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                             1. PREFACE

   In the analysis of structural mechanics, the operational method was proposed

by one of the writers with the papers "Operational Method for Continttous

Beams," and "Operational Method for Pin-Jointed Trusses," both of whick

have been published on the Proceedings of the ASCE Structurai Division, on

December, 1964, and JuRe, l966, respectively.i),2) Since then, this method has

been developed for the analysis of various structural systems.

   Presented herein is the operational method applied t,o various continuous

beam$, such as ordinary beams, beams on elastic foundation, and beams with

axial loads.

                          2. BASIC CeNCEPTS

   The basic concepts o'£ the operational method are sttmmarized as foliows:

   l. The structural system is considerecl as the assemblage of topological

units, each of which is composed of several constitueRt members.

   2. The parameters characterizing the mechanical behavior of the constit-

uent unit are arranged in a column vector, and defined as the "eig･enmatrix"

of the tmit. In geneiral, for rigidly connected structures, the eigenmatrix is

composed o'f integrat{on constants of geverning differential equations, while,

for pin connected structures, the assemblage of member forces and nodai dis-

placements are taken as the eigenmatrix, which can also be the state vector

of truss systems.

   3. The connection conditions, compatibility and equilibrium conditions,

between two consectttive units are treated by per'fectly classified matrix form.

After this treatment, a certain shift formul.a or recursion oi3e for eigenmatrices
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between two consecutive units is obtained. It is composed of a shift operator

and a feed operator; the former shifting the eigenmatrix of a unit to that

of the adjacent unit, and the latter introducing the influence of external loads

on the shift formula.

   4. In virtue of the recursion formula, the eigenmatrix of a unit becomes

current to the entire system, and hence, ie is called the "current-matrix."

   5. The current-matrix is determined by both extreme boundary conditions

of the system, aRd therefore, the systerrx can be solved. In this treatment, the

operational matrices, perfectly corresponding to the boundary conditions, appear,

so that they are called the "boundary matrices. "

   6. From the viewpoint of the matrix algebra, the operational method

permits a simplified analysis by making use of the above operators.

   The matrix analysis for structural mechanics should be based on the pure

and complete classification of data, which leads to readiness and simplification

in philosophy and computation.

                          3. KEYEQYATIONS

    Rerein are shown the key equations to ordinary beams, beams on elastic

foundatiop, and beams with axial loads. The non-dimensional abscissas are

for convenience adopted for use to denote the current and load abscissas of a

memder, that is to say, taking L=the bearn length (m), x= the current

abscissa (m>, and g == the load abscissa (m), we write p == x/L = the non-dimen-

sional current abscissa, and rc=g/L=the non-dimensional load abscissa,

providing their positive abscissas are directed rightwards.

   The state vector of a beam at abscissa p is given by the following equation:

                         W(p) -rm DP<p)[N+sc<p)]. (1)

Here, W(p) = the state vector, D =:: the coefficient matrix, P(p) == the abscissa

matrix, N== the eigenmatrix, and K =the load matrix. They are defined as

follows:

   (1) State Vector W(p).

   Tlte physical quantities at abscissa p in the beam are arranged in a column

vector as follows and called the "state vector." That is to say,

                        W(p) ={w 0M S},. (2)
Here, zv =:the defiection, e == the slope angle, M== the bending moment, and

S=:the shearing force at abscissa p, respectively.
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   (2) Coefficient Matrix D.

   The coefficients to be attached to respective physical quantitiesare arranged

in a diagonal matrix, and called the "coefllcient matrix. " For respective beams,

they are given as follows:

   (a) Ordinary beams,

                   D==diag[6LE'7 6ttff -JSi -i], (3)

in which, E = modulus of elasticity, and I r- the moment of inertia.

