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1. INTRODUCTION

The purpose of the present paper is to give the operational procedure of the
analysis of continuous beam-columns, in which the intermediate supports may
be rigidly or elastically supported. No specific devices or techniques are herein
necessary, but the straightforward treatment will lead to the desired solution.

The governing differential equation for rectilinear beam-columns, together
with its general solution, has been well known for many years. Basically, the
operational method begins only with the general solution of differential equations,
and hence it has no key equations. If anything, the general solution must be the
key equation, provided that it takes the form of pure and complete classification
of data, that is, the form of the product of particular solution assemblage and
that of integration constants by making use of the row-column rule for matrix
multiplication. In this regard, it seems that if as old as in the early part of the
eighteenth century Bernoulli or Euler were eventually conscious of the cited
classified form, the structural analysis might have been developed differently. In
fact, the operational method is the revival of the most classical approach that
begins with the differential equation.

A subsidiary purpose of this paper is to exhibit a typical and rearranged
description of the proposed operational method for rectilinear structural systems,
as the previous publications5).® by one of the writers are not well arranged.

2. BASIC EQUATIONS

The governing differential equation for the beam-column under no lateral load is
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in which w = the deflection (Fig. 1). The general solution for Eq. 1 is
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Fig. 1. Beam with a Concentrated Load.
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w :&5EL1 ap cosap SinaplN, (2)
in which p=%/L, and N={A B C D3} which is the assemblage of inte-
gration constants and is called the eigenmatrix. The state vector then becomes

w a;’;%. 0 0 1 ap cosap sinap || A
0 0 71;"7 0 0 0 1 —sinap cosapl| B .
_ o : 3)
L .
M 0 0 . 0l 0O 0 cosap sinap|| C
S| Lo 0 0 1.0 0 —sinap cosap_||_D_

or
U(ap) = DP(ao)N . (4)

1t should be noticed herein that the right side of Eq. 3 or 4 exhibits the com-
plete classification of data, and then attention can be focused only at attacking
the eigenmatrix N. It is added also that the prevailing transfer matrix can, if
desired, be readily obtained from Eq. 4. The transfer matrix method, however,
does not keep the complete classification of data which is of fundamental im-
portance in adopting matrix algebra.

When the beam is subjected to a lateral concentrated load, @, applied at point
x =¢& or p ==« (Fig. 1), the continuity conditions at the loaded point are

Uar) =U(ar) — {0 0 0 Q% (5)
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Eq. 5 then gives in view of Eq. 4 the desired equation

N' =N + K., (6)
in which
"0 —qt
0 1
K. = — P Yor)D™? = . (7)
0 sin ax
Q] _—COS @k _

The K, matrix is the continuity matrix, or load-matrix, for the concentrated
load. Thus,

U'(ap) = DP(ap)[N + K], (8)

which holds for the conjugate domain « < p<1.

For the uniformly distributed load of constant intensity ¢, Egs. 8 and 4 may
be integrated over the entire span by putting @ = qd& Then the resulting
equation becomes

Ulap) = DP(ap)[N + K(ap)], 9)
in which
) “5(“/’)2
K(ap) = g dK, = —q;? @ (10)
0 1 — cosap
 —sinag

The K(ap) matrix is the load-matrix for the uniform load, and it takes at ends
0 =0 and p =1 the values

L
K(0) =0, and K(a)= —qc-t—
1 —cosa

—sine

Thus, it can be concluded that the state vector at the ends is always expressed
in the forms

U(0) = DP(O)N, and U'(«) = DP(a)[N + K], (12)
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in which the load-matrix, K, represents the assemblage of Eqs. 7, 11b, etc.
Note that any kind of lateral loads, including the system of concentrated loads,
the partially distributed load, the non-uniform load, the concentrated external
moment, etc., can be expressed in the corresponding load-matrix.

3. BEAM-COLUMNS WITH RIGID SUPPORTS
The procedure of arriving at the solution will then consist of the three follow-
ing steps :
(1) Rigid support conditions that every span has no lateral deflection at both
its ends, which are expressed by

Wo=o = 0, and w',=1 = 0. (13)

(2) Connection conditions at the common end of any two adjacent spans 7 — 1

and 7, which are expressed by

g1 4
MRS
M r~1,p=1 M 7,0=0

(3) Boundary conditions at both extreme ends of the continuous structure,
which are expressed by

01,00 =0, or Mi,—0=0, (15)

and oln,p=1 = O, or M'ﬂ,pzl =0, (16)

according to the fixed or simple support; # being the number of spans. The

three kinds of conditions above, (1), (2), and (3), will be treated successively.

