Shun-ya YOSHIDA*, Dr. Eng.

(Received December 23, 1961)

Synopsis. Rigid frames in space are successfully and exactly analysed by applying the slope-deflection equations to the flexural members and the torsion equations to the twisted members respectively. The results are compared to those obtained from the conventional two-dimensional analysis, the precision of which is numerically shown.

Introduction

In designing a rigid frame in space, it is usual to divide it up into several constituent plane frames and analyse each separately. Although this conventional procedure greatly facilitates the calculations, it does not determine the torsion effects which exist and sometimes amout to considerable magnitude. It is hoped to give an exact and easily applicable method which treats the frame as a whole.

Several three-dimensional analyses ever proposed are almost based upon the principles of virtual work or the like which are taking the stress functions as redundants. Accordingly the calculations become so tedious that the practical applications are limited to the comparatively simple problems, e.g., the symmetrical frames under symmetrical loadings or, if not symmetrical, joints are assumed not to translate.

The author presents here a three-dimensional analysis using the slopedeflection equations together with the torsion equations. It is well known that the slope-deflection method is so superior to the classical methods in treating the plane frames. This circumstance agrees equally with the space frames, and many advantages will be claimed in the illustrations which follow.

The space frames mainly considered here are of single-storied and of multibayed longitudinally and laterally, whose members are all straight and prismatic meeting each other at right angles.

^{*)} Assistant Professor of Civil Engineering, Faculty of Engineering, Shinshu University, Nagano, Japan.

The author is heartily grateful to Prof. Tadashi MURAKAMI of the Kyushu University for his kind instructions and constant encouragements in the whole course of this work.

Chapter I. Fundamental Formulas

1. Notations

In dealing with a space frame, the slope-deflection method now familiar to us will also be the most convenient, since it takes the end-deformations of members for unknowns instead of stresses or reactions as in the other classical methods. On this account, the number of unknowns is greatly diminished, simple and clear sign conventions are established, the stress diagrams are made easy to draw, and moreover the deformed structure is readily visualized. Now, we proceed with illustrations of notations adopted.

The members of a space frame in Fig. 1 meet each other at right angles. In this connection, the orthogonal coordinate axes x, y and z are set up as shown. Note that any member lies parallel to one of these three axes. The member will be designated by its ends, being called the near end n and the far end f.

Consider, for example, a member nf which is parallel to x axis, Fig. 1. Moments acting at its

end are denoted by M with three subscripts such as M_{xnf} , M_{ynf} and M_{znf} . The first subscript designates the axis about which M acts; the remaining two, the member and the end in question as usual. Thus, we readily tell that M_{xnf} is the moment at the near end about (an axis parallel to) x axis, i.e., the twisting moment; M_{ynf} and M_{znf} are the moments at the near end about y and z axes respectively, i.e., the bending moments.

The angular deflections produced by M's are denoted by θ with subscripts similarly as above. Thus, θ_{xnf} is the angular deflection at n about x axis, i.e., the angle of twist; θ_{ynf} and θ_{znf} are the angular deflections at n about y and z axes respectively, i.e., the end-slopes. Since the joint rotations (§9) are always taken up instead of end-slopes in our problems, the last subscript of θ designating the far end will often be omitted for convenience. For the member lying parallel to the axes other than x, the designations of M's and of θ 's will be made by reading their first subscripts.

M's are positive which agree with the "right-hand screw rule" when the

arrow-heads point negative directions of reference axes; θ 's are positive which correspond to positive *M*'s.

The relative displacements of joints tend the member to revolve from its original unstrained position. These angles of revolution are denoted by R, similarly accompanied by three subscripts; thus, by R_{ynf} and R_{znf} are meant that the revolutions are around y and z axes respectively. A clockwise revolution is taken as positive when the "center line of screw driver" through the member-end points to the negative direction of the reference axis.

2. Slope-Deflection Equations

If the member nf lies parallel to x axis, then it undergoes bending deformations in the planes xz and xy, and for the member nf the well known slopedeflection equations hold. See Fig. 2. In xz plane, we have

$$M_{\rm ynf} = 2E \frac{I_{\rm ynf}}{l_{\rm nf}} \left(2\theta_{\rm yn} + \theta_{\rm yf} - 3R_{\rm ynf} \right) + C_{\rm ynf},\tag{1}$$

and in xy plane

$$M_{\rm znf} = 2E \frac{I_{\rm znf}}{I_{\rm nf}} \left(2\theta_{\rm zn} + \theta_{\rm zf} - 3R_{\rm znf} \right) + C_{\rm znf},\tag{2}$$

where E = the modulus of elasticity.

- I_y , I_z = the moments of inertia of the section referred to y and z axes respectively.
- $C_y, C_z =$ the fixed-end bending moments about y and z axes respectively. Their values will be found in many texts or pocketbooks.

Introducing the stiffness factors for flexure, these equations are modified:

$$M_{\rm ynf} = 2EK_{\rm ynf} \left(2\theta_{\rm yn} + \theta_{\rm yf} - 3R_{\rm ynf} \right) + C_{\rm ynf},\tag{3}$$

$$M_{znf} = 2EK_{znf} \left(2\theta_{zn} + \theta_{zf} - 3R_{znf} \right) + C_{znf},\tag{4}$$

where $K_y = I_y/l_{nf}$ = the stiffness factor for flexure referred to y axis,

 $K_z = I_z/l_{nf} = do$. referred to z axis.

3. Torsion Equations

We have, for a prismatic bar of length l, the relationship between the angle of twist θ of an end relative to the other and the applied torque M_T :

$$\theta = \frac{M_T l}{GJ} , \qquad (5)$$

where G = the modulus of rigidity,

J = the torsional constant of the section.

Applying this to the member of which lies, for example, parallel to x axis, Fig. 2, we obtain

$$M_{xnf} = \frac{GJ_{xnf}}{l_{nf}} \left(\theta_{xn} - \theta_{xf} \right).$$
(6)

If the member is loaded with torques as in Fig. 3, their effects must be added to the right-hand side of eq. (6), which will be called the fixed-end torque and denoted by C_{xnf} . Thus

$$M_{xnf} = \frac{GJ_{xnf}}{l_{nf}} \left(\theta_{xn} - \theta_{xf}\right) + C_{xnf},\tag{7}$$

where

$$C_{xnf} = -\sum \frac{b}{l_{nf}} \overline{M}_{xnf}.$$
 (8)

Eq.(7) is written in the form

$$M_{xnf} = GK_{xnf} \left(\theta_{xn} - \theta_{xf}\right) + C_{xnf},\tag{9}$$

where $K_{xnf} = J_{xnf}/l_{nf}$ = the stiffness factor for torsion.

4. Evaluation of J

The torsional constant J must be evaluated from the St. Venant's theory. We see that, if the section is circular, J is equal to I_P , the polar moment of inertia. But for non-circular sections, being the theory too long and complicated to evaluate it exactly, approximations are mostly being made. Only the formulas for the sections which seem to be important for our problems will be shown below:

38

1) Rectangular section of width a and depth b:

The St. Venant's exact expression is

$$J = \frac{a^3b}{3} \left(1 - \frac{192}{\pi^5} \frac{a}{b} \sum_{n=1,3,5\dots}^{\infty} \frac{1}{n^5} \tanh \frac{n\pi b}{2a} \right), \tag{10}$$

which is not so tedious to compute, because the series is very rapidly convergent. For practical purposes, we may take its first term only, thus

$$J = \frac{a^3 b}{3} \left(1 - \frac{192}{\pi^5} \frac{a}{b} \tanh \frac{\pi b}{2a} \right).$$
(11)

2) Narrow rectangular section:

•

If b/a is large, letting $tanh(n\pi b/2a) = 1$ and $\sum_{n=1,3,5,\dots}^{\infty} \frac{1}{n^5} = 1.0046$, we obtain from exp. (10)

$$J = \frac{a^3 b}{3} \left(1 - 0.630 \frac{a}{b} \right). \tag{12}$$

This gives good approximations for b/a > 1.6.

If $b/a = 1 \sim 1.6$ the Föppl's formula below is rather accurate.

$$J = \frac{a^3 b^3}{3.6(a^2 + b^2)}.$$
(13)

In the case where the width is very thin, the second term inside the parentheses of exp. (12) becomes neglegible, and we have

$$J = \frac{a^3 b}{3}.\tag{14}$$

Note that this is the moment of inertia with respect to the longer side.

3) Square section:

For a = b, exp. (10) yields

$$J = 0.1406a^4.$$
(15)

See that eq.(13) gives the value close enough to this.

4) Rolled profile sections:

For the sections such as angles, channels and I's, divide them up into

rectangular strips and apply exp. (14) to each strip. The summations of the results give the satisfactory values:

$$J = \frac{1}{3} \sum a t^3, \tag{16}$$

where a = the width of the strip,

t = the thickness of the strip.

5. Relative Stiffnesses

The torsional rigidity GJ of a member can be expressed by the flexural rigidity $E\overline{I}$ of any member chosen as reference:

$$GJ = \frac{mE}{2(m+1)}J = \left\{\frac{m}{2(m+1)}\frac{J}{\bar{I}}\right\}E\bar{I},$$

where m =Poisson's number,

 \bar{I} = the moment of inertia of the section of the reference member. The transformation gives

$$\frac{GJ}{l} = \left\{\frac{m}{2(m+1)}\frac{J/l}{I/\overline{l}}\right\}\frac{E\overline{I}}{\overline{l}},$$

or

$$GK_t = \left\{ \frac{m}{2(m+1)} \frac{K_t}{\overline{K}_b} \right\} E\overline{K}_b,$$

where l, \bar{l} = the lengths of the member considered and of reference member respectively.

 $K_t = J/l$ = the stiffness factor for the torsion of the member in question. $\bar{K}_b = I/\bar{l}$ = the stiffness factor for the flexure of the reference member. This will be written in the simple form:

$$GK_t = 4\beta k_t E\overline{K_b},\tag{17}$$

in which

$$\beta = \frac{G}{4E} = \frac{m}{8(m+1)},$$
(18)

$$k_{\ell} = \frac{K_{\ell}}{\overline{K}_{b}}.$$
(19)

 k_t denotes the stiffness factor for the torsion measured by the reference stiffness factor for flexure, which is called the relative stiffness or stiffness ratio for torsion.

Similarly, measuring the stiffness factor for flexure K_b of the member considered by \overline{K}_b , the stiffness ratio for flexure is defined:

$$k_b = \frac{K_b}{\overline{K}_b},\tag{20}$$

whence we have, corresponding to eq. (17)

$$EK_b = k_b E \overline{K}_b. \tag{21}$$

6. Equations for Practical Use

To obtain facilities for practical calculations, the foregoing equations will be simplified by using the stiffness ratios and the symbols below:

$$\varphi = 2E\overline{K}_{b}\theta,$$

$$\psi = -6E\overline{K}_{b}R.$$

$$(22)$$

Thus we have from the slope-deflection eqs. (3) and (4)

$$M_{\rm ynf} = k_{\rm ynf}(2\varphi_{\rm yn} + \varphi_{\rm yf} + \psi_{\rm ynf}) + C_{\rm ynf}, \qquad (23)$$

$$M_{znf} = k_{znf}(2\varphi_{zn} + \varphi_{zf} + \psi_{znf}) + C_{znf}, \qquad (24)$$

and from the torsion eq.(9)

$$M_{xnf} = 2\beta k_{xnf}(\varphi_{xn} - \varphi_{xf}) + C_{xnf}.$$
(25)

7. Members Free to Rotate at Far End

Consider the member is supported at the far end so as to rotate freely against bending but fixed against torsion. For such member the slope-deflection equations are also provided. For example, if the member in Fig. 1 is bending-free at the far end f about y axis only, we have, in xz plane, the end-moment expression at the near end n eliminating φ_{yf} from eq.(23) that is using the relation $M_{yfn}=0$, thus

$$M_{\rm ynf} = \frac{1}{2} k_{\rm ynf} (3\varphi_{\rm yn} + \psi_{\rm ynf}) + H_{\rm ynf}, \qquad (26)$$

where

S. Yoshida No. 12

$$H_{\rm ynf} = C_{\rm ynf} - \frac{1}{2} C_{\rm yfn}.$$
 (27)

Further, if the far end of the member in question is torsion-free but bending-fixed, we readily find that

$$M_{xnf} = C_{xnf}.$$
 (28)

This becomes zero when the member has no torque applied, therefore we need not consider such members in such a case.

8. End-Shears

If a member of the space frame acted upon by the loads, the reactions

normal to its axis are induced in addition to the end-moments. These reactions, often called the end-shears, will be denoted by X with three subscripts as before. See Fig. 4.

Consider, for example, the member of lying parallel to x axis, and write the equilibrium conditions in xy plane. Then we readily have the expressions for X's:

$$X_{ynf} = -\frac{1}{l_{nf}}(M_{znf} + M_{zfn}) + \overline{X}_{ynf},$$

$$X_{yfn} = -\frac{1}{l_{nf}}(M_{znf} + M_{zfn}) + \overline{X}_{yfn},$$
(29)

where \overline{X} 's denote the normal reactions produced by the loads when the member is assumed to be a simple beam.

X's and \overline{X} 's are taken as positive when they have the moments about the far end which agree with the right-hand screw rule. For the other reaction components such as X_{znt} and X_{zfn} , the similar expressions will be obtained.

Chapter II. Elastic Equations

9. Joint Equilibrium Equations

The condition of continuity at the joints states that the intersection angles between the member-axes remain unchanged even if the frame undergoes deformation, i. e., all the member-ends rotate by the same angle at the joint under consideration. This rotation angle, common to all member-ends, is

termed the joint rotation angle or briefly the joint rotation. To satisfy the condition of continuity, it is only necessary to put the respective component joint rotations in the places of the component end-slopes in the end-moment equations.

Having this done, we write the equilibrium equations expressing that the component end-moments total to zero at each joint. For example, at joint a, we have

about x axis,
$$\sum (-M_{xai}) + \overline{M}_{xa} = 0$$
,
about y axis, $\sum (-M_{yai}) + \overline{M}_{ya} = 0$,
about z axis, $\sum (-M_{zai}) + \overline{M}_{za} = 0$, (30)

where i = the subscript designating the joint adjacent to a,

 \overline{M} = the component external moment existing at a.

Thus, we have equilibrium equations like these, each three at each joint, which coincide in total with the number of unknown φ 's.

10. Horizontal-Shear Equations

A typical space frame is considered to be a system of plane frames standing parallel to xy or yz plane connected each other by a group of beams running

parallel to z or y axis. In Fig. 5 the constituent plane frames are shown by heavy lines, the connecting beams by fine lines; in (a) the plane frames are arranged in row, and in (b) in column.

Now consider a plane frame of any row as a free-body isolated from the whole assembly, and write the equilibrium of forces acting along the section through its column-tops. Considering the forces transmitted from the connecting beams, Fig. 6, we have

$$\sum (-X_{xak}) + \sum (-X_{xai} - X_{xaj}) + Q_x = 0,$$
(31)

where i, j = subscripts designating the adjacent joints,

No. 12

k = do. the column base,

 Q_x = the x-component of the total horizontal load acting above the section considered.

This is written in the simple form:

$$\sum (-X_x) + Q_x = 0. \tag{32}$$

Similarly, observing a plane-frame of any column, we obtain

$$\sum (-X_z) + Q_z = 0. \tag{33}$$

These equations express the equilibrium condition of horizontal forces, and we will call them the horizontal-shear equations; see that the number of them equals the sum of numbers of rows and of columns.

11. Vertical-Shear Equations

The connecting beams spanning any two adjacent plane frames must be in equilibrium under the vertical forces. Considering, for example, any beam nf in row-arrangement shown in Fig.7, we immediately have

$$X_{ynf} - X_{yfn} - P_y = 0,$$
 (34)

where P = the resultant vertical load acting on the beam.

Applying this relation to the beams in order and adding, we obtain

$$\sum (\mathbf{X}_{ynf} - X_{yfn}) - \sum P_y = 0. \quad (35)$$

The similar equations are also deduced in the case of column-arrangement. These will be referred to as the vertical-shear equations, the number of which agrees with the sum of numbers of bays of the plane frames in columnarrangement and of those in row-arrangement.

12. Compatibility Equations

When the members of the frame change their lengths due to the axial forces, temperature changes etc., the displacements of joints are resulted, which produce the revolutions of members. The matter is the same when the supports happen to displace. Since the members can revolve in two directions, the number of unknown R's (or ψ 's) is equal to twice the number of the members. These R's must be compatible with the geometry of the frame to be mentioned below.

Take, for example, any space bounded by members either open or closed. Such a space is shown in Fig. 8(a), where the skeleton after deformation is drawn by broken lines assuming the left support to be fixed in position.

Let the initial and final dimensions of the skeletons be as follows:

	Initial	Final
Length of member	s	$s + \Delta s$
Inclination of member	α	$\alpha_z - R_z (*)$
Span	l	$l + \Delta l$
Relative height of the ends	h	$h + \Delta h$

(*) Cf Fig. 8(d).

Then we have, by geometry, the relations after deformation:

$$\sum (s + \Delta s) \cos (\alpha_z - R_z) = l + \Delta l,$$

$$\sum (s + \Delta s) \sin (\alpha_z - R_z) = h + \Delta h.$$

Expand these equations considering the geometry before deformation,

 $\sum s \cos \alpha_z = 0$ and $\sum s \sin \alpha_z = h$; let $\sin R_z = R_z$ and $\cos R_z = 1$, and omit the small terms of higher order in the resulting expressions since Δs and R_z are very small. Then we finally have

$$\sum \Delta s \cos \alpha_z + \sum R_z s \sin \alpha_z = \Delta l,$$

$$\sum \Delta s \sin \alpha_z - \sum R_z s \cos \alpha_z = \Delta h.$$
(36)

These are the compatibility equations required. If we consider such spaces as in Fig. 8 (b) and (c), change the subscripts of α and R to x and y respectively.

On some particular cases it will be mentioned that:

- 1) When the supports do not displace, let $\Delta l = \Delta h = 0$.
- 2) For a closed space, also put $\Delta l = \Delta h = 0$.
- 3) For the case where the lengths of members remain unchanged and the

supports are fixed in positions, eqs. (36) reduce to the simple form:

$$\Sigma Rs \sin \alpha = 0,$$

$$\Sigma Rs \cos \alpha = 0.$$
(37)

The subscripts are here omitted.

13. Establishment of Solution

In order to carry out the analysis of the rigid frames in space, the equilibrium equations—joint equilibrium equations, horizontal—and vertical—shear equations—should be utilized together with the compatibility equations. To make sure the possibility of solution, we will here investigate the numbers of unknowns sought and of condition equations available. Take, for simplicity, a space frame of single story, and let m and n be the numbers of its constituent plane frames in row— and column–arrangements respectively.

Then, the joints, the numbers and the spaces are respectively enumerated as shown in Table 1.

