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                          1. Introduction

   Tunnel structures resting on ar} elastic foundatioR have iound their frequeRt

applications in practice, but it would seem that they have never been rigorously

solved, maiRly because of the dithculty iR treating members resting on elastic

foundation. At times, such structural systems have been treated by replacing

the fouRdation members by ordinary flexural members subjected to given dis-

tributed loads. Since the distribution of the reaction from foundation is unknown,

it is sometimes assumed to be some giveR applied force. In order to be com-

patible with oblique or horizontal loads, as well as vertical loads, it is absolutely

necessary to extend the usual WiRkler assurnption for the lateral deflection and

the corresponding normal reaction to that of tangential or longitudinal dis-

placeraent. Under these two kinds of Winkler assumptioR, the foundation

beams or the combined structures involving such beam or beams caR be treated

without difficulty by means of the operational method avoiding simultaReous

equations. It is added also that the method may be converted into the recursive

displacement method ilt which unknowns are the column assemblage of all

nodal displacements and the entire stiffness matrix resu!ts in the form of a

tridiagonal matrix.

   The structure will consist of one horizontal straight member, <1), which

rests on the elastic foundation, two vertical straight members, (2) and (4), and

one circular member, (3), as shown in Fig. 1. The load conditions are entirely

arbitrary.
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consisting of the longitudinal displacement,

tion, the flexural slope, the flexural

the state vectors at any point p are given by

                             Wi<p) == Ri(p>Xi,

and
                          w',(p) == Ri(p)[X

for which i-- 1, 2, 3, 4(Fig 1). Here Wi(p)

conjugate domains respectively, Ri(p) is the

6-by-6, Xi i's the sixth-order eigenmatrix,2)

compatible with any external loads.3) Eqs. 1

for respective members properly.

    It should be noticed herein that the right

complete classification of data, and then

the eigenmatrix X only.

         3. Connection Comditions at Cerners

   Take the first corner [1] in Fig. 1, and

this corner is given by the equation

                            W2(O) = PiWi(O>

in which Pi denotes the projector. Eq. 3 then

                               X2 =tlXl,

TANIMolro

  [3]

,4) L

 [4]
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   Structure.

     the axial force, the lateral deflec-

moment, and the shearing force. Then
      the equationsi)

                                (1>

     +K]i, (2)
        and W'i(p) hold for normal and

      complete abscissa matrix of size

     and Ki is the load-matrix which is

      and 2 are the approach equations

       sides of Eqs. 1 and 2 exhibit the

  attention can be focused at attacking

        and Shift Fermulas

      then the connection condition at

       , (3)
      will yield the desired shift formula

                                (4)
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providing

Li == [R2(O)]-iPiRi(O). (5)

   Similar considerations at

shift formulas

corner [2], [3], and [4] will yield the desired

  X3m

X4+K4

L,(X2 + K2>,

=" ts(X3 + K3),

(6)

(7)

and

X, -i- K, = L4X4, (8>

providing

L.. -- [R3(O)]-iR2(1),

L3 = [R4(1>]-iP3R3(1),

(9>

(10)

Lt == [Ri<1)] -- iP4Rd(O)･ (11)

   It is conc!uded that

connection conditions at

four equations of type of Eq. 3 express alkhe necessary

the four corners of the present tunnel structure (Fig. 1).

first

Eqs. 4, 6, 7,

elgenmatrlx

and

Xl:

      4. F

8 will yield

inal

the

Equation

following equation for determining the

X, == (L,{3L,t i - E)-iLE, ww t4t3Z2, -L4L3,

.,[

L

Kl

K2

K3

K4

1
(12>

or

Xi = LG j{K}. (13>

   Eq. 12 or 13 is the desired final equation,･･ and hence the present tunne!

structure has been solved. Here LGj is a 6-by-24 rectangttlar matrixdepending

on only the geometry and material properties of the tunnel structure and hence

it is called the geometry matrix, while {K} is the assembled load-matrix of

size 24-by-1 which is compatib!e with any kind aRd number of external loads

to be applied on the structure.
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                         5. Numerical Example

   The tunnel structure will consist of four members; the first being a beam

resting on elastic member, the second and third being ordinary beams without

foundation, and the fourth being a semi-circular arch. Its geometry and

material properties are taken to be as follows :

                                Table 1.
1

'
:
E

E (t/m2)

2 100 OOO. O

I(m4)

O. OIO 8

A (m2)

O. 36

1' (t/m2)

351. 53

le (t/m2)

1 054. 6

in which E is Young's modulus, I is the moment of inertia of the cross section,

A is the cross-sectional area, ]' is the shear modulus of foundation, and k is

the usual normal modulus of foundation; all of these constants being measured

with the ton-meter unit. Table 2 shows numerical results for the cited tunnel

structure, which give the evaluation of complete state vectors of component

members at several intermittent points. Fig. 2 gives the flexural moment and

axial force for each member and the norrnal and tangential reactions, R and

V say, from the foundation, which are extracted from Table 2.

                            6. Conclusions

   In virtue of the perfectly classified data of configurations and external load-

ing conditions assumed for each member of the tunnel structure, the･ analysis

can be carried out systematically, and the necessary operators are obtained

readily by the compatibility and equilibrium conditions at connection points.

It permits recursion avoiding large-size simultaneous equations.

   It should be added that the extension of the prevailing Winkler assumption

for the lateral defiection to the longitudinal displacement has made it possible

to analize the structural systems subjected to any loading conditions, including

oblique or horizontal loads as well as vertical ones.
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Table 2. Evaluation of State Veetors.
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                          Appendix. -Notation

   The following symbols are used in this paper:

A == cross-sectional area;
EI =fiexural rlgidity;

F =axial force;
LGJ =L' geometry matrix; Eq. 13;

7' -- shear modulus of foundation;
le =: normal modulus of foundation;

K =load-matrix; Eq. 2;
{K} =load-matrix assemblage; Eq. 13;
L =:shiftor; Eqs. 4, 6, 7, and 8;

M ' ==bendingmoment;
P == projector; Eqs. 3, IO, and ll;

R =normal reaction;
R(,o) = abscissa matrix; Eq. 1;

S =shearing force;
t{ == axial displacement;
V == tangential reaction;
w<p>, w'(p) =: state vector for normal and conjugate domain respectively; Eqs.

             1 and 2;

zv =: iateral defiection;

X =:6-by-l eigenmatrix; Eq. 1;
 0 == fiexural slope;
p = r/L, dimensionless current abscissa; Eq. 1;

L1 =row vector; and
{ } -- column vector.