   (b) Beams on elastic fozmdation,

                  D==diag[2pt,E"muI -2fiSl -;t -1], (4)

in which

                   ig =- of.feL`-, k== modulus of foundation. <5)
                       ,.4EI

   <c) Bea7ns with axial loads,

                   D-=diag[.S& t,L..lir -k -i], (6>

in which

                a== V-QE-3-2, Q=' axiai compressive force. (7)

    (3) Abscissa Matrix P(p).

    Corresponding to respec£ive physical quantities, the abscissa functions are

arranged in 4-by-4 square matrix, and called the "abscissa matrix." For

respec£ive beams, they are given as follows:

    (a) OrdinarN bea7･ns,

                                       "

<b) Bea77is

          ,(,) .. [5
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on elastic foztndation,

p(p) ..[ ip, ei ¢, sb, ¢2

     L-ellik"ip2 ¢i

p

1

o

o

+ ip2

¢1

-¢2

p"

2p

1

o

P3

3p2

3p

1

1

  ¢3

-gb3 - ip4

  e,

¢3-¢4 ¢

 e4

¢3 mu

-4,,

3+¢

,,1

,l

(8)

(9)



4 S. NATsuME, N, YosHizAwA, H. HAMANo, K. IsHiKAwA, and B. TANiMoTo No.24

in which

       cbi = eSpcosPR, ggT2 == eBpsini9F), gb3 =;' e-BPcost9p, g)4 == e-3psin,S,o. (10)

    <c) Beams with axial loads,

                    ,,,,..[oi,:loieekvlr,;,e,i]i/lfl,] <ii)

   <4) Eigeninatrix N.

   Four integration constants of a governing differential equation afe arranged

in a column vector as follews, and defined as the "eigenmatrix" of the beam.

That is to say,

                         N=- {x`1 BC D}, (12)
in which A, B, C, D=the integration constants of governing differential

equation. Then, all the mechanical behavior of the beam are cltaracterized by

the eigenmatrix, which perfectly corresponds to the state vector defined in Eq.

2. In general, this correspondence holds for usual structural systems; however,

in the higher structural analysis such as the recursive finite element method

(unpublished), it has been found that the perfect correspondence fails.

   (5) Load-Matrix sc.

   The load-matrix is obtained fr.om the treatment of the connection condition

of state vectors at the Ioaded point. Then the influence of external Ioad can

be expressed by mere addition of corresponding load matrix to LLhe eigenmatrix

sc. Referring to Fig. I, the state vectors at respective domains are gi'ven as

follows:

          pll,ll<lllli nyggisgm s ' b

k
-

N
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 tttttwtt-...tTttLtL-ttnvttt- lt
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Here, Kp, scg,

load, and the

as follows:

  (a) Ordinary beams,

                 Kp =' P{-rci3 3rc12 --3rc1 1},

                 Xq ==z L!llq<rc){-rc3 3rc2 -3N 1}dN,

                       3
                 Km =" zinWt{rc g2 nv 2rea 1 O}.

  (b> Beanzs on elasti.c foundatilon,

                 P
            Kp =-T -2i-{-¢3 - ¢ii 4,3 - ¢t ipi - gl,2

            Kg =: k!:3.q("){-¢3 - ¢4 ¢3 - ¢4 gbi nd

            Km -nd' 'B2'-2"l'{-¢4 ¢3 di2 nddii}""'

  (c> Beams with axial loads,

              Kp==' .P{-ani 1 sinahii -coscumi},

              Kq == L S:,:q(rc){-avm 1 sincrrc -cosnvrc}drc,

                           '
                   (ree}
              Km =:-=- +LLzJum{1 O --coscyrc4 -sin(vrc4}.
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 O<p< Ni : W(p) =DP(p>N,

 Ni <P< ,i2 : W(P) = DP(R)[N + Kp],

 m2 <p<N3 : W(p) ='- DP(p>[N e- sc, -Y Kg(p)], (13>

 rc3<p<rc4 : W(p> =-= DP(p>[rw + Ki, -Y Kq],

 rc4<p<l : W(p) =- DP<,o)[N -- Kp + Kg + K.].

