磁束鎖交回数 [Wb],位相角 [rad] =2πf: 励磁角周波数[rad/s]

SI : 電流感度 [V/rad•A], [V/m•A]

SV : 電圧感度 [V/rad·V], [V/m·V]

$$B(\Theta) = \frac{\mu_0 H_0}{N_d} \left\{ 1 - C \left(\frac{2\Theta}{\theta_c} \right)^2 \right\}, \qquad (2\cdot1)$$

$$\phi(\Theta) = \phi_0 \left(1 - C \frac{4\Theta^2}{\theta_c^2}\right), \qquad (2\cdot 2)$$

ここに,

$$N_d = rac{1}{m^2} \left(\ln rac{km}{2} - 1
ight),$$

相互誘導形角変位変換器に関する研究

$$H_0 = \frac{2N_1I_1}{r\theta_m}, \quad m = \frac{r\theta_c}{d},$$

$$\phi_0 = \frac{\mu_0H_0}{N_d}S_c = \frac{\pi\mu_0d^2N_1I_1}{2r\theta_mN_d}.$$
 (2.3)

2・2 出力電圧の基本式

第2・1図に示したように、本変換器を磁気回路的に考えたとき、その平均半径 rを無限 大にしたときの1例が差動変圧器であることがわかる ($\lim_{r\to\infty} r\theta_m = l_m$). したがって、一 連の誘導形変位変換器の変換理論を確立する上で、本変換器をそれらの基本モデルとおく ことができる.

変換理論を確立する上で,次の仮定をおくことにする.

(1) 磁心軸上に形成される磁束分布は、半経験的に十分な精度をもって放物線に近似できる.

(2) 磁心半径方向の磁心外の磁束の変化を無視し、また磁心内でも半径方向の磁束密度の変化はないものとする.

(3) 実際の変換器は、多層ソレノイドであるが、その中心軸上の磁界式は単層ソレノイドの式で近似する.

第 2・2 図において出力電圧 *E*₂ を求めるとき, (2・2) 式は次のように 修正する必要がある.

第2・1図相互誘導形角変位 変換器の構造

(b) 直線化した円弧状磁心

第2・2図 円弧状磁心軸上の磁束分布 ($\theta_s \leq \theta_m$)

No. 26

山田 一

$$\phi(\Theta - \theta) = \phi_0 \left\{ 1 - C \, \frac{4(\Theta - \theta)^2}{\theta_c^2} \right\}. \tag{2.4}$$

計算に際して磁心と巻線の相対関係によって、つぎの各場合に大別される.

A. $\theta_s \leq \theta_m : \theta_c$ が θ_m にくらべて比較的小さく,かつ $\theta = 0$ で $\theta_s \leq \theta_m$ の場合,この とき θ は,積分範囲によって次のように分けられる.

A·1: $0 \le \theta \le (\theta_m - \theta_s)/2$,

A・2: $(\theta_m - \theta_s)/2 \le \theta \le \theta_c/2$. B. $\theta_s \ge \theta_m : \theta_c$ が θ_m と同程度で $\theta = 0$ で $\theta_s \ge \theta_m$ の場合. B・1: $0 \le \theta \le (\theta_s - \theta_m)/2$,

 $B \cdot 2 : (\theta_s - \theta_m) \le \theta \le \theta_c/2.$

以上に述べた各場合について,それぞれ E2を導いてみる.

 $A \cdot 1: A$, B 領域にある各 N_2 への磁束鎖交回数 Ψ_{2a} , Ψ_{2b} は,

$$\Psi_{2a} = \frac{N_2}{\theta_m/2} \int_{-\theta_s/2+\theta}^{0} \phi(\Theta - \theta) \, d\Theta = N_2 \overline{\phi}_{2a}, \qquad (2.5)$$

$$\Psi_{2b} = \frac{N_2}{\theta_m/2} \int_0^{\theta_s/2+\theta} \phi(\Theta - \theta) d\Theta = N_2 \overline{\phi}_{2b}.$$
(2.6)

 ϕ_{2a} , ϕ_{2b} は第2・2図に示したように巻線部分 $\theta_m/2$ にわたっての各平均磁束であり,次式 で与えられる.