	Item	No.
	Joint	mn
Member	$\begin{cases} Column \\ Beam, parallel to x axis \\ Do., & y z & y \end{cases}$	$ \left. \begin{array}{c} mn \\ m(n-1) \\ n(m-1) \end{array} \right\} 3mn - (m+n) $
Space	$\begin{cases} Parallel to yz plane \\ & xz & '' \\ & y & xy & '' \end{cases}$	$\left \begin{array}{c} m(n-1) \\ (m-1)(n-1) \\ n(m-1) \end{array}\right 3mn-2(m+n)+1$

Table	1
-------	---

With this, we can tell the numbers of condition equations as follows: Joint equilibrium equations $\cdots 3mn$ (three times of no. of joints). Horizontal-shear equations $\cdots m + n$ (sum of nos. of rows and columns). Vertical-shear equations $\cdots (m-1) + (n-1) = m + n - 2$ (sum of nos. of bays of constituent plane frames in both arrangements). Compatibility equations $\cdots 6mn - 4(m + n) + 2$ (twice the nos. of spaces)

Totals $\cdots 9mn - 2(m + n)$.

On the other hand, the number of unknown φ 's is 3mn, and of ψ 's 6mn - 2(m + n), which evidently agrees, in all, with that of condition equations shown

46

above. Therefore, we can conclude that the solution is always possible.

The similar discussion will hold for the frames of multi-story.

If we assume that the supports are immovable and the member-lenghths are immutable, which is the case usually considered, the compatibility equations become needless, because we can tell, by inspection, as follows:

1) The beams can revolve about y axis only. All the beams spanning adjacent two plane frames have the same ϕ . Hence, the number of ϕ 's of them becomes (m-1) + (n-1) = m + n - 2.

2) All the columns in any constituent plane frame have the same R, if their heights are all equal. Hence, the number of ϕ 's of columns is m + n.

3) Thus, the number of ϕ 's totals to 2(m + n - 1), which just comes to the number of shear equations.

4) The matter is the same, if there is irregularity in the length of columns and beams.

Furthermore, if the joints do not displace due to the symmetry or to the lateral supports, ϕ 's become zeros, hence the solution is carried out by the use of the joint equilibrium equations only.

14. Comparison with Method of Redundancies

In order to obtain a statically determinate rigid connection in space by assembling k bars, we have to apply six constraints at each knot. Since there are k-1 knots, the required constraints must be 6(k-1) in all. The frame thus fabricated is then attached to the foundation to complete a statically determinate structure. For this purpose, we are again in need of six external constraints. Thus, we see that a statically determinate rigid frame should have the constraints of 6(k-1) + 6 = 6k in total.

If the frame under consideration is statically indeterminate, it has more constraints than 6k, and its degree of redundancy N is found to be

$$N=r+j-6k,$$

where r = total external constraints,

j = total internal constraints. At a rigid joint, j denotes the number of meeting members less than one multiplied by six.

The methods of redundancies, the classical methods, take the end-forces for unknowns, which are the constraints above mentioned. Therefore, N denotes the number of redundant forces to be found.

Let, for example, a single storied frame of m rows and n columns be

considered. We obtain, referring to Table 1, r = 6mn, j = 24mn - 12(m + n)and k = 3mn - (m + n). Therefore

$$N = 12mn - 6(m+n).$$

Even in the case where the supports and the joints do not displace, we have to solve as many equations as this. If such a frame is analysed by the author's method, the number of unknowns to be found is 3mn, for which only the joint equilibrium equations are enough. For a simple frame of m = n = 2, we see N = 24 and 3mn = 12; the difference is indeed 12. This shows that how great facilities are obtained by the author's method.

Chapter III. Illustrative Examples

15. Torsion Effects in a Rigid Frame in Space

A symmetrical space frame in Fig.9 subjects to symmetrical loadings as shown. The threedimensional analysis by the author's method proceeds as follows:

1) Expressions of End-Moments

By inspection, we readily have the relations

 $\varphi_{xB} = \varphi_{xC}, \quad \varphi_{xF} = \varphi_{xG}, \quad \varphi_{yB} = \varphi_{yC} = \varphi_{yF} = \varphi_{yG} = 0, \quad \varphi_{zB} = -\varphi_{zC}, \quad \varphi_{zF} = -\varphi_{zG}.$

With these, the following end-moment expressions are written down. For member AB:

	About x axis,	$M_{xAB} = k_{xAB}(\varphi_{xB} + \psi_{xAB}),$)
	Do. ,	$M_{x\mathrm{BA}}=k_{x\mathrm{AB}}(2arphi_{x\mathrm{B}}+\psi_{x\mathrm{AB}})$,	
	About z axis,	$M_{zAB} = k_{zAB} \varphi_{zB},$	
	Do. ,	$M_{zBA}=2k_{zAB}arphi_{zB}.$	
For member	BC:		
	About z axis,	$M_{z m BC}=k_{z m BC}arphi_{z m B}+C_{z m BC}.$	
For member	BF:		
	About x axis,	$M_{x ext{BF}} = k_{x ext{BF}}(2\varphi_{x ext{B}} + \varphi_{x ext{F}}) + C_{x ext{BF}}$,	
	Do. ,	$M_{x \text{FB}} = k_{x \text{BF}}(\varphi_{x \text{B}} + 2\varphi_{x \text{F}}) + C_{x \text{FB}},$	
	About z axis,	$M_{z m BF}=2eta k_{z m BF}(arphi_{z m B}-arphi_{z m F}),$	((a)
	Do. ,	$M_{z\text{FB}} = 2\beta k_{z\text{BF}}(\varphi_{z\text{F}} - \varphi_{z\text{B}}).$	
			1

For member EF:

About x axis, $M_{xEF} = k_{xEF}(\varphi_{xF} + \psi_{xEF}) = k_{xEF}(\varphi_{xF} + (H/h)\psi_{xAB}),$ Do. , $M_{xFE} = k_{xEF}(2\varphi_{xF} + \psi_{xEF}) = k_{xEF}(2\varphi_{xF} + (H/h)\psi_{xAB}),$ About z axis, $M_{zEF} = k_{zEF}\varphi_{zF},$ Do. , $M_{zFE} = 2k_{zEF}\varphi_{zF}.$ For member FG:

About z axis, $M_{zFG} = k_{zFG}\varphi_{zF} + C_{zFG}$.

2) Elastic Equations

Condition equations to be satisfied by these end-moments are:

i) Joint Equilibrium Equations

At joint B:

About x axis, $M_{xBA} + M_{xBF} = 0$, About z axis, $M_{zBA} + M_{zBC} + M_{zBF} = 0$.

At joint F:

About x axis, $M_{xFB} + M_{xFE} = 0$, About z axis, $M_{zFB} + M_{zFE} + M_{zFG} = 0$.

(b)

ii) Horizontal Shear Equations

 $X_{zBA} + X_{zFE} = 0.$

Substituting the above end-moments (a) into these equilibrium equations (b), we get the following simultaneous equations.

 $2(k_{xAB} + k_{xBF})\varphi_{xB} + k_{xBF}\varphi_{xF} + k_{xAB}\psi_{xAB} + C_{xBF} = 0,$ $k_{xBF}\varphi_{xB} + 2(k_{xBF} + k_{xEF})\varphi_{xF} + (H/h)k_{xEF}\psi_{xAB} + C_{xFB} = 0,$ $(2k_{zAB} + k_{zBC} + 2\beta k_{zBF})\varphi_{zB} - 2\beta k_{zBF}\varphi_{zF} + C_{zBC} = 0,$ $(2k_{zEF} + k_{zFG} + 2\beta k_{zBF})\varphi_{zF} - 2\beta k_{zBF}\varphi_{zB} + C_{zFG} = 0,$ $3k_{xAB}\varphi_{xB} + 3H k_{xEF}\varphi_{xF} + (2hk_{xAB} + 2(H^2/h)k_{xEF})\psi_{xAB} = 0.$

Solving these, we have:

Joint rotations at B,

$$\begin{split} \varphi_{xB} &= (-1/\nu) \{ [(4k_{xBF} + k_{xEF})(hk_{xAB} + (H^2/h)k_{xEF}) - 3(H^2/h)k^2_{xEF}] C_{xBF} \\ &- [2k_{xBF}(hk_{xAB} + (H^2/h)k_{xEF}) - 3Hk_{xAB}k_{xEF}] C_{xFB} \}, \\ \varphi_{zB} &= (-1/\mu) \{ (2k_{zEF} + k_{zFG} + 2\beta k_{zBF}) C_{zBC} + 2\beta k_{zBF} C_{zFG} \}. \end{split}$$

Joint rotations at F,

$$arphi_{x ext{F}} = (1/
u) \{ [2k_{x ext{BF}}(hk_{x ext{AB}} + (H^2/h)k_{x ext{EF}}) - 3Hk_{x ext{AB}}k_{x ext{EF}}]C_{x ext{BF}} - [4(k_{x ext{AB}} + k_{x ext{BF}})(hk_{x ext{AB}} + (H^2/h)k_{x ext{EF}}) - 3hk^2_{x ext{AB}}]C_{x ext{FB}} \},$$

No.12

(c)

$$arphi_{z ext{F}} = (-1/\mu) \{ (2k_{z ext{AB}} + k_{z ext{BC}} + 2eta k_{z ext{BF}}) C_{z ext{FG}} + 2eta k_{z ext{BF}} C_{z ext{BC}} \}.$$

Revolution of member AB,

$$\psi_{xAB} = (-1/\nu) \{ \exists Hk_{xBF}k_{xEF} - 6hk_{xAB}(k_{xBF} + k_{xEF}) \} C_{xBF}$$

$$- [6Hk_{xEF}(k_{xAB} + k_{xBF}) + 3hk_{xAB}k_{xBF}]C_{xBF}\},$$

where,

$$\begin{split} \mu &= (2k_{zAB} + k_{zBC} + 2\beta k_{zBF})(2k_{zEF} + k_{zFG} + 2\beta k_{zBF}) - 4\beta^2 k^2 z_{zBF}, \\ \nu &= 2(k_{xAB} + k_{xBF})\{4(k_{xBF} + k_{xEF})(hk_{xAB} + (H^2/h)k_{xEF}) - 3(H^2/h)k^2 x_{zEF}\} \\ &- k_{xBF}\{2k_{xBF}(hk_{xAB} + (H^2/h)k_{xEF}) - 3Hk_{xAB}k_{xEF}\} \\ &+ 3hk_{xAB}\{(H/h)k_{xBF}k_{xEF} - 2k_{xAB}(k_{xBF} + k_{xEF})\}. \end{split}$$

Finally, introducing these φ – and ψ – values into the expressions of end moments (a), we arrive at the solutions.

Consider now the case in which $k_{xBF} = k_{zBF} = 0$ and $C_{xBF} = C_{xFB} = 0$, then we have from (c)

$$\varphi_{xB} = \varphi_{xF} = \phi_{xAB} = \phi_{xEF} = 0,$$

 $\varphi_{zB} = -C_{zBC}/(2k_{zAB} + k_{zBC}), \quad \varphi_{zF} = -C_{zFG}/(2k_{zEF} + k_{zFG}).$

These coincide with the solutions by the conventional two-dimensional method, that is, the solutions for the constituent plane frames ABCD or EFGH.

In the followings, we will consider in detail about M_{zBA} , M_{zBC} and M_{zBF} .

3) Relations between k_{zEF} and M's

Assuming that $p_1 = p_2$, $k_{zAB} = k_{zBC} = k_{zBF} = k_{zFG} = 1$ and that $\beta = 0.11$, putting m = 6 in eq. (18), we obtain $\mu = 6.44 k_{zEF} + 3.88$, $C_{zBC} = C_{zFG}$ and

 $\varphi_{zB} = -(2k_{zEF} + 1.44)C_{zBC}/(6.44k_{zEF} + 3.88),$ $\varphi_{zF} = -3.44C_{zBC}/(6.44k_{zEF} + 3.88).$

Hence we get, from eqs. (a),

$$M_{zBA} = -(2k_{zEF} + 1.44)C_{zBC}/(3.22k_{zEF} + 1.94),$$

$$M_{zBC} = (2.22k_{zEF} + 1.22)C_{zBC}/(3.22k_{zEF} + 1.94),$$

$$M_{zBF} = -0.22(k_{zEF} - 1)C_{zBC}/(3.22k_{zEF} + 1.94).$$

Thus we have the end-moments expressed by k_{zEF} , the relations between them are shown in Table 2.

50

M M	0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.0
Mzba	-0.74	-0.71	-0.69	-0.68	-0.67	0.67	-0.66	-0.66	-0.65	-0.65	-0.65
M_{zBC}	0.63	0.64	0.65	0.66	0.66	0.67	0.67	0.67	0.67	0.67	0.67
$M_{z\mathrm{BF}}$	0.11	0.07	0.04	0.02	0.01	0	-0.01	-0.01	-0.02	-0.02	-0.02
							Mu	tiplier	: Сявс	= -p	$l^2/12$

Table 2 $k_{zef} \sim M$

See that as k_{zEF} increases, M_{zBC} increases and M_{zBA} and M_{zBF} decrease, but for $k_{zEF} > 1$ they remain almost constant. Again, when k_{zEF} becomes unity, i.e., the frame becomes also symmetrical about xz plane, the twisting moments vanish and the frame ABCD may be isolated and treated two-dimensionally.

4) Relations between C_{zFG}/C_{zBC} and M's

For convenience sake, letting all stiffness ratios be unities and β be 0.11, we have

$$\varphi_{zB} = -(0.31C_{zBC} + 0.02C_{zFG}),$$

 $\varphi_{zF} = -(0.31C_{zFG} + 0.02C_{zBC}),$

and

$$M_{zBA} = -C_{zBC}(0.62 + 0.04C_{zFG}/C_{zBC}),$$

$$M_{zBC} = C_{zBC}(0.69 - 0.02C_{zFG}/C_{zBC}),$$

$$M_{zBF} = -0.06C_{zBC}(1 - C_{zFG}/C_{zBC}).$$

The relations between C_{zFG}/C_{zBC} and M's are shown in Table 3.

Table 3 CzFG/CzBC~M

M M	0	0.2	0.4	0.6	0.8	1.0	1.2	1.4	1.6	1.8	2.0
Mzba	-0.62	-0.63	-0.64	-0.64	-0.65	-0.67	-0.67	-0.68	-0.68	-0.69	-0.70
M_{zBC}	0.69	0.69	0.68	0.68	0.67	0.67	0.67	0.66	0.66	0.65	0.65
$Mz_{ m BF}$	-0.07	-0.06	-0.04	-0.02	-0.01	0	0.01	0.02	0.04	0.05	0.06

Miltiplier: $C_{zBC} = -p_1 l^2/12$

From this table it is perceived that M_{zBA} and M_{zBC} are not so different from the two-dimensional solution, 0.67 C_{zBC} , and that the magnitudes of twisting moments in the range considered are very small compared with those of bending moments. Thus, it may be concluded that the variation of C_{zFG}/C_{zBC} does not effect so much upon the end-moments analysed either three-dimensionally or two-dimensionally.

5) Relations between k_{zBF} and M's

To show the effects of the torsional rigidity of a member, consider the frame in Fig. 10 which is the special case in Fig. 9. For this frame we can put $k_{zEF} = k_{zFG} = \infty$ and $C_{zFG} = 0$ in the foregoing solution.

To investigate the relations between k_{zBF} and the end-moments, let, for example, $k_{zAB} = k_{zBC} = 1$. Then, we have

$$\varphi_{z\mathrm{B}} = -C_{z\mathrm{BC}}/(3+2\beta k_{z\mathrm{BF}})$$

and

$$\begin{split} M_{zBA} &= -\ 2C_{zBC}/(3+0.\ 22k_{zBF}),\\ M_{zBC} &= 2(1+0.\ 11k_{zBF})C_{zBC}/(3+0.\ 22k_{zBF}),\\ M_{zBF} &= -\ 0.\ 22k_{zBF}C_{zBC}/(3+0.\ 22k_{zBF}). \end{split}$$

Table 4 shows the relations thus obtained which are plotted in Fig. 11.

Table 4 kzBF~M

M kzbf	0	0.2	0.4	0.6	0.8	1.0	2.0	4.0	6.0	8.0	10.0	ŝ
M_{zBA}	-0.67	-0.66	-0.65	-0.64	-0.63	-0.62	-0.58	-0.52	-0.46	-0.42	-0.38	0
Mzec	0.67	0.67	0.68	0.68	0.69	0.69	0.71	0.74	0.77	0.79	0.81	1
$M_{z m BF}$	0	-0.014	-0.028	-0.042	-0.055	-0.068	-0.128	-0.227	-0.306	-0.370	-0.423	

Multiplier: $C_{zBC} = -p_1 l^2/12$

See that for $k_{zBF} = \infty$, M_{zBC} coincides with the end-moment of a bothends-fixed-beam and M_{zBA} vanishes. Futhermore, with the decrease of k_{zBF} , M_{zBA} and M_{zBC} approach respectively to the values of the plane frame ABCD.

Table 5 shows the percentage errors in the end-moments resulting from the two-dimensional analysis; the values from three-dimensional analysis being taken as references. From this, it will be realized that the members BF and CG, which are attached to the plane frame ABCD, have considerable effects and they should never be omitted in the practical design. Provided that the members BF and CG are very slender, the conventional two-dimensional analysis will be satisfactorily applied. In practice, if we allow 10% errors, we must allot the values less than 2 to k.

kzBF	0	0.2	0.4	0.6	0.8	1.0	2.0	4.0	6.0	8.0	10.0	∞	
(Mzba-Mo)/Mzba	0	+1.5	+3.0	+4.5	+6.0	+7.5	+13.4	+22	+31	+37	+43	(%
(Mzbc-Mo)/Mzbc	0	0	-1.5	-1.5	-3.0	-3.0	-9.0	-10	-15	-18	-21	(%.

Table 5 kzBF~percentage errors

From this numerical example, it is perceived that the rigid frame in space without side-sway may be analysed by the conventional two-dimensional method provided that the torsional stiffness of any member is not so different from the bending stiffnesses of other members; if it is not so, it is necessary to solve the frame three-dimensionally.

16. Unsymmetrical Rigid Frame in Space (1)

A space frame, Fig. 12, loaded laterally in z direction, has the dimensions and k-values as shown in Table 6. The procedures of analysis and some related discussions will be given below.