K., =T- the load-matrices for the concenerated load, the distributed

moment !oad. For respective beams, the load-matricesare given

gf･'1 -l- gb2}",,

sir,2 gbi -i- g32}dN,

(14)

(i5>

(16)

                     4. BeUNDARYCONDI[XeNS

   To show the generalized bounclary conditions of the beam, both extreme end

supports are considered as elastic ones, that is to say, settlements aRd slopes

at these supports are respectively proportional to corresponding reactions. Figs.

2a and 2b illustrate these conditions, and Eqs. 17 and 18 show 'their formulation,

provided that letters h and m represent spring constants attached to these

supports. Those conditions are expressed by the equations:
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   Attheieftend [ill]+[tlL.i,]==o (i7>

   Attherightend [lllll]+[-/e,2].., ,,,,

Here, the physical quantities at the right end of the beam (p = 1) are primed,

while those at the left end <p =O) are unprimed. This notation holds throughout

the present paper.

                i･11i,'M"L""-""""'i E-･ww'lili,

            e J･ 0 Ls'C 'i)R,7,f,        R] M,(!st>LV i

                ls s'
              ltl w-- iili.' vL)
           (a) Left Extremity (b) Right
                       Fig. 2. Boundary Conditions.

   In virtue of the key equation, Eq. 1, the

beam analysis are reduced to the following matrix

   At the left end: BN ::= O.
   At the right end: B'su' =- B'[N + X] =O.

E{ere, B, S' == the boundary matrices of 2-by-4

which are summarized in Table

of load matrices acting on the span considered, i.

span considered.

   Assuming due values of the spring constants, all

tions can be represented by the boundary matrices

are shown in Table 2.

 k-o

Extremity

              above boundary conditions for

                 equatlons:

                                     (19)

                                     (20)

             rectangular form, the values of

1 for respective beams, and K =: the summation

                 e. the "load term" of the
                   '

                   kinds of boundary condi-

                 in Table 1. Several examples
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                      5. CONNECTIONCONDMONS

    The connection conditions between two consecutive constituent members are

satisfied by due treatment of compatibility and equilibrium conditions for both

state vectors at the common ends of constituent members. For generalization,

assuming the elastic proportionality at the common point, those conditions are

given as follows:

                      -[:,lt . r:,1.[ 2/ 1 =, ,,,,

                       Ls],h, ,sl, ,ttlllil,

Here, fei, mi=the spring constants attached to the intermediate sttpport i.

Assuming the values of the spring constants, various connection conditions

can be represented by the above equation; for instance, taking fei =- mi -- co,

the above equation skows the connection condition at point of abrupt change

in cross-section in the plate-girder bridges, and tal<ing ki :- O, and n2i -L= oo, it

would result in the connectioR coRdition at intermediate rigid support of the

continuous beams.

   On the other hand, for tke continuous beams composed of only £he com-
bination of rigid supports and piR joints, it would be preferable from the philo-

sopical and computational viewpoint to use the following procedure. That is

to say, noticing the characteristics of the rigid support and the pin joint, the

preliminary treatments are to be made for respective eigenmatrices of constituent

members. Consequently, the order of them can be reduced to a 2-by-1 column

vector. For iRstance, taking a constituent member whose left and right ends

are connected with rigid support and pin joint, respectively, the eigenmatrix

after the preliminary teatment becomes
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                N-WIMi Og, 16, 16,]sc <22)

in which

                            A,={B D}, <23)
and Ki -- the load term of the span considered. The matrix Ai is called the

"semi-eig･ enmatrix. "

   After such prelkninary treatinents, the connectioB condition can be satisfied

by the following equations:i)･3),4)

   For mgid supports -[11]l-i [Me ],+ [2/z], ==o (24)

   For pin jomts -[i;]l-,rtH [II],nv [ilii], "::O <25'

   In virttte of Eq. 1, Eq. 21 can be reduced to the following consolidated

form:

                          Ci{rwti-i Ni} :･:-= O. (26)

This is the desired connection equation at the intermediate support. Ci is the

4-by-8 rectangular matrix, and is called the "connection matrix, " or briefly the

"connector, " whose values for various beams are summarized in Table 3.