Note that Egs. 13 and 14 may also be treated simultaneously, which will be

referred to in the Additional Notes.
First, Egs. 13 yield

1 0 1 0 0 0 0 0
N + K =0, an
1 « cosa sing 1 @« cosa sina

which suggests that for example A and B depend on C and D. Then Eq. 17

gives
- -1 0o 0 0 0 0 -
1 —cosa sin « 1 cosa sina
N = « a A—| & a a K, (18a)
1 0 0 0 0 0
0 1 0 0 0 0

and accordingly
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—1 0 1 0 0 0 7
1 — cosa sm « 1 0 cosa sin «
N = o a g4 o @ @ K, (18b)
1 0 0 0 1 0
0 1 0 0 0 1

providing A ={C D3} Eqgs. 18 indicate that the fourth-order eigenmatrices, N
and N', have been degraded to the second-order semi-eigenmatrix, A, by virtue
of Egs. 13.

Secondly, Eq. 14 gives the connection equation

L2 .
PET 0 0 1 —sina cosa
L . ’
0 — 0 0 cosa  sina«
o
g —ir—1l. =1
L2 110 -
m 0 0 1 0 1 N . y
L ] ( ~ )
0 — o 0 1 0 N,
- « P Iy g NN g . e
or
c{N.; N3}=0. (20)

Here the operational matrix € consists of two 2-by-4 submatrices, and is the
connector between the two spans ¥ — 1 and 7.
Substituting from Eqgs. 18 into Eq. 19 or 20 yields

L? 0 . L 1— cosa sina
—— —sin @ 4 —————— | COS QX —
a?E] o ’ a
L H
0 — ) cosa, sin «
Ny ® dr-1in N §
L2 1 —cosa sin & B
atET 0 « o At
L
0 —; 1, 0 A,
fo— P I N S, [} PO -
L? 1 cos « sina

—, 0, sina + ——, —cosa 4+ ——
a @ o

L 0 0, 0, —Cos «, —sin
- wlr=11_
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1 1 cosa sina

— ( ,L_z ) (?é (;—2 s s Kr—l (21)
EI/, k |
_0 0 0 0 4L -
or
Cl{Ar—l Ar} = T{Kr'l Kr} (22)

Here the €' matrix is the reduced connector, consisting of two 2-by-2 square
submatrices, each of which is nonsingular.

Eq. 22 or 21 permits extraction of the A, matrix by premultiplying by the
inverse of the second submatrix in the ¢’ matrix. In this way,

Ar = LrAr—l + [_V w.lr{Kr—l Kr}y (23>
in which
B _ 1 Le B
o 0, a—sina I 0 E 0
P
a—sina /r| 1
: a? —1 -4 cosa 0 — 0 L
L -1
l— P o B [P I o -\
sine 1—cosa cosa sina
T oal ot ' a3
X . , (24a)
cos« sin a
a ’ a
—_ w71
“0 o iy oh T L 0‘
a — sina ——
a ’ L2 EI
= (=)
o —Sina /r 1
a?, —1- cosa 0 — 0 L
— S ¥ .8 L... i ir—1
1 sina  cosa cosa sina
Ta¥ T e @’ et b
X . s (24b)
cosa sin «
O b O b b
[24 (44

—lr—1

0 0 0 0
W, = <;;:1sina>r[1 :lr' (240)

a cosa sina

Here the L, mtarix is the shift operator or briefly the shiftor, with which the
A,._; matrix can be shifted from span  — 1 to the adjacent span 7, and the V.,
and W, matrices are the feed operators or briefly the feeders. Eq. 23 is the
desired recurrence formula, with which all the semi-eigenmatrices, A/s (r = 2,
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3,4, -+, n), can be expressed in terms of the first semi-eigenmatrix, A;. The
recurrent application of Eq. 23 then gives

A. = QA + [R|{K}, (25)
in which
Q =1,Q,_, (26a)
(R], = (R, Ry - R,],=[L[R Ry - Ryl LW, +V, W, (26b)
with the starting equations
Q:; = L, [RI:= |V W], (27)

and { K}, represents the load-matrix assemblage
{K}r = {.Kl Ky - Kr}y (28)

which is a 47-by-1 column matrix. It can be concluded that Eq. 25 has resulted
from all the connection conditions of the type of Eq. 14 at intermediate supports,
and that the first semi-eigenmatrix, A,;, has become current to all the spans.
The last step to the solution is then only to attack the A; matrix.