Fig. 12

Member	AD	ВE	CF	DE	ΕF	D J	ΕK	FL	JК	KL	GJ	ΗК	ΙL	-
Length	4.2	5.4	3.0	4.0	4.0	5.0	5.0	5.0	4.0	4.0	3.6	4.2	3.0	m)
kx	1.0	1.2	0.8	1.4	1.4	1.5	1.5	1.5	1.4	1.4	1.0	1.2	0.8	
$k_{\mathcal{Y}}$	1.0	1.0	1.0	1.2	1.2	1.0	1.0	1.0	1.2	1.2	1.0	1.2	0.8	
kz	1.0	1.2	0.8	1.0	1.0	1.4	1.4	1.4	0.8	0.8	1.0	1.0	1.0	

Table 6

1) Expressions of End-Moments

In the followings, we allot 0.107 to β assuming m=6 in eq.(18). For member AD :

	$M_{x\mathrm{AD}} = \varphi_{x\mathrm{D}} + \psi_{x\mathrm{AD}},$	$M_{x\mathrm{DA}} = 2\varphi_{x\mathrm{D}} + \psi_{x\mathrm{AD}}.$
	$M_{y m AD} = - 0.21 \varphi_{y m D}$,	$M_{y\text{DA}} = 0.21 \varphi_{y\text{D}}.$
	$M_{z\mathrm{AD}}=arphi_{z\mathrm{D}}+\psi_{z\mathrm{AD}},$	$M_{z\mathrm{DA}}=2arphi_{z\mathrm{D}}+\psi_{z\mathrm{AD}}.$
For	member BE :	
	$M_{x\mathrm{BE}} = 1.2\varphi_{x\mathrm{E}} + 1.2\psi_{x\mathrm{BE}}$,	$M_{x \text{EB}} = 2.4\varphi_{x \text{E}} + 1.2\psi_{x \text{BE}}.$
	$M_{y\mathrm{BE}}=-$ 0. 21 $\varphi_{y\mathrm{E}}$,	$M_{y \text{EB}} = 0.21 \varphi_{y \text{E}}.$
	$M_{z\mathrm{BE}} = 1.2\varphi_{z\mathrm{E}} + 0.93\phi_{z\mathrm{AD}},$	$M_{z \text{EB}} = 2.4\varphi_{z \text{E}} + 0.93\psi_{z \text{AD}}.$
For	member CF :	
	$M_{x\mathrm{CF}}=0.8arphi_{x\mathrm{F}}+0.8\psi_{x\mathrm{CF}},$	$M_{xFC} = 1.6\varphi_{xF} + 0.8\psi_{xCF}.$
	$M_{ m yCF} = - 0.21 \varphi_{ m yF}$,	$M_{ m yFC}=0.21 arphi_{ m yF}.$
	$M_{z\mathrm{CF}} = 0.8\varphi_{z\mathrm{F}} + 1.12\psi_{z\mathrm{AD}},$	$M_{zFC} = 1.6\varphi_{zF} + 1.12\psi_{zAD}.$
For	member DE :	
	$M_{x\rm DE}=0.\ 30(\varphi_{x\rm D}-\varphi_{x\rm E}),$	$M_{x\text{ED}} = 0.30(\varphi_{x\text{E}} - \varphi_{x\text{D}}).$
	$M_{y\text{DE}} = 1.2(2\varphi_{y\text{D}} + \varphi_{y\text{E}} + 1.05\psi_{x\text{AD}} - 1)$	$1.35 \psi_{xBE}$),
	$M_{yED} = 1.2(2\varphi_{yE} + \varphi_{yD} + 1.05\varphi_{xAD} - 1)$	$1.35 \phi_{xBE}$).
	$M_{z\mathrm{DE}} = 2\varphi_{z\mathrm{D}} + \varphi_{z\mathrm{E}},$	$M_{z \text{ED}} = 2\varphi_{z \text{E}} + \varphi_{z \text{D}}.$
For	member EF :	
	$M_{x\rm EF}=0.3(\varphi_{x\rm E}-\varphi_{x\rm F}),$	$M_{x\rm FE}=0.3(\varphi_{x\rm F}-\varphi_{x\rm E}).$
	$M_{y\text{EF}} = 1.2(2\varphi_{y\text{E}} + \varphi_{y\text{F}} + 1.35\varphi_{x\text{BE}} - 0$. $75\phi_{xCF}$),
	$M_{yFE} = 1.2(2\varphi_{yF} + \varphi_{yE} + 1.35\varphi_{xBE} - 0.5)$. $75\phi_{xCF}$).
	$M_{z\rm EF} = 2\varphi_{z\rm E} + \varphi_{z\rm F},$	$M_{zFE} = 2\varphi_{zF} + \varphi_{zE}.$
For	member DJ :	
	$M_{x\rm DJ}=1.5(2\varphi_{x\rm D}+\varphi_{x\rm J}),$	$M_{x m JD}=1.5(2arphi_{x m J}+arphi_{x m D}).$
	$M_{y\text{DJ}} = (2\varphi_{y\text{D}} + \varphi_{y\text{J}} + 0.724\varphi_{z\text{GJ}} - 0.84$	$\psi_{zAD}),$

 $M_{z\mathrm{DJ}} = 0.3(\varphi_{z\mathrm{D}} - \varphi_{z\mathrm{J}}), \qquad \qquad M_{z\mathrm{JD}} = 0.3(\varphi_{z\mathrm{J}} - \varphi_{z\mathrm{D}}).$

 $M_{\rm yJD} = (2 \varphi_{\rm yJ} + \varphi_{\rm yD} + 0.724 \psi_{\rm zGJ} - 0.84 \psi_{\rm zAD}).$

54

For member EK :

$$\begin{split} M_{x\rm EK} &= 1.5(2\varphi_{x\rm E} + \varphi_{x\rm K}), & M_{x\rm KE} = 1.5(2\varphi_{x\rm K} + \varphi_{x\rm E}). \\ M_{y\rm EK} &= (2\varphi_{y\rm E} + \varphi_{y\rm K} + 0.72\phi_{z\rm GJ} - 0.84\phi_{z\rm AD}), \\ M_{y\rm KE} &= (2\varphi_{y\rm K} + \varphi_{y\rm E} + 0.72\phi_{z\rm GJ} - 0.84\phi_{z\rm AD}). \\ M_{z\rm EK} &= 0.3(\varphi_{z\rm E} - \varphi_{z\rm K}), & M_{z\rm KE} = 0.3(\varphi_{z\rm K} - \varphi_{z\rm E}). \end{split}$$

For member FL :

$$\begin{split} M_{xFL} &= 1.5(2\varphi_{xF} + \varphi_{xL}), & M_{xLF} = 1.5(2\varphi_{xL} + \varphi_{xF}). \\ M_{yFL} &= (2\varphi_{yF} + \varphi_{yL} + 0.72\psi_{zGJ} - 0.84\psi_{zAD}), \\ M_{yLF} &= (2\varphi_{yL} + \varphi_{yF} + 0.72\psi_{zGJ} - 0.84\psi_{zAD}). \\ M_{zFL} &= 0.3(\varphi_{zF} - \varphi_{zL}), & M_{zLF} = 0.3(\varphi_{zL} - \varphi_{zF}). \end{split}$$

For member JK :

$$\begin{split} M_{xJK} &= 0. \ 3(\varphi_{xJ} - \varphi_{xK}), & M_{xKJ} = 0. \ 3(\varphi_{xK} - \varphi_{xJ}). \\ M_{yJK} &= 1. \ 2(2\varphi_{yJ} + \varphi_{yK} + 1. \ 05\phi_{xAD} - 1. \ 35\phi_{xBE}), \\ M_{yKJ} &= 1. \ 2(2\varphi_{yK} + \varphi_{yJ} + 1. \ 05\phi_{xAD} - 1. \ 35\phi_{xBE}). \\ M_{zJK} &= 0. \ 8(2\varphi_{zJ} + \varphi_{zK}), & M_{zKJ} = 0. \ 8(2\varphi_{zK} + \varphi_{zJ}). \end{split}$$

For member KL :

```
\begin{split} M_{x\rm KL} &= 0.\ 3(\varphi_{x\rm K} - \varphi_{x\rm L}), & M_{x\rm LK} &= 0.\ 3(\varphi_{x\rm L} - \varphi_{x\rm K}). \\ M_{y\rm KL} &= 1.\ 2(2\varphi_{y\rm K} + \varphi_{y\rm L} + 1.\ 35\varphi_{x\rm BE} - 0.\ 75\varphi_{x\rm CF}), \\ M_{y\rm LK} &= 1.\ 2(2\varphi_{y\rm L} + \varphi_{y\rm K} + 1.\ 35\varphi_{x\rm BE} - 0.\ 75\varphi_{x\rm CF}). \\ M_{z\rm KL} &= 0.\ 8(2\varphi_{z\rm K} + \varphi_{z\rm L}), & M_{z\rm LK} &= 0.\ 8(2\varphi_{z\rm L} + \varphi_{z\rm K}). \end{split}
```

For member GJ :

$M_{x\mathrm{GJ}}=arphi_{x\mathrm{J}}+1.17\psi_{x\mathrm{AD}}$,	$M_{x\mathrm{JG}} = 2\varphi_{x\mathrm{J}} + 1.17\psi_{x\mathrm{AD}}.$
$M_{\rm yGJ}=-0.21\varphi_{\rm yJ},$	$M_{ m yJG}=0.21arphi_{ m yJ}$.
$M_{z\mathrm{GJ}}=arphi_{z\mathrm{J}}+\psi_{z\mathrm{GJ}},$	$M_{z\rm JG}=2\varphi_{z\rm J}+\phi_{z\rm G\rm J}.$

For member HK :

```
M_{x\rm HK} = 1.2\varphi_{x\rm K} + 1.54\psi_{x\rm BE}, M_{x\rm KH} = 2.4\varphi_{x\rm K} + 1.54\psi_{x\rm BE}.
```

	$M_{ m yHK}=-0.26arphi_{ m yK}$,	$M_{ m yKH}=0.26 arphi_{ m yK}.$
	$M_{z\rm HK}=arphi_{z\rm K}+0.86\psi_{z\rm GJ},$	$M_{z\rm KH} = 2\varphi_{z\rm K} + 0.86\psi_{z\rm GJ}.$
For	member IL :	
	$M_{xIL} = 0.8\varphi_{xL} + 0.8\varphi_{xCF}$,	$M_{x\rm LI} = 1.6\varphi_{x\rm F} + 0.8\psi_{x\rm CF}.$
	$M_{ m yIL} = -0.17 \varphi_{ m yL},$	$M_{yLI} = 0.17 \varphi_{yL}.$
	$M_{z ext{IL}}=arphi_{z ext{L}}+1.2\psi_{z ext{GJ}}$,	$M_{z\mathrm{LI}}=2arphi_{z\mathrm{L}}+1.2\psi_{z\mathrm{GJ}}.$

2) Expressions of End-Shears

 $X_{zDA} = -(0.71\varphi_{xD} + 0.48\varphi_{xAD}),$ $X_{zDE} = - (0.9\varphi_{yD} + \varphi_{yE} + 0.63\psi_{xAD} - 0.81\psi_{xBE}),$ $X_{zJG} = -(0.83\varphi_{xJ} + 0.65\psi_{xAD}),$ $X_{zDE} = X_{zED}$, $X_{zEB} = -(0.67\varphi_{xE} + 0.44\varphi_{xBE}),$ $X_{zKJ} = -(0.9\varphi_{yJ} + 0.9\varphi_{yK} + 0.63\psi_{xAD} - 0.81\psi_{xBE}),$ $X_{zJK} = X_{zKJ}$, $X_{zKH} = -(0.86\varphi_{xK} + 0.73\varphi_{xBE}),$ $X_{zFE} = -(0.9\varphi_{yE} + 0.9\varphi_{yF} + 0.81\varphi_{xBE} - 0.45\varphi_{xCF}),$ $X_{zEF} = X_{zFE}$, $X_{zFC} = -(0.8\varphi_{xF} + 0.53\varphi_{xCF}),$ $X_{zLK} = -(0.9_{yK} + 0.9\varphi_{yL} + 0.81\varphi_{xBE} - 0.45\varphi_{xCF}),$ $X_{zKL} = X_{zLK},$ $X_{zLI} = -(0.8\varphi_{xL} + 0.53\varphi_{xCF}),$ $X_{xDA} = -(0.71\varphi_{zD} + 0.48\varphi_{zAD}),$ $X_{xEB} = -(0.67\varphi_{zE} + 0.34\psi_{zAD}), \qquad X_{xFC} = -(0.8\varphi_{zF} + 0.75\psi_{zAD}),$ $X_{x\rm DJ} = - (0.6\varphi_{y\rm D} + 0.6\varphi_{y\rm J} + 0.29\varphi_{z\rm GJ} - 0.34\psi_{z\rm AD}),$ $X_{xJD} = X_{xDJ}$, $X_{xEK} = -(0.6\varphi_{yE} + 0.6\varphi_{yK} + 0.29\varphi_{zGJ} - 0.34\varphi_{zAD}),$ $X_{x \mathrm{KE}} = X_{x \mathrm{EK}},$ $X_{x\rm FL} = - (0.6\varphi_{y\rm F} + 0.6\varphi_{y\rm L} + 0.29\psi_{z\rm GJ} - 0.34\psi_{z\rm AD}),$ $X_{x \text{LF}} = X_{x \text{FL}},$ $X_{xJG} = -(0.83\varphi_{zJ} + 0.56\varphi_{zGJ}),$ $X_{x\text{KH}} = -(0.71\varphi_{z\text{K}} + 0.41\psi_{z\text{GJ}}), \qquad X_{x\text{LI}} = -(\varphi_{z\text{L}} + 0.80\psi_{z\text{GJ}}).$

56

3) Elastic Equations i) Joint Equilibrium Equations At joint D : $M_{\rm yDA} + M_{\rm yDE} + M_{\rm yDJ} = 0.$ $M_{x\text{DA}} + M_{x\text{DE}} + M_{x\text{DJ}} = 0.$ $M_{z\text{DA}} + M_{z\text{DE}} + M_{z\text{DJ}} = 0.$ At joint E : $M_{x\rm ED} + M_{x\rm EB} + M_{x\rm EF} + M_{x\rm EK} = 0.$ $M_{\text{vED}} + M_{\text{vEB}} + M_{\text{vEF}} + M_{\text{vEK}} = 0.$ $M_{z\rm ED} + M_{z\rm EB} + M_{z\rm EF} + M_{z\rm EK} = 0.$ At joint F : $M_{\rm yFE} + M_{\rm yFC} + M_{\rm yFL} = 0.$ $M_{x\rm FE} + M_{x\rm FC} + M_{x\rm FL} = 0.$ $M_{zFE} + M_{zFC} + M_{zFL} = 0.$ At joint J : $M_{x\mathrm{JG}} + M_{x\mathrm{JK}} + M_{x\mathrm{JD}} = 0.$ $M_{\rm yJG} + M_{\rm yJK} + M_{\rm yJD} = 0,$ $M_{z\rm JG} + M_{z\rm JK} + M_{z\rm JD} = 0.$ At joint K : $M_{x\rm KJ} + M_{x\rm KH} + M_{x\rm KL} + M_{x\rm KE} = 0.$ $M_{\rm yKJ} + M_{\rm yKH} + M_{\rm yKL} + M_{\rm yKE} = 0.$ $M_{zKI} + M_{zKH} + M_{zKL} + M_{zKE} = 0.$ At joint L : $M_{\rm yLK} + M_{\rm yLI} + M_{\rm yLF} = 0.$ $M_{x\rm LK} + M_{x\rm LI} + M_{x\rm LF} = 0.$ $M_{z\rm LK} + M_{z\rm LI} + M_{z\rm LF} = 0.$ These conditions give eqs. (1) \sim (18) in Table 7. ii) Shear Equations For the 1st column-frame : $X_{zDA} + X_{zDE} + X_{zJG} + X_{zJK} - 3 = 0$, : $X_{zED} - X_{zEB} - X_{zEF} + X_{zKI} - X_{zKH} - X_{zKL} + 5 = 0$, 2nd // //

From these conditions we get eqs. $(19)\sim(23)$ in Table 7.

					Le	eft-han	d side					
Eq.	φxD	φxe	φxf	φxJ	φxĸ	φxl	фуD	<i>фу</i> е	фуF	φуι	фук	φγι
(1)	5.30	-0.30		1.50								
(2)	-0.30	6.00	-0.30		1.50							
(3)		-0.03	4.90			1.50						
(4)	1.50			5.30	-0.30							
(5)		1.50		-0.30	6.00	-0.30						
(6)			1.50		-0.30	4.90						
(7)							4.61	1.20		1.00		
(8)							1.20	7.01	1.20		1.00	
(9)								1.20	4.61			1.00
(10)							1.00			4.61	1.20	
(11)								1.00		1.20	7.06	1.20
(12)									1.00		1.20	4.57
(13)												
(14)												
(15)												
(16)												
(17)												
(18)												
(19)	0.71			0.83			0.90	0.90		0.90	0.90	
(20)		0.67			0.86		-0.90		0.90	-0.90		0.90
(21)			0.80			0.80		-0.90	-0.90		-0.90	-0.90
(22)							-0.60	-0.60	-0.60	-0.60	-0.60	-0.60
(23)							0.60	0.60	0.60	0.60	0.60	0.60

Table 7 Elastic equations

Thus, we finally have twenty-three simultaneous equations in total, which give the solutions as follows:

Joint rotations	s at D,	$\varphi_{x\mathrm{D}}=+$ 0. 615,	$\varphi_{\mathcal{Y}} \mathbf{D} = -0.175,$	$\varphi_{zD} = -0.008, 5,$
Do.	at E,	$\varphi_{x\rm E} = + \ 0.\ 627,$	$\varphi_{\rm yE}=+\ 0.\ 040,$	$\varphi_{zE} = -0.002, 9,$
Do.	at F,	$\varphi_{xF} = + 0.733,$	$\varphi_{\rm YF} = + 0.239,$	$\varphi_{zF} = -0.010, 6,$
Do.	at J,	$\varphi_{x\mathrm{J}} = + 0.833,$	$\varphi_{\rm yJ}=-\ 0.\ 175,$	$\varphi_{zJ} = +0.008, 9,$
Do.	at K,	$\varphi_{x\mathrm{K}}=+\ 0.\ 944,$	$\varphi_{\mathcal{Y}}\kappa = + 0.039$,	$\varphi_{zK} = + 0.003, 2,$
Do.	at L,	$\varphi_{xL} = + 0.761,$	$\varphi_{yL} = + 0.243,$	$\varphi_{zL} = +$ 0. 010, 8,

		Right-hand									
φ≈D	φze	<i>\$</i> ¢≈F	φzj	φ≈к	φzl	ψ_{xAD}	ψx be	$\psi_{x{ m CF}}$	ψ≈ad	ψzGJ	side
						1.00					
							1.20				
					-			0.80			
						1.17	1 54				
							1.54				1
								0.80			
						1.26	-1.62		-0.84	0,72	
						1.26		-0.90	-0.84	0.72	
							1.62	-0.90	-0.84	0.72	
						1.26	-1.62		-0.84	0.72	
						1.26		-0.90	-0.84	0.72	
							1.62	-0.90	-0.84	0.72	
4.30	1.00		-0.30						1.00		
1.00	6.70	1.00		-0.30					0.93		
	1.00	3.90			-0.30				1.12		
-0.30			3.90	0.80						1.00	
	-0.30		0.80	5.50	0.80					0.86	
		-0.30		0.80	3.90					1.20	
						2.39	-1.62				-3.00
						-1.26	4.41	-0.90			5.00
							-1.62	1.96			4.00
0.71	0.67	0.80							2.58	-0.86	and the second
			0.83	0.71	1.00				-1.01	2.63	None of the second s

Table 7-continued-

and revolutions

 $\psi_{xAD} = -4.32, \qquad \psi_{xBE} = -3.98, \qquad \psi_{xCF} = -5.68,$ $\psi_{zAD} = +0.042, 2, \qquad \psi_{zGJ} = -0.039, 7.$

The end-moments are found substituting these φ 's and ψ 's into the expressions in 1). The results are shown in Table 8 and in Fig. 13~16.