   In a similar manBer, the connectioR matrices for semi-eigenmatrices can

be obtaiBed from Eqs. 24 and 25, the order of which corresponds with the semi-

eigenmatrix. In this case, by the possible combinations of rigid support and

pin joint, there will be seven kinds o'E connectors.3)

                        6. SKgFTePERA[reRS

   The connectors in Table 3 are given in the form

                           Ci -- Lcti-, cij. <27>
Substituting this equation into Eq. 26, and inodifying the resulting equation,

we obtain a relationship between two consecutive eigenmatrices rwi-i and Ni

as follows:

               rwi =- -ciHic'i.<N+ sc )i., ==- Si<N -F K)i.i, (28>
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                  Ni-1 :=: -cti-1-lcirwi-Ki-1 =S;Ni-Ki-1. (29)

In virtue of Eq. 28, the eigenmatrix Ni.i in the left-hand span is shifted to rwi

in the right-hand span. Therefore, the matrix Si is called the `irightward shift

operator," or briefiy the "rightward shiftor." Similarly, the matrix s'i in Eq.

29 is called the "leftward shiftor." These values for ordinary beams aye given

as follows:

                  E                                      1111                 - ooo                  r3

                        e                  O 7, OO O123
          $irmun
                  o rmflC`ua. -I!i- o o o i 3
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(31)
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   In the case of beams on elastic foundation and beams with axial loads,

the iRverses of the matrices c'i-i and ci become complicated, so that numerical

procedure is recommended.

   In the analysis of continuotts beams composed of only the combination of

rigid supports and pin joiRts, the connection conditioRs gi'ven by Eqs. 24 aRd

25 are to be treated, from which the following shift formulas for consecutive

semi-eigenrnatrices Ai.], and Ai can be obtained:

                       Ai -- g,A,-,+P,K,-,+QiKi, (32)

                      Ai-i=t'iAi+P･'iKim.,+Q'iKi. (33>
Here, ti and t'i -- 2-by-2 shift operators for semi-eigenmatrices. On the other

hand, the matricespi, P'i, Qi, and Q'i--2-by-4 rectangular matrices called

the "feed operators," or briefly the "feeders." They iRtroduce the influence of

corresponding load term into the shift formula. It caR be mentioned that Eq.

28 is a special case in which the shiftor and feeder are the same.

                        7. SHIFTOPERATI(])NS

   Eqs. 28, 29, 32, and 33 are the recurrence formulas for continuoi.is beams.

In virtue of the recurreRt use of such fromulas, the eigenmatrix selected as

standard become current to the entire system, and hence it is called the "cur-

rent-matrix," which usually can be detemined by both ex£reme boundary
conditions. This is the standard procedure of the operational method.

   In the continuous beams whose shift operations can be made by only the

recurrent use of Eq. 28 or 29, taking the extrerne left eigenmatrix as standard,

and shifting it rightwards, the solution of the system is given in the form

Ni :=: -[B's.s.B., ･-･sf]-i[B'[s.s.mi'''s2Ki + ''' + sO.sn-ixn-2 + snKn-i + Kn]] (34)

                             '
Here an inverse matrix of fourth order appears.

   in the systems composed of only the combination of rigid supports and pin

joints, tke form of final solution becomes a little complicated, but the size of

inverse in the final equation becomes second order.