Thirdly, Eqgs. 15 and 16 will be treated. They yield

L0 1 0 L1IN=0, or [O 0 1 O0OJN =0, (29)

and L0 1 -—sin a cos al,N',=0, or [0 0 cosa sinal,N, =0, (30)

which, with Egs. 18, become

[1—cose, ¢ —sin«];A, —| 1 « cose sine]iK, =0, (31a)
or L1 0lAa, =0, (31b)
and [1—cosa—asina, —sina -+ acosal,A,

+[—1, 0, —cosa —asine, —sina + acosal,K, =0, (32a)
lcosa sinal,A,+1L0 0 cosa sinal,K, =0, (32b)

which take the forms
BA,; + FK; = 0, (33)
and B'A, + FK,=0. (34)

Egs. 33 and 34 are the desired boundary equations obtained from Egs. 15 and
16, respectively. They are put into one equation, providing Eq. 34 is substituted
from Eq. 25. In this way, for the beam problem,
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B v F 0 - 0
o PR [ S O L
B'Q, B[R], 0 0 -« F

which requires a second-order inverse. Eq. 35 is of the form
AI = LG.Jn{K}n- (36>

Here [ G ], is a 2-by-4n rectangular matrix and {K}, is a 4n-hy-1 column matrix.
The former, [ 6], depends on only the geometry and material properties of the
beam, so that it may be called the geometry matrix, while the latter, {K3},, is
the assemblage of all the load-matrices which can correspond to any kinds of
load conditions.

For the buckling problem, the desired eigenvalue equation is

|

| 8'@ =0, (37

the left side of which is a 2-by-2 determinant.

It is to be noted here that Eqs. 35 and 37 may be adopted for use when a
digital computer is available, but that in case of manual handling it is preferable
to treat Eqgs. 15 and 16, or Eqs. 33 and 34, separately, in consequence of which
the necessary inverse or determinant reduces to the size 1-by-1. Eq. 37 can be
readily solved by means of inverse interpolation techniques, as will be given
later.

4. BEAM-COLUMNS WITH ELASTIC SUPPORTS

When the beam-column is resting on elastic supports, the connection conditions

between any two adjacent spans at their common end are

“wl [w] [ 0 7 [1 0 0 0w
0 0 0 0 1 0 0 0
M M 0 0 0 1 oM
_.S._r _S_r—l _/2,7/0’,,.1_ _lr 0 0 1. _S-—r'—l
or U.=8U',_. (39)

Here the reaction, R,, at support # is proportional to the end deflection w',_; at
the right end o =1 of span » — 1, so that, with the elastic constant %, B, =
Aw'._;, which has been considered in Eq. 38.

Eq. 39 at once yields in view of Eqgs. 12 the desired recurrence formula

N, =LN,  =L{N+K)_, (40)
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in which the shiftor, L,, is
l'r - Prﬂx(O)DrMIsr'Dr—lpr—l(a)y (41)
which may be evaluated as
“EL e e o] [ e
is 12 AR a  cosa  sina
atET ) L2 .
L= . - 0 BT 0 0 0 1 —sina cosw (42)
« L .
0 0 — 0 0 0 — 0 0 0 cosa sina
L o«
A 0 0 1 ], 0 0 0 1.,4.0 0 -—sina cosa_|,.