The horizontal and vertical reactions at supports are determined from the end-moments by statics.

Table 8Values of end-moments (t-m)

Member	А	D	В	E	С	F	D	ΕF	
End	A	D	В	E	С	F	D	E	E
M_x	-3.705	-3.090	-4.024	-3.271	-3.958	-3.371	-0.004	+0.004	-0.032
$M_{\mathcal{Y}}$	+0.037	-0.037	-0.008	+0.008	-0.050	+0.050	+0.632	+0.890	-0.953
M_z	+0.034	+0.025	+0.036	+0.032	+0.039	+0.030	-0.020	-0.014	-0.016

Member	ΕF	D	J	Е	K	F	L	ЈК		
End	F	D	J	Е	K	F	L	J	K	
Mx	+0.032	+3.095	+3.422	+3.297	+3.773	+3.341	+3.383	-0.033	+0.033	
$M_{\mathcal{Y}}$	-0.714	-0.589	-0.588	+0.055	+0.054	+0.657	+0.660	+0.632	+0.888	
Mz	-0.024	-0.005	+0.005	-0.002	+0.002	-0.006	+0.006	+0.017	+0.012	

Member	K	L	G	J	H	K	I L		
End	K L		G	J	Η	K	I	L	
M_x	+0.055	-0.055	-4.221	-3.388	-4.996	-3.864	- 3. 935	-3.326	
$M_{\mathcal{Y}}$	-0.951	-0.707	+0.037	-0.037	-0.010	+0.010	-0.041	+0.041	
Mz	+0.014	+0.020	-0.031	-0.022	-0.031	-0.028	0.037	-0.026	

4) End-Moments Analysed Two-Dimensionally

The usual two-dimensional analysis treats the constituent plane frames ADJG, BEKH and CFLI separately. The solutions are easily carried out, and we have the results shown by broken lines in Fig. 13, which compares with the exact values, shown by full lines. Note that the two-dimensional analysis does not produce the values of M_y 's and M_z 's.

In Table 9 the end-moments are compared, and the errors produced by the conventional analysis are shown. It should be mentioned that the errors are remarkable and that they appear either on the safe side or on the dangerous side. The moments in Figs. 14, 15 and 16 are never been found by the conventional analysis, which leads us to the conclusion that the economical design can only be attained through the rigorous three-dimensional analysis. Especially, the rigid frames in space accompanying side-sways should be

No. 12

Analysis of Rigid Frames in Space by Applying Slope-Deflection Formulas No.12 61 analysed three-dimensionally, otherwise, the design will come far from economy

and considerable dangers will arise at times.

Table 9 Percentage errors (a) Frame ADJG

	MxAD	$M_{x \text{DA}}$	$M_{x\mathrm{DJ}}$	Mxjd	Mxjg	Mxgj
Three-dim. (t-m)	-3.71	-3.10	+3.10	+3.42	-3.39	-4.22
Two-dim. (t-m)	-2.98	-2.48	+2.48	+2.73	-2.73	3. 39
Error (%)	-19.7	-20.0	-20.0	-20.0	-19.5	-19.7

	Mxbe	Mxeb	Мхек	MXKE	$M_{x m KH}$	Мхнк
Three-dim. (t-m)	-4.02	-3.27	+3.30	+3.77	-3.86	-5.00
Two-dim, (t-m)	-5.84	-4.77	+4.77	+5.54	-5.53	-7.21
Error (%)	+45.2	+ 45.9	+44.6	+47.0	+43.2	+44.2

(\mathbf{c})	Frame	CFLI
· • /		

	$M_{x ext{CF}}$	Mxfc	$M_{x{ m FL}}$	Mrlf	MxLI	M_{x1L}
$Three-dim \ (t-m)$	-3.96		+3.34	+3.38	-3.33	-3.94
Two-dim. $(t-m)$	-3.24	-2.76	+2.75	+2.75	-2.75	-3.24
Error (%)	-18.2		-17.7	-18.7	-17.4	-17.8

Note: Three-dim.: Three-dimensional solution

Two-dim. : Two-dimensional solution

Frame in S	Space (2))	
1	6	ton P	Q
н	mid poin		4 ton
	I ton/m	I mid poi	int J M
E	KD		GL y
	В		2
А	Fig.	17	

17. Unsymmetrical Rigid Frame in Space (2)

rigid frame in space. The memberlengths and stiffnesses are tabulated in Table 10. The calculations will be carried out assuming, for simplicity, $\beta = 0.1$.

Fig. 17 shows an unsymmetrical

Table 10

Member	AC	B D	C D	СН	CΙ	ΕH	FΙ	G J	ΗI	IJ	HN	ΙP	JQ	ΚN	LΡ	MQ	N P	ΡQ
Length	5.0	5.0	8.0	5.0	5.0	6.0	6.0	4.0	8.0	6.0	4.0	4.0	4.0	6.0	6.0	4.0	8.0	6.0(m)
kx	0.8	0.8	1.0	1.5	1.0	1.2	1.0	1.1	1.2	1.5	0.7	1.0	1.6	1.2	1.2	1.3	1.2	1.0
ky	1.2	1.1	0.9	1.2	0.7	1.4	1.0	1.3	1.0	1.3	0.9	0.8	1.4	0.8	1.0	0.8	0.6	0.6
kz	1.0	1.0	0.7	0.8	0.9	1.2	1.0	0.9	0.8	1.4	1.3	0.9	0.9	1.2	1.2	1.4	1.2	1.0

Though the frame seems to have twenty-six unknown ϕ 's, they can be reduced to six by inspection or by referring to the compatibility condition in § 12. Taking ψ_{xAC} , ψ_{xBD} , ψ_{zGJ} , ψ_{zAC} , ψ_{zEH} and ψ_{zKN} for the independent unknowns, the others are denoted as follows:

 $\psi_{x\text{EH}} = (5/6) \times \psi_{x\text{AC}} = 0.833, 3\psi_{x\text{AC}},$

 $\psi_{x\text{KN}} = (5/6) \times \psi_{x\text{AC}} = 0.833, 3\psi_{x\text{AC}},$

 $\psi_{x\text{FI}} = (5/6) \times \psi_{x\text{BD}} = 0.833, 3\psi_{x\text{BD}},$

 $\psi_{x\text{LP}} = (5/6) \times \psi_{x\text{BD}} = 0.833, 3\psi_{x\text{BD}},$

 $\psi_{xMQ} = (4/4) \times \psi_{xGJ} = \psi_{xGJ},$

 $\psi_{zBD} = (5/5) \times \psi_{zAC} = \psi_{zAC},$

 $\psi_{z\text{FI}} = (6/6) \times \psi_{z\text{EH}} = \psi_{z\text{EH}},$

 $\psi_{zGJ} = (6/4) \times \psi_{zEH} = 1.5 \psi_{zEH}$,

 $\psi_{z\text{LP}} = (6/6) \times \psi_{z\text{KN}} = \psi_{z\text{KN}},$

 $\psi_{zMQ} = (6/4) \times \psi_{zKN} = 1.5 \psi_{zKN},$

 $\psi_{yCD} = (5/8) \, \psi_{xAC} - (5/8) \psi_{xBD} = 0.625 \psi_{xAC} - 0.625 \psi_{xBD},$

 $\psi_{y\text{HI}} = \psi_{y\text{CD}} = 0.625\psi_{x\text{AC}} - 0.625\psi_{x\text{BD}},$

 $\psi_{yNP} = \psi_{yCD} = 0.625\psi_{xAC} - 0.625\psi_{xBD},$

 $\psi_{yIJ} = (6/6)\psi_{xEI} - (4/6)\psi_{xGJ} = \psi_{xFI} - 0.666, 7\psi_{xGJ} = 0.833, 3\psi_{xBD} - 0.666, 7\psi_{xGJ}$

 $\psi_{yPQ} = \psi_{yIJ} = 0.833, 3\psi_{xBD} - 0.666, 7\psi_{xGJ},$

 $\psi_{yCH} = (6/5)\psi_{zEH} - (5/5)\psi_{zAC} = 1.2\psi_{zEH} - \psi_{zAC},$

 $\psi_{y\text{DI}} = \psi_{y\text{CH}} = 1.2\psi_{z\text{EH}} - \psi_{z\text{AC}},$

 $\psi_{yHN} = (6/4)\psi_{zKN} - (6/4)\psi_{zEH} = 1.5\psi_{zKN} - 1.5\psi_{zEH},$

 $\psi_{yIP} = \psi_{yHN} = 1.5\psi_{zKN} - 1.5\psi_{zEH}$

 $\psi_{yJQ} = \psi_{yHN} = 1.5 \psi_{zKN} - 1.5 \psi_{zEH}.$

Using these, we have the necessary expressions which follow: 1) Expressions of End-Moments

For member AC :

For

$M_{x\mathrm{AC}}=0.8(arphi_{x\mathrm{C}}+\psi_{x\mathrm{AC}}),$	$M_{xCA} = 0.8(2\varphi_{xC} + \psi_{xAC}),$
$M_{ m yAC}=-$ 0. 24 $arphi_{ m yC}$,	$M_{ m yCA}=0.24 arphi_{ m yC}$,
$M_{z m AC}=arphi_{z m C}+\psi_{z m AC}$,	$M_{zCA} = 2\varphi_{zC} + \psi_{zAC}.$
member BD :	

 $M_{xBD} = 0.8(\varphi_{xD} + \psi_{xBD}),$ $M_{xDB} = 0.8(2\varphi_{xD} + \psi_{xBD}),$

	$M_{\rm yBD} = - 0.22\varphi_{\rm yD},$	$M_{y\text{DB}} = 0.22\varphi_{y\text{D}},$										
	$M_{z\mathrm{BD}}=arphi_{z\mathrm{D}}+\psi_{z\mathrm{AC}},$	$M_{z\mathrm{DB}} = 2\varphi_{z\mathrm{D}} + \psi_{z\mathrm{AC}}.$										
For	member CD :											
	$M_{x\mathrm{CD}}=0.2(\varphi_{x\mathrm{C}}-\varphi_{x\mathrm{D}}),$	$M_{x\text{DC}} = 0.2(\varphi_{x\text{D}} - \varphi_{x\text{C}}),$										
	$M_{y{ m CD}} = 0.9(2\varphi_{y{ m C}} + \varphi_{y{ m D}} + 0.625\psi_{x{ m AC}}$ -	$-0.625\psi_{xBD}$),										
	$M_{yDC} = 0.9(\varphi_{yC} + 2\varphi_{yD} + 0.625\psi_{xAC} -$	$-0.625\psi_{xBD}$),										
	$M_{z\mathrm{CD}}=0.7(2arphi_{z\mathrm{C}}+arphi_{z\mathrm{D}}),$	$M_{zDC} = 0.7(\varphi_{zC} + 2\varphi_{zD}).$										
Foi	member CH :											
	$M_{x\text{CH}} = 1.5(2\varphi_{x\text{C}} + \varphi_{x\text{H}}),$	$M_{x\mathrm{HC}} = 1.5(\varphi_{x\mathrm{C}} + 2\varphi_{x\mathrm{H}}),$										
	$M_{yCH} = 1.2(2\varphi_{yC} + \varphi_{yH} + 1.2\varphi_{zEH} - q_{yH})$	$\psi_{zAC}),$										
	$M_{y\text{HC}} = 1.2(\varphi_{y\text{C}} + 2\varphi_{y\text{H}} + 1.2\psi_{z\text{EH}} - \psi_{z\text{AC}}),$											
	$M_{z ext{CH}}=0.16(arphi_{z ext{C}}-arphi_{z ext{H}})$,	$M_{z m HC}=0.~16(arphi_{z m H}-arphi_{z m C}).$										
For	member DI :											
	$M_{x\mathrm{DI}} = 2\varphi_{x\mathrm{D}} + \varphi_{x\mathrm{I}} - 2.083, 3,$	$M_{x\text{ID}} = \varphi_{x\text{D}} + 2\varphi_{x\text{I}} + 2.083, 3,$										
	$M_{y\mathrm{DI}}=0.7(2arphi_{y\mathrm{D}}+arphi_{y\mathrm{I}}+1.2\psi_{z\mathrm{EH}}-\psi$	<i>z</i> AC),										
	$M_{ m yID} = 0.7(arphi_{ m yD} + 2arphi_{ m yI} + 1.2 \psi_{ m zEH} - \psi_{ m zAC}),$											
	$M_{z\rm DI}=0.\ 18(\varphi_{z\rm D}-\varphi_{z\rm I}),$	$M_{z\mathrm{ID}}=0.18(\varphi_{z\mathrm{I}}-\varphi_{z\mathrm{D}}).$										
For												
	· member EH :											
	member EH : $M_{x \rm EH} = 1.2(\varphi_{x \rm H} + 0.833, 3\psi_{x \rm AC}),$	$M_{x{ m HE}}=1.2$ (2 $arphi_{x{ m H}}+$ 0. 833, 3 $\psi_{x{ m AC}}$),										
	member EH : $M_{x\text{EH}} = 1.2(\varphi_{x\text{H}} + 0.833, 3\psi_{x\text{AC}}),$ $M_{y\text{EH}} = -0.28\varphi_{y\text{H}},$	$M_{x{ m HE}}=1.2(2arphi_{x{ m H}}+0.833,3arphi_{x{ m AC}}),$ $M_{y{ m HE}}=0.28arphi_{y{ m H}},$										
	<pre>member EH : $M_{x\text{EH}} = 1.2(\varphi_{x\text{H}} + 0.833, 3\psi_{x\text{AC}}),$ $M_{y\text{EH}} = -0.28\varphi_{y\text{H}},$ $M_{z\text{EH}} = 1.2(\varphi_{z\text{H}} + \psi_{z\text{EH}}),$</pre>	$M_{x ext{HE}} = 1.2(2 arphi_{x ext{H}} + 0.833, 3 \psi_{x ext{AC}}),$ $M_{y ext{HE}} = 0.28 arphi_{y ext{H}},$ $M_{z ext{HE}} = 1.2(2 arphi_{z ext{H}} + \psi_{z ext{EH}}).$										
For	member EH : $M_{x \text{EH}} = 1.2(\varphi_{x \text{H}} + 0.833, 3\psi_{x \text{AC}}),$ $M_{y \text{EH}} = -0.28\varphi_{y \text{H}},$ $M_{z \text{EH}} = 1.2(\varphi_{z \text{H}} + \psi_{z \text{EH}}),$ member FI :	$M_{x m HE} = 1.2(2 arphi_{x m H} + 0.833, 3 \psi_{x m AC}),$ $M_{y m HE} = 0.28 arphi_{y m H},$ $M_{z m HE} = 1.2(2 arphi_{z m H} + \psi_{z m EH}).$										
For	member EH : $M_{x\text{EH}} = 1.2(\varphi_{x\text{H}} + 0.833, 3\psi_{x\text{AC}}),$ $M_{y\text{EH}} = -0.28\varphi_{y\text{H}},$ $M_{z\text{EH}} = 1.2(\varphi_{z\text{H}} + \psi_{z\text{EH}}),$ member FI : $M_{x\text{FI}} = \varphi_{x\text{I}} + 0.833, 3\psi_{x\text{BD}},$	$M_{x m HE} = 1.2(2 arphi_{x m H} + 0.833, 3 \psi_{x m AC}),$ $M_{y m HE} = 0.28 arphi_{y m H},$ $M_{z m HE} = 1.2(2 arphi_{z m H} + \psi_{z m EH}).$ $M_{x m IF} = 2 arphi_{x m I} + 0.833, 3 \psi_{x m BD},$										
For	$M_{x \text{EH}} = 1.2(\varphi_{x \text{H}} + 0.833, 3\psi_{x \text{AC}}),$ $M_{y \text{EH}} = -0.28\varphi_{y \text{H}},$ $M_{z \text{EH}} = 1.2(\varphi_{z \text{H}} + \psi_{z \text{EH}}),$ member FI : $M_{x \text{FI}} = \varphi_{x \text{I}} + 0.833, 3\psi_{x \text{ED}},$ $M_{y \text{FI}} = -0.2\varphi_{y \text{I}},$	$egin{aligned} M_{x\mathrm{HE}} &= 1.\ 2(2arphi_{x\mathrm{H}}+0.\ 833,\ 3\psi_{x\mathrm{AC}}), \ M_{y\mathrm{HE}} &= 0.\ 28arphi_{y\mathrm{H}}, \ M_{z\mathrm{HE}} &= 1.\ 2(2arphi_{z\mathrm{H}}+\psi_{z\mathrm{EH}}). \end{aligned}$ $egin{aligned} M_{x\mathrm{HE}} &= 1.\ 2(\varphi_{x\mathrm{H}}+\phi_{z\mathrm{EH}}). \ M_{x\mathrm{HE}} &= 2arphi_{x\mathrm{H}}+0.\ 833,\ 3\psi_{x\mathrm{BD}}, \ M_{y\mathrm{HE}} &= 0.\ 2arphi_{y\mathrm{I}}, \end{aligned}$										
For	$M_{x \text{EH}} = 1.2(\varphi_{x \text{H}} + 0.833, 3\psi_{x \text{AC}}),$ $M_{y \text{EH}} = -0.28\varphi_{y \text{H}},$ $M_{z \text{EH}} = 1.2(\varphi_{z \text{H}} + \psi_{z \text{EH}}),$ $m \text{ember FI} :$ $M_{x \text{FI}} = \varphi_{x \text{I}} + 0.833, 3\psi_{x \text{BD}},$ $M_{y \text{FI}} = -0.2\varphi_{y \text{I}},$ $M_{z \text{FI}} = \varphi_{z \text{I}} + \psi_{z \text{EH}},$	$egin{aligned} M_{x\mathrm{HE}} &= 1.\ 2(2arphi_{x\mathrm{H}}+0.\ 833,\ 3\psi_{x\mathrm{AC}}), \ M_{y\mathrm{HE}} &= 0.\ 28arphi_{y\mathrm{H}}, \ M_{z\mathrm{HE}} &= 1.\ 2(2arphi_{z\mathrm{H}}+\psi_{z\mathrm{EH}}). \end{aligned}$ $egin{aligned} M_{x\mathrm{HE}} &= 1.\ 2(2arphi_{z\mathrm{H}}+\psi_{z\mathrm{EH}}). \ M_{x\mathrm{HF}} &= 2arphi_{x\mathrm{II}}+0.\ 833,\ 3\psi_{x\mathrm{BD}}, \ M_{y\mathrm{HF}} &= 0.\ 2arphi_{y\mathrm{I}}, \ M_{z\mathrm{HF}} &= 2arphi_{z\mathrm{II}}+\psi_{z\mathrm{EH}}. \end{aligned}$										
For	$M_{xEH} = 1. 2(\varphi_{xH} + 0. 833, 3\psi_{xAC}),$ $M_{yEH} = -0. 28\varphi_{yH},$ $M_{zEH} = 1. 2(\varphi_{zH} + \psi_{zEH}),$ member FI : $M_{xFI} = \varphi_{xI} + 0. 833, 3\psi_{xBD},$ $M_{yFI} = -0. 2\varphi_{yI},$ $M_{zFI} = \varphi_{zI} + \psi_{zEH},$ member GJ :	$M_{x\text{HE}} = 1.2(2\varphi_{x\text{H}} + 0.833, 3\psi_{x\text{AC}}),$ $M_{y\text{HE}} = 0.28\varphi_{y\text{H}},$ $M_{z\text{HE}} = 1.2(2\varphi_{z\text{H}} + \psi_{z\text{EH}}).$ $M_{x\text{IF}} = 2\varphi_{x\text{I}} + 0.833, 3\psi_{x\text{BD}},$ $M_{y\text{IF}} = 0.2\varphi_{y\text{I}},$ $M_{z\text{IF}} = 2\varphi_{z\text{I}} + \psi_{z\text{EH}}.$										
For	$M_{xEH} = 1. 2(\varphi_{xH} + 0. 833, 3\psi_{xAC}),$ $M_{yEH} = -0. 28\varphi_{yH},$ $M_{zEH} = 1. 2(\varphi_{zH} + \psi_{zEH}),$ member FI : $M_{xFI} = \varphi_{xI} + 0. 833, 3\psi_{xBD},$ $M_{yFI} = -0. 2\varphi_{yI},$ $M_{zFI} = \varphi_{zI} + \psi_{zEH},$ member GJ : $M_{xGJ} = 1. 1(\varphi_{xJ} + \psi_{xGJ}),$	$\begin{split} M_{x\rm HE} &= 1.\ 2(2\varphi_{x\rm H} + 0.\ 833, 3\psi_{x\rm AC}),\\ M_{y\rm HE} &= 0.\ 28\varphi_{y\rm H},\\ M_{z\rm HE} &= 1.\ 2(2\varphi_{z\rm H} + \psi_{z\rm E\rm H}).\\ \end{split}$										
For	$\begin{array}{l} \text{member EH} : \\ M_{x\text{EH}} = 1.\ 2(\varphi_{x\text{H}} + 0.\ 833, 3\psi_{x\text{AC}}), \\ M_{y\text{EH}} = -0.\ 28\varphi_{y\text{H}}, \\ M_{z\text{EH}} = 1.\ 2(\varphi_{z\text{H}} + \psi_{z\text{EH}}), \\ \text{member FI} : \\ M_{x\text{FI}} = \varphi_{x\text{I}} + 0.\ 833, 3\psi_{x\text{BD}}, \\ M_{y\text{FI}} = -0.\ 2\varphi_{y\text{I}}, \\ M_{z\text{FI}} = \varphi_{z\text{I}} + \psi_{z\text{EH}}, \\ \text{member GJ} : \\ M_{x\text{GJ}} = 1.\ 1(\varphi_{x\text{J}} + \psi_{x\text{GJ}}), \\ M_{y\text{GJ}} = -0.\ 26\varphi_{y\text{J}}, \end{array}$	$\begin{split} M_{x\rm HE} &= 1.\ 2(2\varphi_{x\rm H} + 0.\ 833, 3\phi_{x\rm AC}),\\ M_{y\rm HE} &= 0.\ 28\varphi_{y\rm H},\\ M_{z\rm HE} &= 1.\ 2(2\varphi_{z\rm H} + \psi_{z\rm E\rm H}).\\ \end{split}$ $\begin{split} M_{x\rm IF} &= 2\varphi_{x\rm I} + 0.\ 833, 3\phi_{x\rm BD},\\ M_{y\rm IF} &= 0.\ 2\varphi_{y\rm I},\\ M_{z\rm IF} &= 2\varphi_{z\rm I} + \phi_{z\rm E\rm H}.\\ \end{split}$ $\begin{split} M_{x\rm IG} &= 1.\ 1(2\varphi_{x\rm J} + \phi_{x\rm G\rm J}),\\ M_{y\rm JG} &= 0.\ 26\varphi_{y\rm J}, \end{split}$										