   Practically, the computation design can be made effectively by the aid of

the "shifting chart. " IIn Fig. 3 is shown an example of the chart. In this figure,

the numerals in the symbols -tt'-, O, [II], and Q represent the initial order of
                           i
eigenmatrix in each spaR, the deg"raded order of eigenmatrix by the treatment

of given conditions, the order of boundary conditions which caR be treated

independently in each span, and the order of connection conditions between two
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consecukve

operation. 4)

spans,
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- deno£es the direction

     13

of shift

          Lfi ,as, ll, -fa) il,

                             1 l/                             i Ii                             li lll ･3 M              ck. 'I l'--e/

                         Fig. 3. Shifting Chart.

                                      '
                       8. GEOMETRYMATRIX

   After the determination of the current-matrix, using the recurrence formula

again, the eigenmatrices in the entire spans can be evaluated. In this case,

the solution should be written in the form separating a physical matrix from

the load terms, i.e., in the case of n-span continuous beam, the entire

solution is consolidated as follows:

                          {N}n =: [G]{K}n･ (35)
Here

                     {N},t={eei N2 N3 ''' Nn}, (36)

                           Gll G12 G13 ''' Gin

                           G2i Gs2 ''' ''' ''-

                    [G] ---- e3, ･･･ +･･ ･･･ ･･･ , (37>

                          mGni ''' ''' ''' Gnnm

                     {K}n:=={Ki K2 K3 ''' Kn}･ (38)

   The ma£rix [G] is a 4n-by-4n square one, which can be obtained from
only the geometrical quantities, L L, of respective members, and the modulus

of elasticity, E, which is known value for given structural materials, and

therefore, this matrix is called the "geometry matrix." Thus the geometry

matrix can be obtained independently of the loading coRditions. In other words,

by virtue of the geometry matrix, the eigenmatrix of tke system. considered

can at once be obtained for arbitrary loading conditions. Therefore, using the
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geometry matrix, the infiuence of externaHoads on various physical quantities

can be obtained numerically, so tkat all the influence lines can be formulated.

                         9. APPLICATION

   Example 1. Fig. 4 shows a single span ordinary beam supported elastically

at both ends. The boundary conditions of this beam are given by Eqs. 19 and

20. Writing these equations together, and rearranging the resulting equation a

}ittle, we obtain the solution of this system in the form

             . N.., rm [g,]-'[ g, ]K ..rm GK. (3g)

G is the geometry matrix and is obtained in this cas,e as follows:

      12LE,Ile, me L.l.T2"/L,t.li..,.lb/32 k,(m, nF m,), 6-LE,Lk, my 12<LE,I>2fe,m,,

    i 6LEimi -t- -tt(LE,I)2m,m,, tigm, +i2(ELI,)2 m,i7i, +--l-?-(･:t--,I)2 k,m,+2rm?(iE.l,,I)2 fe,m,,

G L-- m
   D ･ 3+ 6LEi,n,, 2+-t--/E--im2+-IILE-,ll)lei+bLaj,{le2,

                2Ei 2EI           -2----L-(ml+mL,), -l--L-7n2,

                          2 24(EI)3                     ].2<EI)
                   m L4 -fe11711 m L-'LLs "'                                      fe11111M2,

     --2-LEim, + 8-(--Eif)2m,m, + -2-4-(-i-ii--I-X'n2,(k, + k2) + --24(LE-ILL'znim2(lei + k2),

               4EJ l,2E]l 12(Ef)2
           1+ L M2 -i- L, -(ki + fe2) "- Li--m2(ki + le2),

                         2EI 4(EI)2
                        LZmu1ve1 + L2-Ml"72,

ww6.LtE;...g.l. fe, -rm 24 S/?I)2k,<m,"1..m,) rm Z{tt<LE.,J)3- k,m,nz,- 7--2-SLE- r-gtt2 k,fe, - 72(LE,f)3k,k2(mi+m2)