$$\overline{\phi}_{2a} = \frac{2\phi_0}{\theta_m} \Big\{ \frac{\theta_s}{3} - \theta \left(1 - \frac{4C}{3\theta_c^2} \theta^2 \right) \Big\},\tag{2.7}$$

$$\overline{\phi}_{2b} = \frac{2\phi_0}{\theta_m} \Big\{ \frac{\theta_s}{3} + \theta \left(1 - \frac{4C}{3\theta_c^2} \theta^2 \right) \Big\},\tag{2.8}$$

$$E_{2} = \omega(\Psi_{2b} - \Psi_{2a}) = \omega N_{2}(\overline{\phi}_{2b} - \overline{\phi}_{2a}), \qquad (2.9)$$

$$E_2 = 4\omega N_2 \phi_0 \Big\{ \frac{\theta}{\theta_m} - \frac{4C}{3\gamma^2} \left(\frac{\theta}{\theta_m} \right)^3 \Big\}.$$
 (2.10)

A・2:上と同様な手法によってこの場合の E₂は、次式となる.

$$E_{2} = 2\omega N_{2}\phi_{0} \Big\{ \frac{1}{2} \left(1 - \frac{C}{3\gamma^{2}} \right) - \frac{1}{3}\alpha + \left(1 + \frac{C}{\gamma^{2}} \right) \frac{\theta}{\theta_{m}} - \frac{2C}{\gamma^{2}} \left(\frac{\theta}{\theta_{m}} \right)^{2} - \frac{4C}{3\gamma^{2}} \left(\frac{\theta}{\theta_{m}} \right)^{3} \Big\}.$$
(2.11)

第2・3図に、 $\theta_s \ge \theta_m$ のときの磁束分布を示した.このときの出力電圧は、それぞれ次式で与えられる.

$$B \cdot 1: E_2 = 4\omega N_2 \phi_0 \frac{C}{\gamma^2} \cdot \frac{\theta}{\theta_m}, \qquad (2 \cdot 12)$$

70

No. 26

 $(2 \cdot 13)$

2・3 回路変数のきめ方

2・3・1 一次インダクタンス 現在,空心コイルのインダクタンスは,かなり精確に計算できるようになっている.しかし,鉄心入コイルのインダクタンスは,磁化条件と関連して問題が多く,その計算法は必らずしも確立していない.

ここでは、本変換器の一次インダクタンスを磁心部分によるものと磁心の占有していな い空気部分によるものとの合成された値と考えて導いてみよう.

A•1:
$$L_1 = L_{10} \left\{ \frac{2}{3} \cdot \frac{\alpha \xi^2}{N_d} + K(1 - \frac{\xi^2}{\alpha}) \right\},$$
 (2•14)

$$z \geq \kappa, \ L_{10} = \frac{\pi \mu_0 D^2 N_1^2}{\gamma \theta_m}.$$
 (2.15)

$$A \cdot 2: L_{1} = L_{10} \left[\frac{\xi^{2}}{N_{d}} \left\{ \frac{1}{2} \left(1 + \frac{2\alpha}{3} - \frac{C}{3\gamma^{2}} \right) - \left(1 - \frac{C}{\gamma^{2}} \right) \frac{\theta}{\theta_{m}} - \frac{2C}{\gamma^{2}} \left(\frac{\theta}{\theta_{m}} \right)^{2} - \frac{4C}{3\gamma^{2}} \left(\frac{\theta}{\theta_{m}} \right)^{3} \right\} + K \left(1 - \frac{2\xi}{1 + \alpha - 2\theta/\theta_{m}} \right) \right].$$
(2.16)

$$\mathbf{B} \cdot 1: L_1 = L_{10} \Big[\frac{\xi^2}{N_d} \Big\{ 1 - \frac{C}{3\gamma^2} - \frac{4C}{\gamma^2} (\frac{\theta}{\theta_m})^2 \Big\} + K(1 - \xi^2) \Big].$$
(2.17)

$$B \cdot 2 : L_{1} = L_{10} \Big\{ \frac{\xi^{2}}{N_{d}} \Big\{ \frac{1}{2} \left(1 + \frac{2\alpha}{3} - \frac{C}{3\gamma^{2}} \right) - \left(\frac{C}{\gamma^{2}} - 1 \right) \frac{\theta}{\theta_{m}} - \frac{2C}{\gamma^{2}} \left(\frac{\theta}{\theta_{m}} \right)^{2} - \frac{4C}{\gamma^{2}} \left(\frac{\theta}{\theta_{m}} \right)^{3} \Big\} + K \Big(1 - \frac{2\xi}{1 + \alpha - 2\theta/\theta_{m}} \Big) \Big].$$
(2.18)