 $M_{zGJ} = 0.9(\varphi_{zJ} + 1.5\varphi_{zEH}),$ $M_{zJG} = 0.9(2\varphi_{zJ} + 1.5\varphi_{zEH}).$

For member HI :

 $M_{x\rm HI} = 0.24(\varphi_{x\rm H} - \varphi_{x\rm I}),$ $M_{x\rm 1H} = 0.24(\varphi_{x\rm I} - \varphi_{x\rm H}),$

 $M_{yH1} = 2\varphi_{yH} + \varphi_{yI} + 0.625\psi_{xAC} - 0.625\psi_{xBD},$ $M_{y1H} = \varphi_{yH} + 2\varphi_{yI} + 0.625\psi_{xAC} - 0.625\psi_{xBD},$

$$M_{z\rm HI} = 0.8(2\varphi_{z\rm H} + \varphi_{z\rm I}),$$
 $M_{z\rm IH} = 0.8(\varphi_{z\rm H} + 2\varphi_{z\rm I}).$

For member IJ :

$$\begin{split} M_{xIJ} &= 0.\ 30(\varphi_{xI} - \varphi_{xJ}), & M_{xJI} = 0.\ 3(\varphi_{xJ} - \varphi_{xI}), \\ M_{yIJ} &= 1.\ 3(2\varphi_{yI} + \varphi_{yJ} + 0.\ 833,\ 3\varphi_{xBD} - 0.\ 666,\ 7\varphi_{xGJ}), \\ M_{yJI} &= 1.\ 3(\varphi_{yI} + 2\varphi_{yJ} + 0.\ 833,\ 3\varphi_{xBD} - 0.\ 666,\ 7\varphi_{xGJ}), \\ M_{zIJ} &= 1.\ 4(2\varphi_{zI} + \varphi_{zJ}) - 3, & M_{zJI} = 1.\ 4(\varphi_{zI} + 2\varphi_{zJ}) + 3. \end{split}$$

For member HN :

$$\begin{split} M_{x\rm HN} &= 0.\ 7(2\varphi_{x\rm H} + \varphi_{x\rm N}), & M_{x\rm NH} &= 0.\ 7(\varphi_{x\rm H} + 2\varphi_{x\rm N}), \\ M_{y\rm HN} &= 0.\ 9(2\varphi_{y\rm H} + \varphi_{y\rm N} + 1.\ 5\varphi_{z\rm KN} - 1.\ 5\varphi_{z\rm EH}), \\ M_{y\rm NH} &= 0.\ 9(\varphi_{y\rm H} + 2\varphi_{y\rm N} + 1.\ 5\ \varphi_{z\rm KN} - 1.\ 5\ \varphi_{z\rm EH}), \\ M_{z\rm HN} &= 0.\ 26(\varphi_{z\rm H} - \varphi_{z\rm N}), & M_{z\rm NH} &= 0.\ 26(\varphi_{z\rm N} - \varphi_{z\rm H}). \end{split}$$

For member IP :

$$\begin{split} M_{xIP} &= 2\varphi_{xI} + \varphi_{xP}, & M_{xPI} &= \varphi_{xI} + 2\varphi_{xP}, \\ M_{yIP} &= 0.\ 8(2\varphi_{yI} + \varphi_{yP} + 1.\ 5\psi_{zKN} - 1.\ 5\psi_{zEH}), \\ M_{yPI} &= 0.\ 8(\varphi_{yI} + 2\varphi_{yP} + 1.\ 5\psi_{zKN} - 1.\ 5\psi_{zEH}), \\ M_{zIP} &= 0.\ 18(\varphi_{zI} - \varphi_{zP}), & M_{zPI} &= 0.\ 18(\varphi_{zP} - \varphi_{zI}). \end{split}$$

For member JQ :

$$\begin{split} M_{xJQ} &= 1.6(2\varphi_{xJ} + \varphi_{xQ}), \\ M_{xQJ} &= 1.6(\varphi_{xJ} + 2\varphi_{xQ}), \\ M_{yJQ} &= 1.4(2\varphi_{yJ} + \varphi_{yQ} + 1.5\psi_{zKN} - 1.5\psi_{zEH}), \end{split}$$

$$M_{
m yQJ}=1.4(arphi_{
m yJ}+2arphi_{
m yQ}+1.5 \phi_{
m zKN}-1.5 \phi_{
m zEH}),$$

$$M_{zJQ} = 0.18(\varphi_{zJ} - \varphi_{zQ}), \qquad \qquad M_{zQJ} = 0.18(\varphi_{zQ} - \varphi_{zJ}).$$

For member KN :

$$M_{xKN} = 1.2(\varphi_{xN} + 0.833, 3\psi_{xAC}), \qquad M_{xNK} = 1.2(2\varphi_{xN} + 0.833, 3\psi_{xAC})$$

	$M_{ m yKN}=-$ 0. 16 $\varphi_{ m yN}$,	$M_{ m yNK}=0.16arphi_{ m yN}$,
	$M_{z\mathrm{KN}} = 1.2(\varphi_{z\mathrm{N}} + \psi_{z\mathrm{KN}}),$	$M_{z\rm NK}=1.2(2arphi_{z\rm N}+\psi_{z\rm KN}).$
For	member LP :	
	$M_{x\text{LP}} = 1.2(\varphi_{x\text{P}} + 0.833, 3\psi_{x\text{BD}}),$	$M_{xPL} = 1.2(2\varphi_{xP} + 0.833, 3\psi_{xBD}),$
	$M_{yLP} = -0.2\varphi_{yP},$	$M_{y\text{PL}} = 0.2\varphi_{y\text{P}},$
	$M_{z L P} = 1.2(\varphi_{z P} + \psi_{z K N}),$	$M_{z\text{PL}} = 1.2(2\varphi_{z\text{P}} + \psi_{z\text{KN}}).$
For	member MQ :	
	$M_{xMQ} = 1.3(\varphi_{xQ} + \psi_{xGJ}),$	$M_{xQM} = 1.3(2\varphi_{xQ} + \psi_{xGJ}),$
	$M_{yMQ} = -0.16\varphi_{yQ},$	$M_{yQM}=0.16 \varphi_{yQ},$
	$M_{z\mathrm{MQ}} = 1.4(\varphi_{z\mathrm{Q}} + 1.5 \psi_{z\mathrm{KN}}),$	$M_{zQM} = 1.4(2\varphi_{zQ} + 1.5\phi_{zKN}).$
For	member NP :	
	$M_{x\rm NP}=0.\ 24(\varphi_{x\rm N}-\varphi_{x\rm P}),$	$M_{x\rm PN}=0.24(\varphi_{x\rm P}-\varphi_{x\rm N}),$
	$M_{yNP} = 0.6(2\varphi_{yN} + \varphi_{yP} + 0.625\psi_{xAC} -$	$-0.625\psi_{xBD}$),
	$M_{yPN} = 0.6(\varphi_{yN} + 2\varphi_{yP} + 0.625\psi_{xAC} -$	$0.625\psi_{xBD}$),

$$M_{zNP} = 1.2(2\varphi_{zH} + \varphi_{zP}) - 6,$$
 $M_{zPN} = 1.2(\varphi_{zN} + 2\varphi_{zP}) + 6$

For member PQ :

$M_{x\mathrm{PQ}}=0.2(arphi_{x\mathrm{P}}-arphi_{x\mathrm{Q}}),$	$M_{xQP} = 0. \ 2(\varphi_{xQ} - \varphi_{xP}),$
$M_{yPQ} = 0.6(2\varphi_{yP} + \varphi_{yQ} + 0.833, 3\psi_{xBD})$	$\phi = 0.666,7\psi_{x{ m GJ}}),$
$M_{y QP}=0.6(arphi_{yP}+2arphi_{yQ}+0.833,3arphi_{xBD})$	$\phi = 0.666, 7\psi_{x\rm GJ}),$
$M_{z P Q} = 2 \varphi_{z P} + \varphi_{z Q},$	$M_{zQP} = \varphi_{zP} + 2\varphi_{zQ}.$

2) Expressions of End-Shears

Observing constituent frames in row:

 $X_{xCA} = -(1/l_{CA})(M_{zAC} + M_{zCA}) = -(1/5)(3\varphi_{zC} + 2\psi_{zAC}) = -0.6\varphi_{zC} - 0.4\psi_{zAC}$ $X_{x\text{DB}} = -(1/l_{\text{DB}})(M_{z\text{BD}} + M_{z\text{DB}}) = -(1/5)(3\varphi_{z\text{D}} + 2\psi_{z\text{AC}}) = -0.6\varphi_{z\text{D}} - 0.4\psi_{z\text{AC}},$ $X_{x \text{CH}} = -(1/l_{\text{CH}})(M_{y \text{CH}} + M_{y \text{HC}}) = -(1/5)(3.6\varphi_{y \text{C}} + 3.6\varphi_{y \text{H}} + 2.88\psi_{z \text{EH}} - 2.4\psi_{z \text{AC}})$ $= -0.72\varphi_{yC} - 0.72\varphi_{yH} - 0.576\psi_{zEH} + 0.48\psi_{zAC}$

 $X_{x\text{DI}} = -(1/l_{\text{DI}})(M_{y\text{DI}} + M_{y\text{ID}}) = -(1/5)(2.1\varphi_{y\text{D}} + 2.1\varphi_{y\text{I}} + 1.68\psi_{z\text{EH}} - 1.4\psi_{z\text{AC}})$ $= -0.42\varphi_{yD} - 0.42\varphi_{yI} - 0.336\varphi_{zEH} + 0.28\varphi_{zAC},$

. .

. .

$$\begin{split} X_{x\text{HE}} &= -(1/l_{\text{HE}})(M_{z\text{HE}} + M_{z\text{EH}}) = -(1.2/6)(3\varphi_{z\text{H}} + 2\varphi_{z\text{EH}}) = -0.6\varphi_{z\text{H}} - 0.4\varphi_{z\text{EH}}, \\ X_{z\text{HF}} &= -(1/l_{\text{HF}})(M_{z\text{HF}} + M_{z\text{FI}}) = -(1/6)(3\varphi_{z\text{H}} + 2\varphi_{z\text{EH}}) = -0.5\varphi_{z\text{I}} - 0.333, 3\varphi_{z\text{EH}}, \\ X_{z\text{HC}} &= -(1/l_{\text{JG}})(M_{z\text{JG}} + M_{z\text{GJ}}) = -(0.9/4)(3\varphi_{z\text{I}} + 3\varphi_{z\text{EH}}) = -0.675\varphi_{z\text{J}} - 0.675\varphi_{z\text{EH}}, \\ X_{z\text{HC}} &= X_{z\text{CH}} = -0.72\varphi_{y\text{C}} - 0.72\varphi_{y\text{H}} - 0.576\varphi_{z\text{EH}} + 0.48\varphi_{z\text{AC}}, \\ X_{z\text{HC}} &= X_{z\text{DI}} = -0.42\varphi_{y\text{D}} - 0.42\varphi_{y\text{I}} - 0.336\varphi_{z\text{EH}} + 0.28\varphi_{z\text{AC}}, \\ X_{z\text{HN}} &= -(1/l_{\text{HN}})(M_{y\text{HN}} + M_{y\text{NH}}) = -(0.9/4)(3\varphi_{y\text{H}} + 3\varphi_{y\text{N}} + 3\varphi_{z\text{KN}} - 3\varphi_{z\text{EH}}) \\ &= -0.675\varphi_{y\text{H}} - 0.675\varphi_{y\text{N}} - 0.675\varphi_{z\text{KN}} + 0.675\varphi_{z\text{EH}}, \\ X_{x\text{IP}} &= -(1/l_{\text{IP}})(M_{y\text{IP}} + M_{y\text{PI}}) = -(0.8/4)(3\varphi_{y\text{I}} + 3\varphi_{y\text{P}} + 3\varphi_{z\text{KN}} - 3\varphi_{z\text{EH}}) \\ &= -0.6\varphi_{y\text{I}} - 0.6\varphi_{y\text{P}} - 0.6\varphi_{z\text{KN}} + 0.6\varphi_{z\text{EH}}, \\ X_{x\text{IQ}} &= -(1/l_{\text{IP}})(M_{y\text{IP}} + M_{y\text{PI}}) = -(1.4/4)(3\varphi_{y\text{J}} + 3\varphi_{y\text{Q}} + 3\varphi_{z\text{KN}} - 3\varphi_{z\text{EH}}) \\ &= -1.05\varphi_{y\text{J}} - 1.05\varphi_{y\text{Q}} - 1.05\varphi_{z\text{KN}} + 1.05\varphi_{z\text{EH}}, \\ X_{z\text{NK}} &= -(1/l_{\text{IN}})(M_{z\text{NK}} + M_{z\text{KN}}) = -(1.2/6)(3\varphi_{z\text{R}} + 2\varphi_{z\text{KN}}) = -0.6\varphi_{z\text{P}} - 0.4\varphi_{z\text{KN}}, \\ X_{x\text{QM}} &= -(1/l_{\text{PL}})(M_{z\text{QM}} + M_{z\text{MQ}}) = -(1.4/4)(3\varphi_{z\text{Q}} + 3\varphi_{z\text{KN}}) = -0.6\varphi_{z\text{P}} - 0.4\varphi_{z\text{KN}}, \\ &= -1.05\varphi_{z\text{Q}} - 1.05\varphi_{z\text{KN}}, \\ &= -1.05\varphi_{z\text{Q}} - 1.05\varphi_{z\text{KN}}, \\ &= -1.05\varphi_{z\text{Q}} - 1.05\varphi_{z\text{KN}}, \\ &= -1.05\varphi_{z\text{R}} - 1.05\varphi_{z\text{R}}, \\ &= -1.05\varphi_{z\text{R}} - 1.05\varphi_{z\text{R}}, \\ \\ &= -1.05\varphi_{z\text{R}} - 1.05\varphi_{z\text{R}$$

 $X_{xNH} = X_{xHN} = -0.675\varphi_{yH} - 0.675\varphi_{yN} - 0.675\varphi_{zKN} + 0.675\psi_{zEH}$ $X_{xPI} = X_{xIP} = -0.6\varphi_{yI} - 0.6\varphi_{yP} - 0.6\psi_{zKN} + 0.6\psi_{zEH}$ $X_{xQJ} = X_{xJQ} = -1.05\varphi_{yJ} - 1.05\varphi_{yQ} - 1.05\varphi_{zKN} + 1.05 \psi_{zEH}$

Similarly in column :

$$X_{zCA} = -(1/l_{CA})(M_{xAC} + M_{xCA}) = -(0.8/5)(3\varphi_{xC} + 2\psi_{xAC})$$

= -0.48\varphi_{xC} - 0.32\varphi_{xAC},
$$X_{zHE} = -(1/l_{HE})(M_{xHE} + M_{xEH}) = -(1.2/6)(3\varphi_{xH} + 1.667\psi_{xAC})$$