                  !urgz".El.iL>rm?. k,., + Z2(LE,I).3k,.,m,

                                                                 ,                    l･8LE,I k, + h2S2S(:LE,J)2' k,m,

 i + fLS.((m, + 7n,> + L4StE..IQ/32 m,fn, + -･-i-2LE,l k2 + -i--2-1-L-l-,f--)--?- fe2(mi -- ,'n2)

                                                                m
                          '                                                             (40>
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in which

              4EI
     D=;- -1- L (m,+m,>

             - ( 12LE,I + 12(LE,I)2 (m, + m,.>](k, + k,) - tt(LE,I): mim2. (4i)

                   R]:==9,j(s"'"-'-"'rr""- >'"2="}'tA'I'L･

                           Vi =･･ t`'`'l V.} ;Z= ':-i.                         Ll.nvun--L. L, E;i T..)l

               Fig. 4. Single Span Beam en Elastic Supports.

Selecting due values of the spring constants as shown in Table 2, the geometry

matrices for possible cases of ordinary beams can be summarized in Table 4.

   Example 2. Neglecting the axial e}ongation of rnembers, £he rigid frame
showR in Fig. 5 can be analyzed applying the basic equations for ordinary

beams.

                            .f.z･'z.

                             i                                        Ei ='= constant
                            L@

              t O (Il.} @ l-
+.-umrr.-wu

kl .TTL . 1i

T
L

'

s

t

                                      z
                         Fig. 5. Rigid Frame.

   First, at both ends of each member, the

be given independently, are to be treated, and

is degraded from 4-by-1 to 2-by-1 or 1-by-1.

   Next, the compatibility condition at connection point of respective

which is the continuity of slope angles, are

semi-eigenmatrix o'f the member @ becomes

   Lastly, the current-matrix can be evaluated

conditions at two connection points.

･ ･･..-ua.ww- 2L m--wwunrmmrr.J

@
1

z

 boundary conditions, which can

  the order of each eigenmatrix

                     members,

to be treated; consequently, the

current to the entire system.

    by the moment eqtiilibrium
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Table 5. Geometry Matrix for Rigid Fraine.
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           Z-L-, L-i 2Lrmim...nv.u.ki L.umLnv,"F aj"-uu`

              Fig. 6. Continueus Long ColuinR on Elastie Supports.

         y Fig. 6 showsa continuous long column on
         , elastic intermediate supports "rhose spring con-
         ' stants are commonly given by k. The relationship
         I between the value of spring constant and the
         Ll== 3eO.oem
                           critical load is shown in Table 6 ･ from which it
         El,:, 2000oookg 'cmE ,         f,rm-iooo,.: Can be mentioned that, as diminishing the value

         i 2:,g'.ihg.fi:･;i.c,aL,iga,g,o2`.%n.'Sa.gp;o,,2hg.s,Bo.;,2e.

         i This procedure will be recommended to the elec-
         ;                               --         'i . trOmC computer operatlon.
         '' Table 6. Critical Loads (x EllL2)

         L2'-' 2eO･Ocm h I, Critical Load
                                                I         E2 .,･, 2000eOOkg, 'cm;

                                      1/1 0ee 4. 250         fo "., IOOOcmi'

         " 1/10 000 i 4. 265
    l., ', i ' 1/loo eee I 4. 266
   Fig. 7. 'Dolphin. Rigid Support i 4.266

   ExaiRple 4. Fi.cr. 7 shows a simple dolphin built in an elastic foundation.

The part without the foundation will be treated as ordinary bearns, while that

inbedded in the foundation must be treated as beams on elastic foundation

assuming the elastic proportionality between the beam defiection and corre-

sponding reactive force. Then such a system will be reduced to the connection

of the ordinary beam Cl) with the beam in elastic foundation @.
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   Thus, the solution of the system can be obtained in a form similar to Eq.