2•3•2 二次インダクタンス 本変換器の二次側は, 2組の二次巻線が互いに差動的に 接続されているので,以下の関係,すなわち

$$M_{\theta} = k_{\theta} \sqrt{L_1 L_2}, \quad E_2 = \omega M_{\theta} I_1,$$
 (2.19)

を利用して、二次インダクタンスは次のように表現できる.

山田 二

$$L_{2} = \frac{1}{L_{1}} \left(\frac{M_{\theta}}{k_{\theta}}\right)^{2} = \frac{1}{a_{0}^{2}L_{1}} \left(\frac{E_{2}}{\omega I_{1}\theta}\right)^{2}.$$
 (2.20)

A • 1 :
$$L_2 = \frac{L_{10}^2}{a_0^2 L_1} \Big[\frac{2\xi^2}{N_d \theta_m} \cdot \frac{N_2}{N_1} \Big\{ 1 - \frac{4C}{3\gamma^2} (\frac{\theta}{\theta_m})^2 \Big\} \Big]^2,$$
 (2•21)

ここに, $L_1 = (2 \cdot 14)$ 式. 19 - 69 M

ここに, $L_1 = (2 \cdot 16)$ 式.

$$A \cdot 2 : L_{2} = \frac{L_{10}^{2}}{a_{0}^{2}L_{1}\theta} \Big[\frac{\xi^{2}}{N_{d}} \cdot \frac{N_{2}}{N_{1}} \Big\{ \frac{1}{2} \mathbb{1} \left(-\frac{C}{3\gamma^{2}} \right) - \frac{\alpha}{3} + \left(\mathbb{1} + \frac{C}{\gamma^{2}} \right) \frac{\theta}{\theta_{m}} - \frac{2C}{\gamma^{2}} \left(\frac{\theta}{\theta_{m}} \right)^{2} - \frac{4C}{3\gamma^{2}} \left(\frac{\theta}{\theta_{m}} \right)^{3} \Big\} \Big]^{2}, \qquad (2.22)$$

$$B \cdot 1 : L_2 = \frac{L_{10}^2}{a_0^2 L_1} \left(\frac{2\xi^2}{N_d \theta_m} \cdot \frac{N_2}{N_1} \cdot \frac{C}{\gamma^2} \right)^2, \qquad (2 \cdot 23)$$

ここに、
$$L_1 = (2 \cdot 17)$$
式、
B·2: $L_2 = (2 \cdot 22)$ 式、
ここに、 $L_1 = (2 \cdot 18)$ 式、
(2 · 24)

2•4 感度

感度には電流・電圧感度の二つが考えられ、零点付近における各感度を次のように定義 する.

電流感度:
$$S_I(E_2) = \left| \frac{1}{I_1} \cdot \frac{dE_2}{d\theta} \right|_{\theta=0}, \qquad S_I(V_2) = \left| \frac{1}{I_1} \cdot \frac{dV_2}{d\theta} \right|_{\theta=0}.$$
 (2.25)

電圧感度:
$$S_V(E_2) = \left| \frac{1}{V_1} \cdot \frac{dE_2}{d\theta} \right|_{\theta=0}, \qquad S_V(V_2) = \left| \frac{1}{V_1} \cdot \frac{dV_2}{d\theta} \right|_{\theta=0}.$$
 (2·26)

磁心角度 θ_c の異なる各変換器についての電流・電圧感度の理論式をまとめると,第2・1

	電 流 感 度 SI	電 圧 感 度 Sv				
$A \cdot 1$	$S_{I}\left(E_{2} ight) =A\omega$	$S_V(E_2) = A \frac{\omega}{Z_1}$				
$ \begin{array}{c} \theta_s \leq \theta_m \\ (\theta_c = 90, \ 120^\circ) \end{array} $	$S_I (V_2) = A rac{\omega R_1}{Z_2}$	$S_V(V_2) = A rac{\omega R_1}{Z_1 Z_2}$				
B•1	$S_I(E_2) = B\omega$	$S_V(E_2) = B \frac{\omega}{Z_1}$				
$ \begin{vmatrix} \theta_s \ge \theta_m \\ (\theta_c = 150, \ 180^\circ) \end{vmatrix} $	$S_I(V_2) = B \frac{\omega R_1}{Z_2}$	$S_V(V_2) = B \frac{\omega R_1}{Z_1 Z_2}$				