= -0.6\varphi_{xH} - 0.333, 3\varphi_{xAC}

$$X_{zNK} = -(1/l_{NK})(M_{xNK} + M_{xKN}) = -(1.2/6)(3\varphi_{xN} + 1.667\psi_{xAC})$$
$$= -0.6\varphi_{xN} - 0.333, 3\psi_{xAC},$$

 $X_{zCD} = -(1/l_{CD})(M_{yCD} + M_{yDC}) = -(0.9/8)(3\varphi_{yC} + 3\varphi_{yD} + 1.25\psi_{xAC} - 1.25\psi_{xBD})$ $= -0.337, 5\varphi_{yC} - 0.337, 5\varphi_{yD} - 0.140, 6\psi_{xAC} + 0.140, 6\psi_{xBD},$

$$X_{zHI} = -(1/l_{HI})(M_{yHI} + M_{yIH}) = -(1/8)(3\varphi_{yH} + 3\varphi_{yI} + 1.25\psi_{xAC} - 1.25\psi_{xBD})$$

= -0.375\varphi_{yH} - 0.375\varphi_{yI} - 0.156, 25\varphi_{xAC} + 0.156, 25\varphi_{xBD},

 $\begin{aligned} X_{z\text{NP}} &= -(1/l_{\text{NP}})(M_{y\text{NP}} + M_{y\text{PN}}) = -(0.6/8)(3\varphi_{y\text{N}} + 3\varphi_{y\text{P}} + 1.25\varphi_{x\text{AC}} - 1.25\varphi_{x\text{BD}}) \\ &= -0.225\varphi_{y\text{N}} - 0.225\varphi_{y\text{P}} - 0.093,75\varphi_{x\text{AC}} + 0.093,75\varphi_{x\text{BD}}, \end{aligned}$

 $X_{zDB} = -(1/l_{BD})(M_{xBD} + M_{xDB}) = -(0.8/5)(3\varphi_{xD} + 2\psi_{xBD})$ = $-0.48\varphi_{xD} - 0.32\psi_{xBD}$,

$$X_{zIF} = -(1/l_{IF})(M_{xIF} + M_{xF1}) = -(1/6)(3\varphi_{xI} + 1.667\varphi_{xBD})$$
$$= -0.5\varphi_{xI} - 0.277, 8\varphi_{xBD},$$

$$X_{zPL} = -(1/l_{PL})(M_{xPL} + M_{xLP}) = -(1.2/6)(3\varphi_{xP} + 1.667\varphi_{xBD})$$
$$= -0.6\varphi_{xP} - 0.333, 3\varphi_{xBD},$$

 $X_{zDC} = X_{zCD} = -0.337, 5\varphi_{yC} - 0.337, 5\varphi_{yD} - 0.140, 6\varphi_{xAC} + 0.140, 6\varphi_{xBD}$

 $X_{zIH} = X_{zHI} = -0.375\varphi_{yH} - 0.375\varphi_{yI} - 0.156, 25\varphi_{xAC} + 0.156, 25\varphi_{xBD}$

 $X_{zPN} = X_{zNP} = -0.225\varphi_{yN} - 0.225\varphi_{yP} - 0.093,75\psi_{xAC} + 0.093,75\psi_{xBD}$

 $\begin{aligned} X_{zIJ} &= -(1/l_{IJ})(M_{yIJ} + M_{yJI}) = -(1, 3/6)(3\varphi_{yI} + 3\varphi_{yJ} + 1, 666, 7\varphi_{xBD} - 1, 333, 3\varphi_{xGJ}) \\ &= -0.65\varphi_{yI} - 0.65\varphi_{yJ} - 0.361, 1\varphi_{xBD} + 0.288, 9\varphi_{xGJ}, \end{aligned}$

 $\begin{aligned} X_{zPQ} &= -(1/l_{PQ})(M_{yPQ} + M_{yQP}) = -(0.6/6)(3\varphi_{yP} + 3\varphi_{yQ} + 1.667\varphi_{xBD} - 1.333\varphi_{xGJ}) \\ &= -0.3\varphi_{yP} - 0.3\varphi_{yQ} - 0.166,7\varphi_{xBD} + 0.133,3\varphi_{xGJ}, \end{aligned}$

 $\begin{aligned} X_{zJG} &= -(1/l_{JG})(M_{xJG} + M_{xGJ}) = -(1, 1/4)(3\varphi_{xJ} + 2\psi_{xGJ}) = -0.825\varphi_{xJ} - 0.55\psi_{xGJ}, \\ X_{zQM} &= -(1/l_{QM})(M_{xQM} + M_{xMQ}) = -(1, 3/4)(3\varphi_{xQ} + 2\psi_{xGJ}) \end{aligned}$

$$= -0.975\varphi_{xQ} - 0.65\psi_{xGJ}$$

 $X_{zJI} = X_{zIJ} = -0.65\varphi_{yI} - 0.65\varphi_{yJ} - 0.361, 1\varphi_{xBD} + 0.288, 9\varphi_{xGJ},$ $X_{zQP} = X_{zPQ} = -0.3\varphi_{yP} - 0.3\varphi_{yQ} - 0.166, 7\varphi_{xBD} + 0.133, 3\varphi_{xGJ}.$

3) Elastic Equations

i) Joint Equilibrium EquationsAbout x axis :

At joint C, $M_{xCA} + M_{xCD} + M_{xCH} = 0$.

 $" \quad \mathsf{D}, \quad M_{x\mathsf{DB}} + M_{x\mathsf{DC}} + M_{x\mathsf{DI}} = 0.$

At joint H, $M_{xHC} + M_{xHE} + M_{xHI} + M_{xHN} = 0$.

- " I, $M_{xID} + M_{xIF} + M_{xIH} + M_{xIJ} + M_{xIP} = 0.$
- " J, $M_{xJG} + M_{xJI} + M_{xJQ} = 0.$
- " N, $M_{xNH} + M_{xNK} + M_{xNP} = 0.$
- " P, $M_{xPI} + M_{xPL} + M_{xPN} + M_{xPQ} = 0.$
- " Q, $M_{xQJ} + M_{xQM} + M_{xQP} = 0$.

About y axis :

At joint C,
$$M_{yCA} + M_{yCD} + M_{yCH} = 0$$
.

- " D, $M_{yDB} + M_{yDC} + M_{yDI} = 0$.
- " H, $M_{yHC} + M_{yHE} + M_{yHI} + M_{yHN} = 0.$
- " I, $M_{yID} + M_{yIF} + M_{yIH} + M_{yIJ} + M_{yIP} = 0.$
- " J, $M_{yJG} + M_{yJI} + M_{yJQ} = 0.$
- " N, $M_{yNH} + M_{yNK} + M_{yNP} = 0.$
- " P, $M_{yPI} + M_{yPL} + M_{yPN} + M_{yPQ} = 0$.
- " Q, $M_{yQJ} + M_{yQM} + M_{yQP} = 0$.

About z axis :

At joint C, $M_{zCA} + M_{zCD} + M_{zCH} = 0.$ " D, $M_{zDB} + M_{zDC} + M_{zDI} = 0.$ " H, $M_{zHC} + M_{zHE} + M_{zHI} + M_{zHN} = 0.$ " I, $M_{zID} + M_{zIF} + M_{zIH} + M_{zIJ} + M_{zIP} = 0.$ " J, $M_{zJG} + M_{zJI} + M_{zJQ} = 0.$

- M N, $M_{zNH} + M_{zNK} + M_{zNP} = 0$.
 - $\mathscr{M} = \mathbf{P}, \quad M_{z\mathrm{PI}} + M_{z\mathrm{PL}} + M_{z\mathrm{PN}} + M_{z\mathrm{PQ}} = 0.$
 - $\mathscr{U} \quad \mathbf{Q}, \quad M_{z\mathbf{Q}\mathbf{J}} + M_{z\mathbf{Q}\mathbf{M}} + M_{z\mathbf{Q}\mathbf{P}} = 0.$
- ii) Horizontal Shear Equations

For the lst column-frame :

 $X_{zCA} + X_{zHE} + X_{zNK} + X_{zCD} + X_{zH1} + X_{zNP} = 0.$

Table 11 Elastic equations

Fa	Left-hand side															
Eq.	φxc	φxd	φx н	φxI	φxJ	φxn	φx P	φxQ	фус	фуд	фун	φуι	φуι	φyn	фур	φyQ
1 2 3 4 5	$ \begin{array}{r} 4.800 \\ -0.200 \\ 1.500 \end{array} $	$ \begin{array}{r} -0.200 \\ 3.800 \\ 1.000 \end{array} $	1.500 7.040 -0.240	$1.000 \\ -0.240 \\ 6.540 \\ -0.300$	-0.300 5.700	0.700	1.000	1.600					The second se			
6 7 8 9 10			0.700	1.000	1.600	4.040 -0.240	$ \begin{array}{r} -0.240 \\ 4.840 \\ -0.200 \end{array} $	-0.200 6.000	4. 440 0. 900	0. 900 3. 420	1.200	0.700				
$11 \\ 12 \\ 13 \\ 14 \\ 15$									1.200	0.700	6. 480 1. 000 0. 900	1.000 7.800 1.300 0.800	1.300 5.660	0.900 3.160 0.600	0.800 0.600 4.200	1. 400 0. 600
16 17 18 19 20													1.400		0.600	4.160
21 22 23 24 25	0. 800		1.000			1.000			0. 563	0. 563	0.625	0.625		0.375	0.375	
26 27 28 29 30		0.800		0. 833	1.100		1.000	1.300	-0.563 -1.200 1.440	-0.563 -0.700 0.840	-0.625 -1.200 0.090 1.350	$\begin{array}{r} 0.458 \\ -0.867 \\ -0.700 \\ -0.360 \\ 1.200 \end{array}$	$1.083 \\ -0.867 \\ -2.100 \\ 2.100$	-0.375 -1.350 1.350	$0.125 \\ -0.400 \\ -1.200 \\ 1.200$	$0.500 \\ -0.400 \\ -2.100 \\ 2.100$
Table 11-continued-

,														Right-hand
φzc	φzD	Фzн	φ≈I	φει	φzn	φzp	φzQ	ψ_{xAC}	$\psi_{x ext{BD}}$	ψ́xGJ	ψΖΑΟ	¢≈ен	ψzkn	side
								0.800	0.800					2.083
								1.000	0.833	1.100				-2.083
								1.000	1.000	1 300				
								0.563 0.563	$-0.563 \\ -0.563$	1.000	$-1.200 \\ -0.700$	$1.440 \\ 0.840$		
								0.625 0.625 0.375	-0.625 0.458 1.083 -0.375	-0.867 -0.867	$-1.200 \\ -0.700$	$0.090 \\ -0.360 \\ -2.100 \\ -1.350$	1.350 1.200 2.100 1.350	
								0.375	0.125	-0.400		-1.200	1.200	
3.560 0.700	0.700 3.580	-0.160	-0.180						0.550	-0.400	1.000 1.000	-2.100	2.100	
-0.160	-0.180	4.420 0.800	0.800 6.760	1.400	-0.260	-0,180						1.200 1.000		3.000
		-0.260	1.400 - 0.180	4.780	$5.060 \\ 1.200$	1.200 6.980	-0.180					1.350	1.200 1.200	$ \begin{array}{r} -3.\ 000 \\ 6.\ 000 \\ -6.\ 000 \\ \end{array} $
	, and a second and a			-0.180		1.000	4.980	2.296	-0.651				2.100	
								-0.651	$3.083 \\ -0.704$	-0.704 2.163				
1.000	1.000	1.200	1.000	1.350	1.200	1.200	2, 100				$2.600 \\ -1.520$	-1.520 9.290 -4.650	-4.650 8.350	

For the 2nd column-frame:

 $X_{z\text{DB}} + X_{z\text{IF}} + X_{z\text{PL}} - X_{z\text{DC}} - X_{z\text{IH}} - X_{z\text{PN}} + X_{z\text{IJ}} + X_{z\text{PQ}} = 0.$

For the 3rd column-frame:

 $X_{zJG} + X_{zQM} - X_{zJI} - X_{zQP} = 0.$

For the 1st row-frame :

 $X_{xCA} + X_{xDB} - X_{xCH} - X_{xDI} = 0.$

For the 2nd row frame:

$$X_{x \text{HE}} + X_{x \text{IF}} + X_{x \text{JG}} + X_{x \text{HC}} + X_{x \text{ID}} - X_{x \text{HN}} - X_{x \text{IP}} - X_{x \text{JQ}} = 0.$$

For the 3rd row frame:

$$X_{x\mathrm{NK}} + X_{x\mathrm{PL}} + X_{x\mathrm{QM}} + X_{x\mathrm{NH}} + X_{x\mathrm{PI}} + X_{x\mathrm{QJ}} = 0.$$

Substituting the expressions in 1) and 2), the required elastic equations are obtained as shown in Table 11, in which twenty-four from the beginning are the joint equilibrium equations and the remainders are the horizontal shear equations.

4) Solutions Obtained

Simultaneous equations in Table 11 are solved, and we have the joint rotations;

at	joint	С,	$\varphi_{xC} = + 0.049,75,$	$\varphi_{\mathcal{Y}C} = -0.016, 63,$	$\varphi_{\text{eC}} = -0.012, 36,$
	//	D,	$\varphi_{xD} = +$ 0. 697, 2,	$\varphi_{yD} = -0.017, 36,$	$\varphi_{zC} = + 0.025, 36,$
	//	Н,	$\varphi_{xH} = -0.014,73,$	$\varphi_{\mathcal{Y}^{H}} = + 0.021,97,$	$\varphi_{zH} = -$ 0. 027, 17,
	//	Ι,	$\varphi_{xI} = -0.425, 0,$	$\varphi_{yI} = + 0.030, 89,$	$\varphi_{zI} = +0.577, 9,$
	//	J,	$\varphi_{xJ} = -0.029,68,$	$\varphi_{yJ} = + 0.082, 26,$	$\varphi_{zJ} = -0.796, 9,$
	//	N,	$\varphi_{xN} = +$ 0. 033, 81,	$\varphi_{yN} = +$ 0.065, 21,	$\varphi_{zN} = +$ 1. 488, 1,
	//	Ρ,	$\varphi_{xP} = + 0.123, 7,$	$\varphi_{yP} = + 0.046, 74,$	$\varphi_{z\mathbf{P}} = -1.109, 2,$
	//	Q,	$\varphi_{xQ} = +0.005,594,$	$\varphi_{yQ} = + 0.094, 59,$	$\varphi_{zQ} = +0.266, 2,$

and revolutions

 $\psi_{xAC} = -0.096, 59,$ $\psi_{xBD} = -0.164, 4,$ $\psi_{xGJ} = +0.029, 73,$ $\psi_{zAC} = +0.021, 90,$ $\psi_{zEH} = +0.035, 56,$ $\psi_{zKN} = -0.171, 3.$

5) Results Obtained

Using these φ 's and ψ 's, end-moments in 1) are now determined. The results are found in Table 12. In Fig. 18~20 the moment diagrams are shown by full lines. The reactions at supports are also computed and are shown in Fig. 21.

Member End	A	С	В	D	С	D	C	H	
End	A						СН		
		C	В	D	C	D	C	Н	
Mx	-0.038	+0.002	+0.426	+0.984	-0.130	+0.130	+0.127	+0.030	
$M_{\mathcal{Y}}$	+0.004	-0.004	+0.004	-0.004	-0.007	-0.008	+0.011	+0.058	
Mz	+0.010	-0.003	+0.047	+0.073	+0.000	+0.027	+0.002	-0.002	
Member	D	I	E	H	F	1	G	J	
End	D	I	E	H	F	Ι	G	J	
Mx	-1.114	+1.931	-0.114	-0.132	-0.562	-0.987	+0.000	-0.033	
$M_{\mathcal{Y}}$	+0.012	+0.046	-0.006	+0.006	-0.006	+0.006	-0.021	+0.021	
Mz	-0.100	+0.100	+0.010	-0.023	+0.613	+1.191	-0.669	-1.386	
Member	H	I	I	J	H	N	I	Р	
End	H	I	I	J	H	N	I	Р	
Mx	+0.099	-0.099	-0.119	+0.119	+0.003	+0.037	-0.726	-0.178	
$M_{\mathcal{Y}}$	+0.117	+0.126	-0.017	+0.050	-0.181	-0.142	-0.161	-0.149	
Mz	+0.419	+0.903	-2.500	+1.578	-0.394	+0.394	+0.304	-0.304	
Member	J	5	KI	N	L	P	M	Q	
End	J	Q	K	N	L	Р	M	Q	
. Mx	-0.086	-0.030	-0.056	-0.015	-0.016	+0.133	+0.046	+0.053	
$M_{\mathcal{Y}}$	-0.072	-0.056	-0.010	+0.010	-0.009	+0.009	-0.015	+0.015	
Mz	-0.191	+0.191	+1.580	+3.370	-1.537	-2.870	+0.013	+0.386	

S. Yoshi	DA
----------	----

Member	N	Р	Р	Q
End	Ν	Р	Р	Q
Mx	-0.022	+0.022	+0.024	-0.024
$M_{\mathcal{Y}}$	+0.132	+0.121	+0.019	+0.046
Mz	-3.760	+5.120	-1.952	-0.577
			ļ	

Table 12-continued-

6) Comparison with the Current Solutions

The frame is analysed two-dimensionally and the results are compared with the values above obtained, see Table 13. Also, they are shown by broken lines in Fig. 18~20. Serious errors produced by the two-dimensional analysis are found in Table 13. Especially, the percentages enclosed by the brackets are noticeable. In the 2nd-and the 3rd-row-frames, the differences between exact values (M_x) and those obtained by the conventional solution (M) are remarkable. The reason will be such that while the 2nd-row-frame tends to deflect towards negative x and the 3rd-row-frame tends to positive x, the connecting girders tend to prevent these swayings. The existence of the connecting girders are not taken into account in the two-dimensional analysis.