35. The geometry matrix in tkis case is given in Table 5.

   Example 3. Referring to Eq. 34, the eigenvalue problem of coBtinuous

long-columns can be reduced to find the axial load satisfying the equation

                                B
                                       =T7 0. (42)
                           ee'$nSn-1'''S2

       P EI 2EI I'-,pt 2EI - 2I,       .
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   First, the boundary conditions, at the top and bottom ends of the system,

the bending moment and shearing force vanish, are to be treated, and then

the eigenmatrices of respective members are reduced to 2-by-1.

   Next, connecting all physical quantities of both members at connection

point, the solution of the system can be obtained.

   Using the values shown in Fig. 7, the results obtained are as follows:

                         {No Ne} "'" G{Ko Ke}･ (43)

Here k =T= 10 kg/cm2 has been used for the modulus of foundation. Also N. aBd

N, == the eigenmatrices for beams Q) and (2), K. -=- tke load term for ordinary

beams (Eq. 14>, and K, :'::'= the load term for beams on elastic foundation (Eq. 15),

but except for the special case in which several external forcesact on the beam

part in the foundation, this matrix is given by

                          K. "- {o oo o}. (44)
The geornetry matrix in this system is evaluated as follows:

      -'-1.000 O 4.204 14.655 -2.629 9.375 1.572 -L402-

          O -'i. OOO -4. 491 -12. 612 1. l95 -7. 270 -1. 195 L I09

          O O O. O14 O. 080 -1. 040 O. 063 O. 040 O. O17

          O O -O. 363 -1. 407 O. 317 -1. 928 -O. 317 O. 294

          O O 1. 335 5. 678 -L 674 3. 919 O. 674 -O. 571

          O O -O. 958 -3. 191 O. 317 -1. 928 -O. 317 O. 294

                           lg. coNcLusioNs

    The operational method for bending problems of various continuous beams

is presented in this paper.

    This rnethod is based on the systematic treatmeBt of the eig'enmatyix which

is the column assemblage of integration constants of the general solution for

governing differential equation. The boundary and connection conditions are

given by simplified matrix formulas, and then tke aRalysis can be carried out

readily and systematically. It should be noted here that the pure and complete

classification in data treatment results in the readiness in philesophy and

computatlon.

    Four typical examples are appended at the latter part of this paper, in
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which the geometry matrices have been evaiuated in three examples. These

matrices will be particularly useful for strttctural design.

    The prevailing key equations to known metkods in structural analysis, such

as the three-moment method, the slope-deflection method, etc. , may be derived

from the approach equation of the present method, and their characteristics

can be commented.5) Applying the philosophy of the operational method to

these key equations, recursive procedures for respective prevaillng methods

may be composed.6)
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                        APPENDIX. -NOTATION

    The following symbols have been adopted for use in this paper:

A =semi-eigenmatrix, see Eq. 23;
B,B' ==: boundary matrices, see Table 1;

c :=-i connection matrix, see Table 3;

D =coeflicient matrix, see Eqs. 3, 4, and 6;

E == Young's modulus;
G -- geometry rnatrix, see Eq. 37;

I := moment of inertia;

le == modulus of foundation;

le := elastic support constant;

K =load matrix, see Eqs. 14, 15, and 16;
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== beam length ;

== shift operators, see Eqs. 32 and 33;

== bending moment ;

== elastic support constant;

== eigenmatrix, see Eq. I2;

 =abscissa matrix, see Eqs. 8, 9, and 11;

== feed operators, see Eqs. 32, and 33;

== axial compressive force ;

== feed operators, see Eqs. 32 and 33;

::= shearing force ;

 :: skift operators, see Eqs. 28 and 29;

== defiection ;

= state vector, see Eq. 2;

= current abscissa '
                 '
=VQL2/EI, see Eq. 7;

=:: YfeL4/4El, see Eq. 5;

=r- slope angle;

== non-dimensional load abscissa '
                             '
= load abscissa;

-- noR-dimensional current abscissa'
                                '
 := row vector; and

== column vector.
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