第2・1表 電流・電圧感度の理論式

72

No. 26

表のようになる. 第2・1図において, A, Bは次の値となる.

$$A = \frac{2\xi^2 L_{10}}{\theta_m N_d} \cdot \frac{N_2}{N_1}, \quad B = \frac{2\xi^2 L_{10}}{\theta_m N_d} \cdot \frac{N_2}{N_1} \cdot \frac{C}{\gamma^2}.$$

磁		心	実験者	m	k	С
円	柱	状	Rozenblat 筆 者	100 以上 4 ~ 20	2.4 3.0	0.8~0.85 0.7
円	弧	状	筆者(平等磁界中) 筆者(不平等磁界中)	$\begin{vmatrix} 3 & \sim 7 \\ 3 & \sim 7 \end{vmatrix}$	$2.5 \sim 3.4 \\ 3.2 \sim 3.6$	0.6 0.6

第2・2表 円柱状および円弧状磁心の係数 k, C の比較

2.5 実験による検討

2・5・1 開磁心の磁気特性 寸法比の異なる数十種類の円柱状および円弧状磁心についての磁束分布量に関する係数, k, Cの実測値を Rozenblat のデータと対比させながら第 2・2表に示した.同表から寸法比mが小さい円弧状磁心($3 \le m \le 20$)に対しては,磁界分布の相違などを考慮に入れながら, Rozenblat の値を修正して用いなければならないこと ^{33,240}

2•5•2 出力電圧特性 すでに2•2で述べたように,無負荷時の出力電圧 E₂は,回路変数が未知であっても巻線・磁心寸法のみが既知であれば,算出できる点に本変換理論の最大の特長がある.

第2・3表 角変位変換器の寸法

記	号 〔単位〕	寸 法
θ_m	[deg]	180
D	[mm]	28.2
r	[mm]	32.5
M (=	$r\theta_m/D$)	3.62
Ę	(= d/D)	0.6
$2N_1$	[回]	2×200
$2N_2$	〔回〕	2×200
R_1	[Ω]	8.47
R_2	[Ω]	8.47

第2·4図 出力電圧特性 (f = 60Hz, I₁ = 10mA)

そこで第2·3表に示した変換器を用いて、*E*2の計算値と実測値とを対比すれば、第2·4 図のようになる.計算値は、実測値とほぼよい近似を示しているが、まだ若干の差異が認

No. 26

74

められる.この差異は、計算・実験上の誤差のほかに、次に述べる要因によって生ずる.

(1) 磁束分布が完全に一致していない. すなわち,磁束分布の表現式 (2・2) 式は,磁心 軸上ではよく近似できるが,磁心外の空気磁路における"すそひろがり"的な分布まで近 似できない.

(2) 磁束分布は,角変位に依存して変化する.すなわち,本理論では,与えられた角変 位によって磁束分布が (2・4) 式のように平行移動するものとしたが,実際には角変位によ って分布は多少変形する.

2•5•3 インダクタンス 角変位 θ に依存して変化する L_1 および L_2 の計算値と実測値 との対比を,それぞれ第2•5図,第2•6図に示した.

3. 直線性の解析

3・1 直線範囲のきめ方

トランスジューサの直線範囲は、感度とならんで性能上の重要な因子の一つである. こ の直線範囲は直線性によって決定されるが、このきめ方には今までかなり経験的な方法に よるものが多く、統一化された方法が確立されていない.

通常,トランスジューサの出力特性曲線は,数学的に表現できない場合が実際に多い. しかし,一般には出力特性曲線 y(x)は,第3・1図に示されるような形が多いので,この場合について考察してみる.

