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SYNOPSIS

Integrability theorems for trigonometric series have been researched by
B. Sz-Nagy (2), P. Heywood (4), R.P. Boas (3), M. M. Robertson (6) and so
on.

The purpose of this note is to obtain certain analogues for Walsh Fourier
series of M. M. Robertson (6) concerning the integrahility of trigonometric
series.

INTRODUCTION

First, we begin with some notations and definitions :
The Rademacher functions are defined by

%uwﬂ‘ng<%x ¢uw=—u%gx<n

$o (%) = go (¥ + 1), P, (%) = (2°x) (m=1, 2, 2
The Walsh functions are then given by

¢0 (x) = 1’ ‘)bn (x) = ¢n1(x) ¢712<x) """ ¢nr(x)

for n=2"1+42"24...... 42", where the integers n; are uniquely determined by
#.41<n;, Walsh proves that {¢,(x)} form a complete orthonormal system.

Every periodic function f(x) which is integrable in the sense of Lebesgue
on (0,1) will associate with it a Walsh Fourier series

1) ~ 33 augl)
where the coefficients are given by
o= o) g dz, (=0, 1, 2, ).
We write

S = et
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For basic properties of Walsh functions, the reader is referred to N.]J.
Fine (1). Finally, C denotes a positive absolute constant not always the same.
Though our method of proof is essentially the same as that used by M. M.
Robertson (6), we shall prove these theorems for the convenience of the

reader.
I
Theorem 1. Suppose that 0=n(x) €L(0,1), f(x) eL(0,1) and
@ = S:ﬂx)‘h( Ydx, for E=1, 2,
If 5(x) F(x) eL(0,1) and if also there is a positive number 6 <1 such that, for
all £ in 0< £ <5,

w1 =2 (Cpwax <ene), | xtydx < ento),

then the series

is convergent.
Proof
For every positive integer N greater than {min (1,8)}% we have

N 1/k N 1/k
SV e =330 1) gyt 7 pde
0 =10 0

(1.2) k=1

={" st {;:31 wult) |yt ).

We write e=N-1, {=cf=N-%*and note that 0 << { < min(1,8). Since

{ S;/kp(x) dx }

is a positive decreasing null sequence, the series

JE

Z‘m So 7w

is convergent for all real valued of ¢ in 0<{¢<1. By (1.2), we obtain

1/k

Z]akg 7x)dx = Sf(t){égbk(t) (" serax)ac
+ §r0 (oo waris)as

.9 - fnf 33 oo sar)ar
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- foro] 33 oo sinasa

E=N+1
1 1/k
= (rof 31 gl s}
=N+1
:Il+Ig—Ig—I4—I5, Say.

We shall complete the proof of the theorem by showing that, as N tends to
infinity, I, tends to a finite limit and I,, Is, I, and I; tend to zero.

We write T = ({7*), 4=(06"]. By Abel's lemma and (1.1), we have, for
all £ in 0<?t<L6,

[ N l/k T ¢ 7
(1 vy d Yd (1
k;ﬂ%( )SO 7(x)dx g/g;ﬂg So” ;j?gfslvl T+1¢L( )
1741 Z c ‘
(1. 4) gTSO /;Hkgl/m x—r—-t-S 7 (x) dx

e {pwdr+ el wpodr <o)

It follows from (1.3) that

1t = § 70 { 23 w0 a

(1.5) <(ir@iafne s + en)ar

<clirwrar+ ¢ yirnlar

0

Since f(x), 7p(x)f(x) ¢L(0,1), [;—0 as e |0, i.e. as N— oo,
By (1.3) and (1.1), we have

Li=§r0{ 33w wdr)a
< cS‘ {—dtS 2(x)dx
<c{iire {%S (v)dx | dt

<clpwirnla,

and thus I;—0 as N— . By (1.3) and (1.1), we have
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- [ | 53 g o

and thus I; — 0 as N— . From (1.1), we have
t
1.6) S; A dt = S‘ HB)dt = ¢ S‘ (- So” (x)dx) dt
= clog(fe) { o) dx.

Hence it follows by (1.3) that

co

o] 33 o s de ar

k=N+1

1I4|:

and so I, — 0 as N— oo,
From (1.3), we have

1 > 1/k
NI CINE L E
For all ¢t in 6 < t <1, we have

11
gc7gov<x> dx

[rmar<e

and, for all ¢ in 0<#< 43, we have
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(1.7) <cqylt) +

S n(x)dx

by (1.4). Therefore

L[S0 i

exists as a Lebesque integral and so [; tends to this finite limit as N — oo,
q.e. d.