The recurrent use of Eq. 40 permits all the eigenmatrices, N, s (¥ = 2, 3, 4, -,

7n), to be expressed in terms of the first eigenmatrix N,. Thus,

N, = QN + (R {K} (43)
in which
Q@ =L@, L|Rj . =[L{R] 2 L] (44)
with the starting equations
Qq = Ly, [R]; = L. (45)

Boundary conditions at both extreme ends are now to be treated. They yield

the boundary equations

BN, =0, and B'N', =0,

(46)

in which, assuming both ends to be simply supported with elastic deflections,

the boundary matrices, B and B’, take the values

) oLl
T

b

_0 0 1 0 s

0 0 —sina cosa 1
B = + '2n+1<
0 0 . 0

L
=)

44

cosa sina

:I . (47b)

0

(47a)

cosa  sin«
providing 2,,; denotes the elastic constant attached to the extreme right end.
Egs. 46 are put into one equation, providing the latter equation, Eq. 46b, is
substituted from Eq. 43 (» = n). Thus, the current eigenmatrix N, for the beam

problem can be found to be
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B -1 0
B,Qn B’LR Jﬂ—l! B’

which requires a fourth-order inverse. Eq. 48 takes the same form as the right
side of Eq. 36, and the geometry matrix [G ], in the present case is a 4-by-4n
rectangular matrix. For the buckling problem, the desired eigenvalue equation
is

B
=0, (49)

B'Q,
the left side being a fourth-order determinant. Egs. 46 may also be treated
separately, in which case the 4-by-4 inverse or determinant can be avoided and
only a 2-by-2 inverse or determinant is necessary.

It may be seen from the preceding analyses that the beamcolumn with elastic
supports is much simpler in philosophy and computation than that with rigid
supports, and that the latter is a special case of the former when the elastic

constants A’ s become very large.

5. ADDITIONAL NOTES

Regarding the beam-column with rigid supports, the following note is to be
given, When computer is available, it seems preferable to treat Egs. 13 and 14
simultaneously. In this case, the connection equation between the two spans # — 1
and 7 takes the form

C{N,_, NJ}=T{K_ K] (50)
for which
"m0 07 "1 0 1 0 7
0 0 1 a cosa Sina
o 12 . l: 0 1 -—sina cos a] o T Iz ’
a?ET 0 0 cosa sina_|,. 0 a?ET] 0 a?El
L 0 0 L 0
e 0 A et - a el 7
(51a)
) 0~ "0 0 0 07 -
0 0 1 a cosa sina
. 0 1 —sina cosa
1=|—-| L 0 ‘ 1o o o 0 . (61b)
atET 0 0 cosa sina_j,
L
0 — 0 0 0 0
— - (22908 Poe - P o
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Note that the second submatrix on the right side of Eq. 5la is square and non-
singular, and hence N, can be extracted. In this way, Eq. 50 yields the desired
recurrence formula

Nr == LrNr—l '{_ (.V W.]r{Kr'—l Kr} (52)

(The explicit forms of the shiftor and feeders are not recorded herein for saving
space. )

Recurrent use of Eq. 52 permits all the eigenmatrices N, s to be expressed in
terms of the first eigenmatrix N;. The four boundary conditions to attack M,

then are
Wy, p=0=0, Wi,=1=0, Miy=0=0, and My ,-1=0, (53)

provided that for example both ends of the continuous beam-column are assumed
to be simply supported.

When the continuous beam is subjected to the tensile axial force, as well as to
lateral loads, it is only necessary to begin with, instead of Eq. 2,

3

= aa—E—IL 1 ap coshap sinhap], {54)

w
in which @ = 4/ PL%/EI; P denoting the tensile axial force of the span.
The lateral free vibration of the continuous beam can be treated similarly. In
this case, the deflection w during vibration is given by

L3 . . )
= --BE:ILCOS ap sinap coshap sinhap]Neiv!, (55)
[44

in which a = +/ yA«?*L?/Elg, in which A = the cross-sectional area, ¢ = the ac-
celeration due to gravity, y = the mass per unit of volume, and o = the circular
frequency.

In conclusion, it is noted that complete analyses regarding Egs. 54 and 55 have
been worked out, though unpublished. The free vibration of some typical rigid
frames, together with their successful numerical examples, has also been treated

by the operaitonal method, and it will be published some other day.

6. NUMERICAL EXAMPLES

The first numerical example treated was the buckling problem of the continuous
column with rigid supports shown in Fig. 2. The critical load, P, by means of

Eq. 37 amounts to _ EJ
P =50517

o (56)
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Fig. 2. Four Span Continuous Beam-Column,
Table 1, Critical Loads The second numerical example was again the
_ EI same buckling problem, provided that the
Ar P . . . .
/ L continuous column is supported elastically with
10 3.3707 the spring constant .. The critical loads with
100 4,8088 increase in 4, are given in Table 1. This table
1000 5.0274 indicates that the column with rigid supports
10000 5.0493 . . . .
can be well included in that with elastic supp-
100 000 5.0515 ) ) ’ i
1000 000 5. 0517 orts as a special case in which the spring
constant 4, becomes some larger value, say 2,
=100 000.