(i) 2次式の場合: $y(x) = ax - bx^2$. (3・1)

上式の原点における接線 Yo とその微係数 Yo' は、それぞれ

$$Y_0 = ax, \quad Y_0' = a \tag{3.2}$$

となるので,直線 Y2 は次式となる.

$$Y_2 = a_2 x, \quad a_2 = (1 - 2\varepsilon)a.$$

y(x) と Y_2 との交点 Q (第3・1図) の x 軸上での位置, すなわち直線範囲 x_0 は $y(x) = Y_2$ として求められるので

$$ax - bx^{2} = (1 - 2\varepsilon)ax,$$

$$x_{0} = \sqrt{2a\varepsilon/b}.$$
(3.3)

(ii) 3次式の場合: $y(x) = ax - cx^3$. (3・4)

上式に対する Y_0, Y_0 と Y_2 は(ii)の場合と全く同様であるので,

$$ax - cx^{3} = (1 - 2\varepsilon)ax,$$

$$x_{0} = \sqrt{2a\varepsilon/c}.$$
(3.5)

3・2 出力電圧の直線性

.

3•2•1 理想的な長方形状磁束分布 磁心軸上に長方形状磁束分布が形成されたと仮定 し(第3•2図), A. $\theta_c \leq \theta_m$ のときに限って考察すると, その E_2 の基本式は次のようにな る.

A·1:
$$E_2 = 4\omega N_2 \phi_0 \frac{\theta}{\theta_m}$$
, (3.6)

第3・3図 長方形状磁束分布の出力電圧と直線範囲

$$\mathbf{A} \cdot 2 : E_2 = \omega N_2 \phi_0 \ (1 - \gamma + 2 \frac{\theta}{\theta_m}). \tag{3.7}$$

これらの直線範囲は、いずれも θ_c の一次関数 $\theta_0 = \theta_c/2$ で表わされ、第3・3図に示すように大きな θ_0 がえられる.

3・2・2 実際の放物線状磁束分布 今の場合, y(x)が数学的に表現できるので, 3・1の解 法にしたがいそれぞれの θ_0 を求めることができる.

$$A \cdot 1 : \theta_0 = \theta_c \sqrt{\frac{3\varepsilon}{2C}},$$

$$B \cdot 1 : \theta_0 = \frac{\theta_m}{4} \Big\{ \frac{\gamma^2}{C} + 4\varepsilon - 1 + \sqrt{(\frac{\gamma^2}{C} + 4C - 1)^2 - \frac{4}{3C}(3\gamma^2 - \frac{2}{\sqrt{C}}\gamma^2 - C)} \Big\}.$$
(3.9)

第3・4図に θ_0 の計算値と実測値とを示したが、計算によると $\theta_c = 180^\circ$ のとき θ_0 がもっとも大きく、他の磁心の2倍以上とれることがわかる.

3・3 一次インダクタンスの一定性

長方形状の場合のL1は、それぞれ次式のようになる.

A•1 :
$$L_1 = L_{10} \left\{ \frac{\hat{\varsigma}^2 \gamma}{N_d} + K(1 - \frac{\hat{\varsigma}^2}{\gamma}) \right\},$$
 (3•10)

A•2:
$$L_1 = L_{10} \Big\{ \frac{\hat{\xi}^2}{2N_d} (1 + \gamma - \frac{2\theta}{\theta_m}) + K(1 - \frac{2\xi^2}{1 + \gamma - 2\theta/\theta_m}) \Big\}.$$
 (3.11)

長方形状および放物線状磁束分布による L_1 が偏差 ± ε をもつ一定範囲 θ_0' を求めると 第3・5図のようになる.

No. 26

76

3・4 直線範囲と一定範囲との関係

差動変圧器などの直線範囲を理論的に求める試みは、従来からいくつかなされてきたが、 あくまでも磁気抵抗の概念に執着しすぎた点に失敗の原因があった。

この章での結果を要約すると,次のような結論となる.

(1) 磁心軸上に長方形状の磁束分布が形成できるとするならば,磁心寸法のフル・スパンまで直線範囲が拡大できる.しかし,もっとも大きい直線範囲をとりうる磁心はもっとも小さい L₁の一定範囲しか与えられなく,直線範囲と一定範囲は互いに相反した要求であることがわかった.