Ir

Theorem 2. Suppose that » (x) is a positive monotone decreasing function
for 0<{x<1, f(x)e L(0,1) and

a, = S;f(x) du(x)dx, for k=1,2,---.

If the series

DIEAINIOES

is convergent and if also there is a positive number § <1 such that, for all
tin 0<t<9,

2.1) =1 (" 9(0) dx < i),

then the integral

1

7 fi) dx
exists as a Cauchy limit.

For the proof of this theorem, we require the following lemma.

Lemma. If we write £ = 2" + F(0 <K < 2"), then we have

Julx) = 20142 {gbk' (x) — 22‘ Partrion g (x)}

r=1

This lemma is due to N.J. Fine (1). From the above lemma, we obtain

(2.2) Ty <20 ioz—’ =gy,

Proof of Theorem 2.
Let ¢ be any positive number less than min (1,d). We write N ={¢1], M=
{e~*) and



6 Y. Oxuvama No. 21

o) = fix) — |} ity at — Zawk(x

Then we have

1 1 N e M
(a0 sy = § ) D augatn) dx — (o) 2] angutn) dx
N k=1 k=1
€ N 1 1
(2.3) — (@ 3} awndx + | @ dx | s ar

0 r=M+1

+ {axip ) dx

€

=N —Jo—Js+ Ja+ Js say.

We shall complete the proof by showing that J; and J; tend to finite limits
and Js, J; and J; tend to zero as ¢ decreases to zero.
Since p(x) € L(0, 1), clearly

Jo = \awax s,

Next, we have

i S(l) 7(%) $ul%) dx} - ] S;/k (%) dp(x) dx + Si/k (%) Pa() dx}
(2. 4)

="

[l 702) guta) x|
On the other hand, we have
[, r@gn de = o4 gz (e =)
=901 [T}, = 900 [J46) — T
by the mean value theorem. Hence we have by (2.4) and (2. 2)

|

@ am ax| < § s + o0 {1701+ 170001
= otz + 2500

1/k R l/k 1/k
< SO Jx)dx + 250 px)dx < ¢ So ).,

Since
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Z ale dx
is convergent, it follows that

St | 9(0) gl e

k=1
is absolutely convergent. Therefore, by (2. 3)

N

EDIMAWE: >¢k<x>dx—+2ak3 %) galx) d
k=1
as N—oo, i.e. as e¢l0.
It follows from (2.1) and (L 6) that, if =7,

S; J@)dx = ¢ log (¢/e) SO 7(x)d.

By (2.3), we have

M

S Z}aL @p(x) dx

M

|2l = =DIARICLE

M

PHEAINIE

=c {ZOg (&/¢) }
c{tog (@)} 1l §)* nixia,

and thus J,—0 as ¢ 0. From (2,3), we have

€ N N £
sl =10 23 agwds| < 23 fal pxd
Fe= M1 k= M4+1
N 1/k
= 27 lalf) a0max
fe=M+1

and so0 J;—0 as ¢} 0.
Since f(x) € L(0,1), it is clear that ¢(x) ¢ L(0,1). Then if

B(x) = SO o)t
we obtain

2.5) [ ate@ax = y0e(1) — 1906 - | 7 @owds.
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On the other hand,

oo

Z apdi(x)

k=N+1
is the Walsh Fourier series of o(x), it may be integrated term by term

whether it converges or not, and then we obtain

oo

O(x) = Z a, ] (%)

k=N+1

for 0 < x <1 (see (1)). Therefore

oo

2(8) O) | < 7 2 101 =96 ] ~lal
oy R kN1
=3 IPIALTION
ey 2}
< 31 lal [ ax
k._
and
ADO(L)| < 7(1) Z, PANZOIES _;? PARSIOR

< 37 1§
k N1

and so, both 7 () @ (¢) and 5 (1) @ (1) tend to zero as ¢} 0. Next, we obtain

Sl 7 (0) D) dx | < } Sl o (x)dx | max| D (x)
€ € 0sxs1
< (e) Z, @l ) =96 3] Sl
h=N+1

(=] l/k
=35 MITAR STORE= 33 lal§ o,
k=N+1 =N+1
Js=>0 as €40, g.e. d.

which tends to zero as ¢y 0. Thus, by (2.3) and (2.5),
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