Member	Е	Н	F	FΙ		J	H	I	IJ		
End	Е	H	F	I	G	J	Н	I	I	J	
 M	+0.109	-0.162	+0.971	+1.625	-0.422	-1.272	+0.162	+0.866	-2.491	+1.272	
Mz	+0.010	-0.023	+0.613	+1.191	-0.669	-1.386	+0.419	+0.903	-2.500	+1.578	
(M-Mz)/Mz	(+990)	(+604)	+58.4	+36.4	- 36. 9	-8.2	-61.3	-4.1	-0.4	-19.4(%	
Н	-0.009		+0.433		-0.424				s		
Hx	-0.002		+0.300		-0.514						
(H-Hx)/Hx	(+350)		+33.3		-17.5					(%	
V	-0.129		+5.238		+1.797						
$V_{\mathcal{Y}}$	-0.144		+5.208		+1.875						
$(V - V_y) / V_y$	-10.4		+0.6		-4.2					(%	

Table 13 Percentage errors(a) The 2nd-row-frame

Member	KN		LP		M	Q	N	Р	Р	Q
End	К	N	L	Р	М	Q	N	Р	Р	Q
M	+1.500	+3.465	-1.861	-3.258	-0.237	+0.339	-3.465	+5.173	-1.915	-0.340
M_z	+1.580	+3.370	-1.537	-2.870	+0.013	+0.386	-3.760	+5.120	-1.952	-0.577
(M-Mz)/Mz	-5.1	+2.8	+21.1	+13.5	—	-12.2	-7.8	+1.0	-1.9	-41.1(%)
H	+0.828		-0.853		+0.026	·				
Hx	+0.825		-0.735	1	+0.100					
(H-Hx)/Hx	+0.4		+16.1		-74.0					(%)
V	+3.214		+2.933		-0.376					
$V_{\mathcal{Y}}$	+2.840		+3.366		-0.450					
(V - Vy)/Vy	+13.2		-12.9		-16.4					(%)

(b) The 3rd-row-frame

(c) The 2nd-column-frame

			-							
Member	В	B D		I	L	Р	DI		ΙP	
End	В	D	F	I	L	P	D	I	I	Р
M	+0.413	+1.024	-0.673	-1.141	-0.052	+0.143	-1.024	+1.912	-0.772	-0.142
M_x	+0.426	+0.984	-0.562	-0.987	-0.016	+0.133	-1.114	+1.931	-0.726	-0.178
(M-Mx)/Mx	-3.1	+4.1	+19.8	+15.6	(+225)	+7.5	-8.1	-1.0	+6.3	-25.4(%
H	-0.287		+0.302		-0.015					
Hz	-0.282		+0.258		-0.019					
(H-Hz)/Hz	+1.8		+17.1		-21.1					
V	+2.322		+5.238		+2.933					
$V_{\mathcal{Y}}$	+2.340		+5.208		+3.366	ť				
$(V - V_y) / V_y$	-0.8		+0.6		-12.9					(%

S. Yoshida

Fig. 18 Mz diagram

Fig. 19 Mx diagram

Fig. 20 My diagram

Fig. 21 Torsional moment diagram and reactions, values in () are two-dimensional ones

18. Temperature Effects

To show the analysis of temperature effects, take, for example, the frame in Fig. 22. Let the girder BC and the column CG be subjected to the temperature rises of $t_1 = 10^{\circ}$ C and $t_2 = 15^{\circ}$ C respectively. The coefficient of the thermal expansion is ε . The member-lengths and their relative stiffnesses are as shown in Table 14.

Member	A B	ВC	C D	ΒF	CG	EF	FG	GΗ	_
Length	5.4	4.0	3.0	5.0	5.0	4.2	4.0	3.0	- (m)
kx	1.2	1.4	0.8	1.5	1.5	1.2	1.4	0.8	
$k_{\mathcal{Y}}$	1.0	1.2	1.0	1.0	1.0	1.2	1.2	0.8	
kz	1.2	1.0	0.8	1.4	1.4	1.0	0.8	1.0	

Table 14

To analyse this frame, we have to find at first the relations among deflection angles by applying the conditions of compatibility described in \$12, which are to be read from Table 15, and we have

$$R_{zCD} = 1.8R_{zAB} + 0.000, 16, \quad R_{zBC} = 0,$$

 $R_{xGH} = R_{xCD} + 0.000, 30, \quad R_{xCG} = 0,$
 $R_{yCG} = R_{yBF} - 0.000, 096, \quad R_{yFG} = R_{yBC} - 0.000, 225.$

Space	Member	Le x	ength y	n (s) z	Direction angle (α)	sinα	cosα	Revolution angle	Change in length (Δs)	$\Delta s \cos \alpha$	$Rs \sin \alpha$	$\Delta s \sin \alpha$	$Rs \cos \alpha$
1.D.C.D.	AB	0	5.4	0	$\alpha_z = \pi/2$	1	0	Rzab	0	0	5.4 <i>R</i> zab	0	0
ABCD	ВC	4.0	0	0	$\alpha z = 0$	0	1	Rzbc	48×10^{-5}	48×10^{-5}	0	0	4.0 <i>R</i> =BC
(xy plane)	CD	0	3.0	0	$\alpha z = 3\pi/2$	-1	0	Rzcd	0	0	-3.0 <i>R</i> zcd	0	0
									Σ	$48 \times 10^{-5} + 5$ - 3.02	5. $4R_{zAB}$ Rzcd = $\Delta l = 0$	0 – 4.0 <i>R</i> zbc =	$= \Delta h = 0$
Daatt	DC	0	3.0	0	$\alpha x = \pi/2$	1	0	$R_{x ext{DC}}$	0	0	3.0 R_{xDC}	0	0
DCGH	CG	0	0	5.0	$\alpha x = 0$	0	1	Rxcg	$90 imes 10^{-5}$	90×10^{-5}	0	0	5.0 $Rxcg$
(yz plane)	GH	0	3.0	0	$\alpha x = 3\pi/2$	-1	0	$R_{x{ m GH}}$	0	0	-3.0 <i>Rx</i> gh	0	0
									Σ	$90 \times 10^{-5} + 3$ - 3.0 <i>R</i>	$\partial_{x,0RxDC}$ $\partial_{x,GH} = \Delta l = 0$	0-5.0Rxcg	$= \Delta h = 0$
	ВF	0	0	5.0	$\alpha_y = \pi/2$	1	0	$R_{ m yBF}$	0	0	5.0 R_{yBF}	0	0
BFCG	FG	4.0	0	0	$\alpha_y = 0$	0	1	$R_{ m yFG}$	0	0	0	0	4.0 $R_{\rm yfg}$
(xz plane)	GC	0	0	5.0	$\alpha_y = 3\pi/2$	-1	0	Rygc	$90 imes 10^{-5}$	0	—5.0 <i>Rу</i> GC	-90×10^{-5}	0
	СВ	4.0	0	0	$\alpha_y = \pi$	0	-1	$R_{y ext{cb}}$	48×10^{-5}	-48×10^{-5}	0	0	-4.0 <i>R</i> усв
									Σ	$-48 \times 10^{-5} +$ - 5.0 <i>K</i>	5. $0R_{yBF}$ Rygc = $\Delta l = 0$	$-90 \times 10^{-5} -$ + 4.0R	$-4.0R_{\rm yFG}$ $y_{\rm CB} = \Delta h = 0$

Table 15 Compatibility conditions

For remaining spaces ABFE and EFGH, the relations among deflection angles can easily be known without using the compatibility conditions. The relations thus found, taking R_{xAB} , R_{xCD} , R_{zAB} and R_{zEF} as the independent unknowns will be summarized in the following :

> $R_{yBC} = 1.35R_{xAB} - 0.75R_{xCD},$ $R_{yBF} = 0.84R_{zEF} - 1.08R_{zAB},$ $R_{xEF} = 1.286R_{xAB},$ $R_{zGH} = 1.4R_{zEF}.$

Multiplying $\mu = 6E\overline{K}/1000$ and transforming we have :

For member AB : ψ_{xAB} , ψ_{zAB} .

//	BC :	$\psi_{yBC} = 1.35 \psi_{xAB} - 0.75 \psi_{xCD}.$
//	CD :	$\psi_{x \text{CD}}, \ \psi_{z \text{CD}} = 1.8 \psi_{z \text{AB}} - 0.16 \mu.$
//	BF :	$\phi_{y\rm BF}=0.84\phi_{z\rm EF}-1.08\phi_{z\rm AB}.$
//	CG :	$\psi_{y \text{CG}} = 0.84 \psi_{z \text{EF}} - 1.08 \psi_{z \text{AB}} + 0.096 \mu.$
//	EF :	$\psi_{x ext{EF}} = 1.286 \psi_{x ext{AB}}, \ \psi_{z ext{EF}}.$
//	FG :	$\psi_{yFG} = 1.35 \psi_{xAB} - 0.75 \psi_{xCD} + 0.225 \mu.$
//	GH :	$\phi_{x\text{GH}} = \phi_{x\text{CD}} - 0.30\mu, \ \phi_{z\text{GH}} = 1.4\phi_{z\text{EF}}.$

Now the analysis goes on as before.

1) Expressions of End-Moments

For member AB :

$M_{xAB} = 1.2(\varphi_{xB} + \psi_{xAB}),$	$M_{xBA} = 1. \ 2(2\varphi_{xB} + \psi_{xAB}),$
$M_{yAB} = -0.2\varphi_{yB},$	$M_{yBA}=0.2\varphi_{yB},$
$M_{zAB} = 1.2(\varphi_{zB} + \psi_{zAB}),$	$M_{z\mathrm{BA}} = 1.2(2arphi_{z\mathrm{B}}+\psi_{z\mathrm{AB}}).$

For member BC :

$M_{xBC} = 0.28(\varphi_{xB} - \varphi_{xC}),$	$M_{x\rm CB}=0.\ 28(\varphi_{x\rm C}-\varphi_{x\rm B}),$

 $M_{yBC} = 1.2(2\varphi_{yB} + \varphi_{yC} + 1.35\psi_{xAB} - 0.75\psi_{xCD}),$

 $M_{yCB} = 1.2(\varphi_{yB} + 2\varphi_{yC} + 1.35\psi_{xAB} - 0.75\psi_{xCD}),$

 $M_{zBC} = 2\varphi_{zB} + \varphi_{zC},$ $M_{zCB} = \varphi_{zB} + 2\varphi_{zC}.$

For member CD :

```
M_{x\text{CD}} = 0.8(2\varphi_{x\text{C}} + \psi_{x\text{CD}}), \qquad \qquad M_{x\text{DC}} = 0.8(\varphi_{x\text{C}} + \psi_{x\text{CD}}),
```

2) Expressions of End-Shears

In x direction:

$$X_{xBA} = -(1/l_{AB})(M_{zAB} + M_{zBA}) = -(1.2/5.4)(3\varphi_{zB} + 2\psi_{zAB})$$
$$= -0.667\varphi_{zB} - 0.444\psi_{zAB},$$

$$X_{xCD} = -(1/l_{CD})(M_{zCD} + M_{zDC}) = -(0.8/3.0)(3\varphi_{zC} + 3.6\varphi_{zAB} - 0.32\mu)$$
$$= -0.8\varphi_{zC} - 0.96\varphi_{zAB} + 0.085, 3\mu,$$

$$\begin{aligned} X_{xBF} &= -(1/l_{BF})(M_{yBF} + M_{yFB}) = -(1/5, 0)(3\varphi_{yB} + 3\varphi_{yF} + 1, 68\psi_{zEF} - 2, 16\psi_{zAB}) \\ &= -0.6\varphi_{yB} - 0.6\varphi_{yF} - 0.336\psi_{zEF} + 0.432\psi_{zAB}, \end{aligned}$$

$$\begin{aligned} X_{xCG} &= -(1/l_{CG})(M_{yCG} + M_{yGC}) = -(1/5, 0)(3\varphi_{yC} + 3\varphi_{yG} + 1, 68\psi_{zEF} - 2, 16\psi_{zAB} \\ &+ 0, 192\mu) = -0.6\varphi_{yC} - 0.6\varphi_{yG} - 0, 336\psi_{zEF} + 0, 432\psi_{zAB} - 0, 038, 4\mu, \end{aligned}$$

$$\begin{aligned} X_{x\text{FE}} &= -(1/l_{\text{EF}})(M_{z\text{EF}} + M_{z\text{FE}}) = -(1/4, 2)(3\varphi_{z\text{F}} + 2\varphi_{z\text{EF}}) = -0.714\varphi_{z\text{F}} - 0.476\varphi_{z\text{EF}}, \\ X_{x\text{GH}} &= -(1/l_{\text{GH}})(M_{z\text{GH}} + M_{z\text{HG}}) = -(1/3, 0)(3\varphi_{z\text{G}} + 2, 8\varphi_{z\text{EF}}) = -\varphi_{z\text{G}} - 0.933\varphi_{z\text{EF}}, \\ X_{x\text{FB}} &= X_{x\text{BF}} = -0.6\varphi_{y\text{B}} - 0.6\varphi_{y\text{F}} - 0.336\varphi_{z\text{EF}} + 0.432\varphi_{z\text{AB}}, \\ X_{x\text{GC}} &= X_{x\text{CG}} = -0.6\varphi_{y\text{C}} - 0.6\varphi_{y\text{G}} - 0.336\varphi_{z\text{EF}} + 0.432\varphi_{z\text{AB}} - 0.038, 4\mu. \end{aligned}$$

In z direction :

$$\begin{aligned} X_{zBA} &= -(1/l_{AB})(M_{xAB} + M_{xBA}) = -(1.2/5.4)(3\varphi_{xB} + 2\varphi_{xAB}) \\ &= -0.667\varphi_{xB} - 0.444\varphi_{xAB}, \\ X_{zFE} &= -(1/l_{EF})(M_{xEF} + M_{xFE}) = -(1.2/4.2)(3\varphi_{xF} + 2.571\varphi_{xAB}) \\ &= -0.857\varphi_{xF} - 0.735\varphi_{xAB}, \\ X_{zBC} &= -(1/l_{BC})(M_{yBC} + M_{yCB}) = -(1.2/4.0)(3\varphi_{yB} + 3\varphi_{yC} + 2.7\varphi_{xAB} - 1.5\varphi_{xCD}) \\ &= -0.9\varphi_{yB} - 0.9\varphi_{yC} - 0.81\varphi_{xAB} + 0.45\varphi_{xCD}, \end{aligned}$$

$$\begin{split} X_{z\text{FG}} &= - (1/l_{\text{FG}})(M_{y\text{FG}} + M_{y\text{GF}}) = - (1.2/4.0)(3\varphi_{y\text{F}} + 3\varphi_{y\text{G}} + 2.7\psi_{x\text{AB}} - 1.5\psi_{x\text{CD}} \\ &+ 0.45\mu) = - 0.9\varphi_{y\text{F}} - 0.9\varphi_{y\text{G}} - 0.81\psi_{x\text{AB}} + 0.45\psi_{x\text{CD}} - 0.135\mu. \end{split}$$

$$\begin{aligned} X_{z\text{CD}} &= - (1/l_{\text{CD}})(M_{x\text{CD}} + M_{x\text{DC}}) = - (0, 8/3, 0)(3\varphi_{x\text{C}} + 2\psi_{x\text{CD}}) \\ &= - 0.8\varphi_{x\text{C}} - 0.533\psi_{x\text{CD}}, \end{aligned}$$

$$X_{zGH} = -(1/l_{GH})(M_{xGH} + M_{xHG}) = -(0.8/3.0)(3\varphi_{xG} + 2\varphi_{xCD} - 0.6\mu)$$
$$= -0.8\varphi_{xG} - 0.533\varphi_{xCD} + 0.16\mu,$$

 $\begin{aligned} X_{z\text{CB}} &= X_{z\text{BC}} = -\ 0.\ 9\varphi_{y\text{B}} - 0.\ 9\varphi_{y\text{C}} - 0.\ 81\psi_{x\text{AB}} + 0.\ 45\psi_{x\text{CD}},\\ X_{z\text{GF}} &= X_{z\text{FG}} = -\ 0.\ 9\varphi_{y\text{F}} - 0.\ 9\varphi_{y\text{G}} - 0.\ 81\psi_{x\text{AB}} + 0.\ 45\psi_{x\text{CD}} - 0.\ 135\mu. \end{aligned}$

3) Elastic Equations

i) Joint Equilibrium EquationsAbout x axis :

At joint B, $M_{xBA} + M_{xBC} + M_{xBF} = 0.$ "
C, $M_{xCB} + M_{xCD} + M_{xCG} = 0.$ "
F, $M_{xFB} + M_{xFE} + M_{xFG} = 0.$ "
G, $M_{xGC} + M_{xGF} + M_{xGH} = 0.$

About y axis :

At joint B, $M_{yBA} + M_{yBC} + M_{yBF} = 0.$ "
C, $M_{yCB} + M_{yCD} + M_{yCG} = 0.$ "
F, $M_{yFB} + M_{yFE} + M_{yFG} = 0.$ "
G, $M_{yGC} + M_{yGF} + M_{yGH} = 0.$

About z axis :

Fa							Left-h	and side
	фхв	φπς	φxf	φxG	фув	фус	<i>фу</i> ғ	φуG
1	5.680	-0.280	1.500					
2	-0.280	4.880		1.500				
3	1.500		5.680	-0.280				
4		1.500	-0.280	4.880				
5					4.600	1.200	1.000	
6			1		1.200	4.600		1.000
7					1.000		4.640	1.200
8						1.000	1.200	4.560
9						}		
10								
11				<u></u>		1		
12								
13	1.200		1.543		1.620	1.620	1.620	1.620
14		0.800		0.800	-0.900	-0.900	-0.900	-0.900
15					-1.080	-1.080	-1.080	-1.080
16	1		1		0.840	0.840	0.840	0.840

Table 16 Elastic equations

At joint B, $M_{zBA} + M_{zBC} + M_{zBF} = 0.$ " C, $M_{zCB} + M_{zCD} + M_{zCG} = 0.$ " F, $M_{zFB} + M_{zFE} + M_{zFG} = 0.$

- " G, $M_{zGC} + M_{zGF} + M_{zGH} = 0$.
- ii) Horizontal Shear Equations

In z direction :

For the 1st column-frame : $X_{zBA} + X_{zFE} + X_{zBC} + X_{zFG} = 0$.

" 2nd " : $X_{zCD} + X_{zGH} - X_{zCB} - X_{zGF} = 0$.

In x direction :

- For the 1st row-frame : $-X_{xBA} X_{xCD} + X_{xBF} + X_{xCG} = 0.$
 - " 2nd " : $-X_{xFE} X_{xGH} X_{xFB} X_{xGC} = 0.$

These are summarized in Table 16.

Right-hand side (multiplier: μ) ψ_{xAB} $\psi_{x CD}$ ψ_{zAB} ψ_{zef} $\varphi z B$ $\varphi z c$ φ_{zF} $\varphi z G$ 1.200 0.800 1.543 0.800 0.240 1.620 -0.900 -1.0800.840 1.620 -0.900 -1.080 0.840 -0.0961.620 -0.900 -1.0800.840 -0.2701.620 -0.900-1.080 0.840 -0.3664.680 1.000 -0.2801.200 1.000 3.880 -0.280 1.440 0.128 -0.2803.880 0.800 1.000 -0.280 0.800 3.880 1.400 5.038 -1.620 -0.2431.967 -1.6200.295 0.223 1.2001.440 4.082-1.2101.000 1.400 -1.2102.913 -0.054

.