(2) 実際の放物線状は,長方形状の場合の矛盾をかなり巧みに解決していることを理論 的にあきらかにした.すなわち,放物線状のもっとも広い直線範囲をとりうる磁心でも, その一定範囲はさほどせまくならない.

4. 設 計 法

4・1 角変位変換器の設計法

変換器の仕様と設計定数とが、第4・1表のように与えられたとする.ここでは、 θ_0 を大きくとりたい場合 (B. $\theta_s \ge \theta_m$)について考察する.

第4・2表 角変位変換器の設計例 (ADT 42-2L)

第4・2表に,設計値と実測値とを対比して示した.

第4・1表 角	自変位変換器の	士様と設計	定数		$V_1 =$	10[V], f	=1[kHz]], ε:	=±]	[%]	, R_l	=1(kΩ」
仕	様	設計	定	数		記	号	〔単位〕	設	計	値	実	測	値
一次電圧 V ₁	[V]	磁心直径	d	[m]		S_V	[mV	/deg/V]		30)		29	
直線範囲 θ_0	[deg]	卷線直径	D	[m]			θ_0 [deg]		30	1		31	
直線性ε	[%]	磁心角度	θ_{c}	(deg)			R_1 ([Ω]		8			7.	. 8
周 波 数 f	[Hz]	卷線角度	$\theta_m[$	[deg]			R_2 ([Ω]		36	6.6		37.	. 4
電圧感度 Sv	[V/deg/V]	一次卷回	数21	√1〔回)		L_1 ([mH]		12	.3		11,	. 5
負荷抵抗 R _l	(Ω)	二次卷回	数21	V₂ [□)		L_2 [[mH]		51	. 5		52.	. 4

第4・1図にこれまで述べた諸関係を整理し、設計の手順を具体的に示したフロー・チャ - トを示した.

4・2 差動変圧器の設計

第4・3表 差動変圧器の設計例

2で述べた変換理論において、次式の変数変換を行うことによってそれが簡単に差動変 圧器の変換理論となる.

$$r\theta_m = l_m, \quad r\theta = x. \tag{4.1}$$

$V_1 = 2$	P(V), f = 60[H]	$z], \ \varepsilon = \pm 1[\%],$	$R_l = 1(k\Omega)$	
記	号 〔単位〕	設計值実	測 値	x (mm)
SV	[mV/mmV]	85	83	
x_0	[mm]	10.0	9.5	
R_1	[Ω]	5.1	4.8	<u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u>
R_2	[Ω]	10.9	10.3	ピート 実測値
L_1	[mH]	4.6	4.4	-1.0 計算值
L_2	(mH)	10.8	9.2	' 第4・2図 吸引力一変位特性

第4・3表にその設計値と実測値との対比を、また第4・2図に磁心に作用する吸引力特性を 示した.吸引力の計算値は、(4・2)式を用いて算出した.

$$A \cdot 2: F_{a} = I_{1}^{2} \frac{dL_{1}}{dx}$$

$$= -\frac{I_{1}^{2}L_{10}}{2l_{m}} \Big[\frac{\xi^{2}}{N_{d}} \Big\{ (1 - \frac{C}{\gamma^{2}}) + \frac{4C}{\gamma^{2}} \frac{x}{l_{m}} - \frac{4C}{\gamma^{2}} (\frac{x}{l_{m}})^{2} \Big\} + \frac{4\xi}{(1 + \alpha - 2x/l_{m})^{2}} \Big].$$
(4.2)

5. 振動変位の重疊による出力電圧の誤差

5・1 振動変位の重疊した出力電圧

28) 本変換器は、与えられた θ によって M_{θ} が変化するから

$$M_{\theta} = k_{\theta} \sqrt{L_1 L_2} = M_0 \theta, \qquad (5 \cdot 1)$$

ここに,

.

$$M_0 = a_0 \sqrt{L_1 L_2} \quad . \tag{5.2}$$

一次電流 らを次式とおくと、その v2sは、

$$i_1 = \sqrt{2} I_1 \sin\left(\omega t + \varphi\right),\tag{5.3}$$

相互誘導形角変位変換器に関する研究

$$v_{2s} = \frac{d}{dt} (M_{\theta} i_{1})$$
$$= \sqrt{2} \omega M_{\theta} I_{1} \theta_{0} \cos (\omega t + \varphi).$$
(5.4)