7. CONCLUSIONS

The continuous beam-column with rigid or elastic supports is treated by the
operational method. %

The known key equations to several prevailing methods, including the slope-
deflection approach, have been derived from the general solutions of the corre-
sponding differential equations by one of the writers.” It has been found there
that most of them are not always based on the perfect classification of data, so
that the subsequent analyses become more or less tedious, even if matrix form is
adopted for use. These facts would throw a doubt on the specific preference of
these key equation approaches.

Modern analysis has made it possible to treat the rectilinear structural systems,
including the present one, as one of the simplest problems. They can be readily
treated through a known straightforward procedure without any specific devices,
and no question or difficulty can be raised when the operational method is
adopted for use.

Extension or improvement on classical theories would frequently be of little
significance. It is, therefore, desirable to pay attention to modern structural

7) Yoshizgvva, N., “Comments on Prévailing Methods of Structural Analysis,” Journal of the
Shinshu University, Vol. 22, 1967,
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analysis. Emphasis should always be placed on the fact that structural analysis
in general reduces easiest when matrix algebra, with the cited classification of
data, is adopted for use. This must be the only way of modern structural analysis
and also to that in future.

In conclusion, it is noted that the present paper was set about by being stim-
ulated by a paper by Dundurs, Lee, and Hampe, which is due to the slope-
deflection approach.® An abridged discussion of the cited paper by the present
writers has been submitted to and approved by the American Society of Civil
Engineers, and it will be published in a forthcoming issue of the pgoceedings of
the Society.

APPENDIX. —NOTATION

The following symbols are used in this paper :
A, B,C,D = elements in eigenmatrix N; Eq. 2;
A = semi-eigenmatrix ; Eqgs. 18;
B, B’ = boundary matrices at extreme left and right ends, respectively;
Eqgs. 33 and 34 for rigid support, and Egs. 46 for elastic support;
€ = connector ; Eq. 20;
C' = reduced connector; Eg. 22;
D = diagonal matrix expressing physical properties; Eq. 4;
EI = flexural rigidity; Eq. 2;
[ 6], = geometry matrix; Eq. 36;
i = order number of spans and supports;
K = load-matrix consisting of Egs. 6, 9, etc. ;
{K}, = load-matrix assemblage; Eq. 28;
L = span length; Fig. 1;
L = shiftor; Eq. 48a for rigid support, and Eq. 42 for elastic support ;
M = bending moment; Eq. 3;

|

N, N’ = fourth-order eigenmatrix; Eqs. 2 and 6, respectively;
n = number of spans;
P = axial force; Fig. 1;
P (ap) = abscissa matrix; Eq. 4;
Q = integrated shiftor; Eq. 26a for rigid support, and Eq. 44a for
elastic support;
@ = lateral concentrated load; Fig. 1;

8) John Dundurs, Seng-Lip Lee, and Peter A. Hampe, “Direct Analysis of Continuous
Beam-Columns, ” Journal of the Structural Division, ASCE, Vol. 93, No. ST3, Proc,
Paper 5254, June, 1967, pp. 1-10.
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g = intensity of distributed load; Eq. 10;
LR ] = integrated feeder; Eq. 26b for rigid support,
" elastic support;
§ = elastic support matrix; Eq. 39;
= Egs. 22 and 50;
U(ap), U'(ap) = state vector for normal and conjugate domains,
4 and 8;
VvV, W = first and second feeders; Eqgs. 24b and 24c;

No. 23

and Eq. 44b for

respectively ; Eqs.

w, w' = deflection for normal and conjugate domains, respectively; Fig. 1;

x = current abscissa; Fig. 1;

¢ = flexural slope; Eq. 3;

& = §&/L, dimensionless load abscissa; Fig. 1;

& = load abscissa ; Fig. 1;

¢ =x/L, dimensionless current abscissa; Fig. 1;
[ | =row matrix; and
{ 7} = column matrix.