³⁰⁾ つぎに, 磁心が角周波数 ω_v , 振巾 4θ で正弦状に強制的に振動されると,

$$M_{\theta}(t) = M_0 \theta_0 \{ 1 + p \sin \left(\omega_v t + \Psi \right) \}.$$
(5.5)

したがって, このときの出力電圧 v2d は,

$$v_{2d} = \frac{d}{dt} \left\{ M_{\theta}(t) i_{1} \right\}$$

$$= \sqrt{2} \omega M_{0} I_{1} \theta_{0} \left[\cos \left(\omega t + \varphi \right) + \frac{p}{2} \left(1 + \frac{\omega_{v}}{\omega} \right) \sin \left\{ \left(\omega + \omega_{v} \right) t + \varphi + \Psi \right\} \right]$$

$$- \frac{p}{2} \left(1 - \frac{\omega_{v}}{\omega} \right) \sin \left\{ \left(\omega - \omega_{v} \right) t + \varphi - \Psi \right\} \right].$$
(5.6)

 v_{2s} の平均値 \overline{V}_{2s} , v_{2d} の平均値 \overline{V}_{2d} は, それぞれ

$$\overline{V}_{2s} = \frac{2\sqrt{2}}{\pi} \omega M_0 I_1 \theta_0 \tag{5.7}$$

$$\overline{V}_{2d} = \frac{1}{T} \int_0^T |v_{2d}| \, dt = \overline{V}_{2s} \cdot G(p, \ \omega_{v'}/\omega, \ \varphi, \ \Psi), \tag{5.8}$$

ここに, $T: T_1, T_2, T_3$ の最大公約数,

$$T_{1} = \frac{2\pi}{\omega}, \quad T_{2} = \frac{2\pi}{\omega + \omega_{v}}, \quad T_{3} = \frac{2\pi}{\omega - \omega_{v}},$$

$$G = \frac{\pi}{2T} \int_{0}^{T} |\cos(\omega t + \varphi) + \frac{p}{2} (1 + \frac{\omega_{v}}{\omega}) \sin\{(\omega + \omega_{v})t + \varphi + \Psi\}$$

$$-\frac{p}{2} (1 - \frac{\omega_{v}}{\omega}) \sin\{(\omega - \omega_{v})t + \varphi - \Psi\} | dt. \quad (5.9)$$

 \overline{V}_{2s} に対する \overline{V}_{2d} の誤差を ϵ で表わすと

$$\overline{\varepsilon} = \frac{\overline{V}_{2d} - \overline{V}_{2s}}{\overline{V}_{2s}} = G(p, \ \omega_v/\omega, \ \varphi, \ \Psi) - 1.$$
(5.10)

sは4変数の関数であり、これを求めることは面倒なので $\varphi = \Psi = 0$ とおき、(5•10) 式をディジタル計算機で算出した結果を**第5・1図**に示した.

5·2 誤差 ⁻ と *p*, *w*_v/*w* との関係

第5・1図に示した計算結果をもとにして、 $\bar{\varepsilon}$ をパラメータとして ω_v/ω に依存するp値

の関係を整理すれば,**第5・2図**のようになる.この結果は,所定の eに対する ω_v/ω の関係 を算出するのに有効である.

6. 結 言

本研究の目的は,一連の相互誘導形変位変換器の統一化した理論体系の確立にある.本 研究でえられた主な成果をまとめると大別して次の2項目になる.

(1) 理論 本変換器が一連の誘導形変位変換器の基本モデルになりうると考えて,磁束 分布法による変換理論を確立した.この解析法は,磁気物性的方法に立脚しているため, 磁心寸法や巻線構造による影響を定量的に評価できるだけでなく,その近似度も高く誤差 は10%以内である.

(2) 設計 本変換理論によって角変位変換器の設計法が導かれただけでなく,従来から 未確立のままであった差動変圧器の設計法を導くことができた.さらに,磁心の微小振動 による出力電圧の誤差を定量的に解析した.

謝言 本研究の遂行にあたってご指導をいただき,終始変らぬ関心と激励を与えられた 東京工大 内藤正教授にとくに謝意を表する.有益な助言をいただいた東通工 宮沢部長, 日大 松代教授,東京工大 石神氏に感謝する.種々の援助を示された本学 小泉(現在 金沢工大),小山,神崎,両角各教授ならびに佐々木助教授,七年間にわたる本研究室卒 研生二十数名の協力,非常な努力をもって整理にあたった院生 五十嵐君,山内技能員に 対して心から御礼申し上げる.

本論文は、"相互誘導形角変位変換器に関する研究"の要約であり、紙数の関係上大巾 な省略があったことを付記する。

文 献

- 1) 江崎:計測と制御, Vol. 3, No. 11, 819 (昭39)
- 2) 山田·春原·菅谷:昭38電気4連大,234
- 3) 山田·本藤:昭和38電気4連大,17
- 4) 山田:電気計算, No. 10, 98 (昭43)
- 5) 山田:電学誌, Vol. 88-6, No. 956. 1873 (昭43)
- 6) 山田·山本:昭43電気4連大,2295
- 7) 塚本 · 壇上: National Technical Report, Vol. 5, 171 (1959)
- 8) 二見:日立評論, Vol. 37, No. 8, 1177. (昭30)
- 9) 松代·古賀·下田·五十嵐:中央計量検定所報告, Vol. 6, No. 4, 38 (昭32)
- 10) 島·田淵:昭41電気4連大,1771
- 11) 山田:第5回計測自動制御学会,108(昭41)
- 12) 山田·塚田·佐野:昭43電気4連大,2301
- 13) R. M. Bozorth, D. M. Chapin : Appl. Phy., Vol. 13, May, 320 (1942)
- 14) E. B. Moullin: PIEE, Vol. 94, Part III, 78 (1947)
- 15) М. Г. Витков : Электромеханика и автоматика, No. 3 (1959)
- 16) 山田:信大工学部紀要, No. 19, 71 (1965)
- 17) 矢部·角川:電通大学報, No. 21, 1 (1966)
- 18) 山本·中津川·宮沢·長島:電試彙報, Vol. 26, No. 1, 1 (昭37)
- 19) 山田·阿藤·手塚:昭42 電気 4 連大, 2540
- 20) 山田:計測自動制御学会論文集, Vol. 4, No. 2, 99 (昭43)
- 21) М. А. Розенблат : ЖТФ, Том. ХХИ, Вып. 4, 637 (1954)
- 22) М. А. Розенблат : Магнитные элементы автоматики и вычислительной техники, Изд. Наука, 74 (1966)
- 23) 山田:信大工学部紀要, No. 21, 79 (1966)
- 24) R. Moskowitz, E. D. Torre & M. M. Chen: PIEE, Sept., 1211 (1966)
- 25) W. G. Deutsch: ISA, Aug., 95 (1965)
- 26) 山田:電学誌, Vol. 85-7, No. 922, 1203. (昭40)
- 27) 山田·五十嵐:第7回計測自動制御学会,928(昭43)
- 28) 山田:非線形磁気応用委, No. NM-41-9 (昭41)
- 29) 山田:東京工大学位論文(昭43·12)
- 30) Л. Ф. Куликовский: Индуктивные измерители перемещений, Госэнергоиздат, 70 (1961)

Summary

Studies on Mutual Induction Angular Displacement Transducer

Hajime YAMADA

(Department of Electrical Engineering, Faculty of Engineering)

Qualitative analysis of a mutual induction linear transducer and that of angular displacement transducer are more difficult than is generally supposed, and few reports have been published. As a mutual induction linear transducer or an angular displacement one constitutes an open magnetic circuit with a cylindrical rod or a circular shaped core, it is not easy to keep magnetic quantities, for instance flux density, constant along the core, because demagnetizing force exists.

In this paper, in order to clarify the conversion characteristics and to obtain the fundamental design data of the transducer, the theoretical equation of the output voltage has been obtained by a flux distribution method, taking into account the demagnetizing force.

The fundamental expressions of the output voltage, the voltage and current sensitivities, and the range of linearity are generalized by using the flux distribution along the core, and one can find the relationship between the core dimensions and the winding construction of the transducer.

The conversion theory which utilizes flux distribution method will not only be applied to the design of a differential transformer, but also to the analysis of other open magnetic circuitry, such as an electromagnet and a magnetic thin film.