Table 16-continued-

No.12

Solving these simultaneously, we obtain:

At joint B,
$$\varphi_{xB} = -0.001, 865, \varphi_{yB} = +0.042, 13, \varphi_{zB} = -0.018, 57,$$

" C, $\varphi_{xC} = -0.036, 07, \varphi_{yC} = +0.020, 51, \varphi_{zC} = +0.016, 12,$
" F, $\varphi_{xF} = +0.003, 216, \varphi_{yF} = -0.013, 79, \varphi_{zF} = -0.002, 133,$
" G, $\varphi_{xG} = +0.035, 36, \varphi_{yG} = -0.036, 25, \varphi_{zG} = +0.000, 693, 39$

and

$$\psi_{xAB} = -0.003,609, \quad \psi_{xCD} = +0.153, 1, \quad \psi_{zAB} = +0.058,48,$$

 $\psi_{zEF} = +0.002,521.$

Replacing these φ 's and ψ 's in the expressions of end-moments 2), we find the solutions shown in Table 17.

Member	АB		В	С	С	D	ΒF		
End	А	В	ВС		С	D	В	F	
Mx	-6.57	-8.81	+9.58	- 9.58	+64.77	+ 93. 62	-0.77	+6.85	
$M_{\mathcal{Y}}$	-8.43	+8.43	-17.91	-43.86	+4.10	-4.10	+9.43	- 46. 49	
Mz	+47.89	+25.61	-21.02	+13.67		- 30. 89	-4.60	+4.60	

Table 17 Values of end-moments (t-m)

Member	C	G	Е	F	F	G	GH	
End	С	C G E F		F G		G	Н	
Mx	- 55. 17	+51.98	-1.71	+2.15	- 9.00	+9.00	- 60.94	- 89.23
Mş	+39.73	-17.03	+3.31	- 3. 31	+49.77	+22.82	- 5.80	+5.80
Mz	+4.32	-4.32	+0.39	-1.75	-2.86	-0.60	+4.92	+4.22

4) Comparison with the Current Solutions

•

In the two-dimensional analysis, we treat only the two plane frames shown in Fig. 23 and the results obtained are compared with the exact values as shown in Table 18 and in Fig. 24 \sim 27. See that the two-dimensional analysis does not give the moments about y axis in Fig. 26 and that the magnitudes of them are as large as those of moments about the axes x and z, so that they can never been neglected. The deflection diagram is shown in Fig. 28.

	((a) The 1s	st–row–fran	ne	Mult	iplier: μ'	
Member	AB		В	С	С	-	
End	A	В	В	С	С	D	~
M	+48.8	+24.4	-24.4	+13.2	-13.2	-26.6	
M_z	+47.9	+25.6	-21.0	+13.7	-18.0	-30.9	
(M-Mz)/Mz	+1.9	-4.7	+14.3	-3.6	-26.7	-13.9	(%)
Н	+13.4					-13.3	
Hx	+13.6					-16.3	
(H-Hx)/Hx	-1.5					-18.4	(%) -
V	+2.7					-2.7	
$V_{\mathcal{Y}}$	+0.6			ļ		-1.2	
$(V-V_y)/V_y$	(+350)					(+125)	(%)

Table 18 Percentage errors

		(b) The 2r	nd-column-	frame	Mult	iplier: μ'	
Member	DC		C	G	G	-	
End	D	С	С	G	G	Н	
M	+89.0	+58.1	- 58.1	+58.1	- 58.1	-89.0	_
M_x	+93.6	+64.8	-55.2	+52.0	-60.9	-89.2	
(M-Mx)/Mx	-4.9	-10.3	+5.3	+11.7	-4.6	-0.2	(%)
H	-49.0					+49.0	-
Hz	-52.8					+ 50.1	
(H-Hz)/Hz	-7.2					-2.2	(%)
V	-2.7					0.0	
$V_{\mathcal{Y}}$	-1.2					-1.5	
(V - Vy)/Vy	(+125)					(-100)	(%)

F G B (+10°C) (+ 15 °C) С G Ð С ∐н D D Н Е 100 (H 50 0 A (a) 1 st-row-frame (b) 2 nd-column frame A (a) 1 st-row-frame (b) 2 nd-row-frame Fig. 24 Fig. 23

Fig. 28 Deflection diagram

19. Settlements of Supports

The frame in Fig. 29 undergoes settlements at supports; they are 12 cm at C in negative z direction horizontally, and 6 cm at I vertically upward. The dimensions and stiffnesses are to be read from Table 19.

Table 19

Member	AD	BE	CF	DE	ΕF	D J	EK	FL	J K	KL	GJ	ΗК	IL
Length	4.2	5.4	5.4	4.0	6.0	5.0	5.0	5.0	4.0	6.0	3.6	4.2	4.2 (1
kx	1.0	1.2	1.2	1.4	1.2	1.5	1.5	1.5	1.4	1.2	1.0	1.2	0.8
ky	1.0	1.0	1.0	1.2	1.0	1.0	1.0	1.0	1.2	1.0	1.0	1.2	0.8
kz	1.0	1.2	1.2	1.0	1.0	1.4	1.4	1.4	1.0	1.0	1.0	1.0	1.0
					1		1					1	

As in the manner previously shown, the compatibility equations, Table 20, give the following relations :

 $\phi_{xIL} = 1, 29\phi_{xCF} - 28.6\mu, \qquad \phi_{xFL} = 12\mu,$ $\phi_{zIL} = 0.857\phi_{zGJ}, \qquad \phi_{zKL} = 10\mu,$

where $\mu = 6E\overline{K}/1000$.

S. Yoshida

Space	Mem- ber	Le x	ngtl y	n (s) z	Direction angle (α)	$\sin \alpha$	lpha cos lpha	Revo- lution angle	$Rs \sin \alpha$	$Rs \cos \alpha$
HKLI (xy plane)	HK KL LI	0 6.0 0	4.2 0 4.2	0 0 0	$\alpha z = \pi/2$ $\alpha z = 0$ $\alpha z = 3\pi/2$	$\begin{vmatrix} 1 \\ 0 \\ -1 \end{vmatrix}$	0 1 0	Rzhk R zkl R zli	4.2 <i>R</i> zнк 0 —4.2 <i>R</i> zli	0 6.0 <i>R</i> zkl 0
								Σ	$4.2R_{zHK} - 4.2R_{zLI} = \Delta l = 0$	$-6.0R_{zKL} = \Delta h$ $= 0.06$
CFLI (yz plane)	CF FL LI	0 0 0	5.4 0 4.2	0 5.0 0	$\alpha x = \pi/2$ $\alpha x = 0$ $\alpha x = 3\pi/2$	1 0 -1	0 1 0	Rxcf Rxfl Rxli	5.4RxCF 0 -4.2RxLI	0 5. 0 <i>Rx</i> fl 0
								Σ	$5.4RxcF-4.2RxLI$ $= \Delta l = -0.12$	$-5.0R_{xFL} = \Delta h$ $= 0.06$

Table 20 Compatibility conditions

The relations below are readily found by inspecting the remaining spaces:

$$\begin{split} & \psi_{z\text{BE}} = 0.778\psi_{z\text{AD}}, \qquad \psi_{z\text{CF}} = \psi_{z\text{BE}}, \qquad \psi_{y\text{DE}} = 1.05\psi_{x\text{AD}} - 1.35\psi_{x\text{BE}}, \\ & \psi_{y\text{EF}} = 0.9\psi_{x\text{BE}} - 0.9\psi_{x\text{CF}}, \qquad \psi_{y\text{DJ}} = -0.84\psi_{z\text{AD}} + 0.72\psi_{z\text{GJ}}, \\ & \psi_{y\text{EK}} = \psi_{y\text{DJ}}, \qquad \psi_{y\text{JK}} = \psi_{y\text{DE}}, \qquad \psi_{y\text{KL}} = \psi_{y\text{EF}}, \\ & \psi_{x\text{GJ}} = 1.167\psi_{x\text{AD}}, \qquad \psi_{x\text{HK}} = 1.286\psi_{x\text{BE}}, \qquad \psi_{z\text{HK}} = 0.857\psi_{z\text{GJ}}. \end{split}$$

1) Expressions of End-Moments

For member AD :

	$M_{xAD} = \varphi_{xD} + \psi_{xAD}$,	$M_{x\mathrm{DA}}=2arphi_{x\mathrm{D}}+\psi_{x\mathrm{AD}}$,
	$M_{ m yAD}=-$ 0. $2arphi_{ m yD}$,	$M_{y\mathrm{DA}}=0.2arphi_{y\mathrm{D}}$,
	$M_{z\mathrm{AD}}=arphi_{z\mathrm{AD}}+\psi_{z\mathrm{AD}}$,	$M_{z\mathrm{DA}} = 2\varphi_{z\mathrm{D}} + \psi_{z\mathrm{AD}}.$
For	member BE :	
	$M_{x\mathrm{BE}}=1.2(arphi_{x\mathrm{E}}+\psi_{x\mathrm{BE}}),$	$M_{x ext{EB}} = 1.2(2 arphi_{x ext{E}} + \psi_{x ext{BE}})$,
	$M_{y\text{BE}} = -0.2\varphi_{y\text{E}},$	$M_{ m yEB}=0.2arphi_{ m yE}$,
	$M_{z\rm BE} = 1.2(\varphi_{z\rm E} + 0.778 \phi_{z\rm AD}),$	$M_{z \text{EB}} = 1.2(2\varphi_{z \text{E}} + 0.778\psi_{z \text{AD}}).$
For	member CF :	
	$M_{x\rm CF} = 1.2(\varphi_{x\rm F} + \psi_{x\rm CF}),$	$M_{x\text{FC}} = 1.2(2\varphi_{x\text{F}} + \psi_{x\text{CF}}),$
	$M_{yCF} = 0.2\varphi_{yF}$,	$M_{y\text{FC}} = 0.2\varphi_{y\text{F}},$

 $M_{zCF} = 1.2(\varphi_{zF} + 0.778\psi_{zAD}),$ $M_{zFC} = 1.2(2\varphi_{zF} + 0.778\psi_{zAD}),$

For member DE :

$$\begin{split} M_{x\text{DE}} &= 0.\ 28(\phi_{x\text{D}} - \varphi_{x\text{E}}), & M_{x\text{ED}} = 0.\ 28(\phi_{x\text{E}} - \varphi_{x\text{D}}), \\ M_{y\text{DE}} &= 1.\ 2(2\varphi_{y\text{D}} + \varphi_{y\text{E}} + 1.\ 05\phi_{x\text{AD}} - 1.\ 35\phi_{x\text{BE}}), \\ M_{y\text{ED}} &= 1.\ 2(\varphi_{y\text{D}} + 2\varphi_{y\text{E}} + 1.\ 05\phi_{x\text{AD}} - 1.\ 35\phi_{x\text{BE}}), \\ M_{z\text{DE}} &= 2\varphi_{z\text{D}} + \varphi_{z\text{E}}, & M_{z\text{ED}} = \varphi_{z\text{D}} + 2\varphi_{z\text{E}}. \end{split}$$

For member EF :

$$M_{x\text{EF}} = 0.24(\varphi_{x\text{E}} - \varphi_{x\text{F}}), \qquad \qquad M_{x\text{FE}} = 0.24(\varphi_{x\text{F}} - \varphi_{x\text{E}}),$$

 $M_{y\text{EF}} = 2\varphi_{y\text{E}} + \varphi_{y\text{F}} + 0.9\psi_{x\text{BE}} - 0.9\psi_{x\text{CF}},$

 $M_{yFE} = \varphi_{yE} + 2\varphi_{yF} + 0.9\psi_{xBE} - 0.9\psi_{xCF},$

$$M_{zEF} = 2\varphi_{zE} + \varphi_{zF},$$
 $M_{zFE} = \varphi_{zE} + 2\varphi_{zF}.$

For member DJ :

$$\begin{split} M_{x\rm DJ} &= 1.5(2\varphi_{x\rm D} + \varphi_{x\rm J}), & M_{x\rm JD} = 1.5(\varphi_{x\rm D} + 2\varphi_{x\rm J}), \\ M_{y\rm DJ} &= 2\varphi_{y\rm D} + \varphi_{y\rm J} - 0.84\psi_{z\rm AD} + 0.72\psi_{z\rm GJ}, \\ M_{y\rm JD} &= \varphi_{y\rm D} + 2\varphi_{y\rm J} - 0.84\psi_{z\rm AD} + 0.72\psi_{z\rm GJ}, \\ M_{z\rm DJ} &= 0.28(\varphi_{z\rm D} - \varphi_{z\rm J}), & M_{z\rm JD} = 0.28(\varphi_{z\rm J} - \varphi_{z\rm D}). \end{split}$$

For member EK :

 $M_{x \in K} = 1.5(2\varphi_{x \in E} + \varphi_{x K}),$ $M_{x \in K} = 1.5(\varphi_{x \in E} + 2\varphi_{x K}),$

 $M_{\rm yek} = 2\varphi_{\rm ye} + \varphi_{\rm yk} - 0.84\psi_{\rm zad} + 0.72\psi_{\rm zGJ},$

$$M_{
m yKE}=arphi_{
m yE}+2arphi_{
m yK}-0.84\psi_{
m zAD}+0.72\psi_{
m zGJ}$$
,

$$M_{zEK} = 0.28(\varphi_{zE} - \varphi_{zK}),$$
 $M_{zKE} = 0.28(\varphi_{zK} - \varphi_{zE}).$

For member FL :

$$\begin{split} M_{xFL} &= 1.5(2\varphi_{xF} + \varphi_{xL} + 12\mu), \\ M_{yFL} &= 2\varphi_{yF} + \varphi_{yL} - 0.84\psi_{zAD} + 0.72\psi_{zGJ}, \\ M_{yLF} &= \varphi_{yF} + 2\varphi_{yL} - 0.84\psi_{zAD} + 0.72\psi_{zGJ}, \end{split}$$

$$M_{zFL} = 0.28(\varphi_{zF} - \varphi_{zL}),$$
 $M_{zLF} = 0.28(\varphi_{zL} - \varphi_{zF}).$

For member JK :

$$M_{xJK} = 0.28(\varphi_{xJ} - \varphi_{xK}),$$
 $M_{xKJ} = 0.28(\varphi_{xK} - \varphi_{xJ}),$

$$\begin{split} M_{y\text{JK}} &= 1.\ 2(2\varphi_{y\text{J}} + \varphi_{y\text{K}} + 1.\ 05\psi_{x\text{AD}} - 1.\ 35\psi_{x\text{BE}}), \\ M_{y\text{KJ}} &= 1.\ 2(\varphi_{y\text{J}} + 2\varphi_{y\text{K}} + 1.\ 05\psi_{x\text{AD}} - 1.\ 35\psi_{x\text{BE}}), \\ M_{z\text{JK}} &= 2\varphi_{z\text{J}} + \varphi_{z\text{K}}, \\ M_{z\text{KL}} &= 2\varphi_{z\text{J}} + \varphi_{z\text{K}}, \\ \end{split}$$
For member KL :
$$\begin{split} M_{x\text{KL}} &= 0.\ 24\ (\varphi_{x\text{K}} - \varphi_{x\text{L}}), \\ M_{x\text{LK}} &= 0.\ 24(\varphi_{x\text{L}} - \varphi_{x\text{K}}), \end{split}$$

$$\begin{split} M_{y\text{KL}} &= 2\varphi_{y\text{K}} + \varphi_{y\text{L}} + 0.9 \psi_{x\text{BE}} - 0.9 \psi_{x\text{CF}}, \\ M_{y\text{LK}} &= \varphi_{y\text{K}} + 2\varphi_{y\text{L}} + 0.9 \psi_{x\text{BE}} - 0.9 \psi_{x\text{CF}}, \\ M_{z\text{KL}} &= 2\varphi_{z\text{K}} + \varphi_{z\text{L}} + 10\mu, \\ \end{split}$$

For member GJ :

$$\begin{split} M_{x\mathrm{GJ}} &= \varphi_{x\mathrm{J}} + 1.\ 167 \psi_{x\mathrm{AD}}, & M_{x\mathrm{JG}} = 2\varphi_{x\mathrm{J}} + 1.\ 167 \psi_{x\mathrm{AD}}, \\ M_{y\mathrm{GJ}} &= -0.\ 2\varphi_{y\mathrm{J}}, & M_{y\mathrm{JG}} = 0.\ 2\varphi_{y\mathrm{J}}, \\ M_{z\mathrm{GJ}} &= \varphi_{z\mathrm{J}} + \psi_{z\mathrm{GJ}}, & M_{z\mathrm{JG}} = 2\varphi_{z\mathrm{J}} + \psi_{z\mathrm{GJ}}. \end{split}$$

For member HK :

$$\begin{split} M_{x\rm HK} &= 1.2(\varphi_{x\rm K}+1.286 \psi_{x\rm BE}), & M_{x\rm KH} &= 1.2(2\varphi_{x\rm K}+1.286 \psi_{x\rm BE}), \\ M_{y\rm HK} &= -0.24 \varphi_{y\rm K}, & M_{y\rm KH} &= 0.24 \varphi_{y\rm K}, \\ M_{z\rm HK} &= \varphi_{z\rm K}+0.857 \psi_{z\rm GJ}, & M_{z\rm KH} &= 2\varphi_{z\rm K}+0.857 \psi_{z\rm GJ}. \end{split}$$

For member IL :

$$\begin{split} M_{x\mathrm{IL}} &= 0.\ 8(\varphi_{x\mathrm{L}} + 1.\ 286 \psi_{x\mathrm{CF}} - 28.\ 6\mu), \quad M_{x\mathrm{LI}} = 0.\ 8(2\varphi_{x\mathrm{L}} + 1.\ 286 \psi_{x\mathrm{CF}} - 28.\ 6\mu), \\ M_{y\mathrm{IL}} &= -0.\ 16\varphi_{y\mathrm{L}}, \qquad \qquad M_{y\mathrm{LI}} = 0.\ 16\varphi_{y\mathrm{L}} \\ M_{z\mathrm{IL}} &= \varphi_{z\mathrm{L}} + 0.\ 857 \psi_{z\mathrm{GJ}}, \qquad \qquad M_{z\mathrm{LI}} = 2\varphi_{z\mathrm{L}} + 0.\ 857 \psi_{z\mathrm{GJ}}. \end{split}$$

2) Expressions of End-Shears

In x direction :

 $\begin{aligned} X_{x\text{DA}} &= -(1/l_{\text{AD}})(M_{z\text{AD}} + M_{z\text{DA}}) = -(1, 0/4, 2)(3\varphi_{z\text{D}} + 2\psi_{z\text{AD}}) \\ &= -0.714\varphi_{z\text{D}} - 0.476\psi_{z\text{AD}}, \\ X_{z\text{EB}} &= -(1/l_{\text{BE}})(M_{z\text{BE}} + M_{z\text{EB}}) = -(1, 2/5, 4)(3\varphi_{z\text{E}} + 1, 556\psi_{z\text{AD}}) \\ &= -0.667\varphi_{z\text{E}} - 0.346\psi_{z\text{AD}}, \\ X_{x\text{FC}} &= -(1/l_{\text{CF}})(M_{z\text{CF}} + M_{z\text{FC}}) = -(1, 2/5, 4)(3\varphi_{z\text{F}} + 1, 556\psi_{z\text{AD}}) \\ &= -0.667\varphi_{z\text{F}} - 0.346\psi_{z\text{AD}}, \end{aligned}$

$$\begin{aligned} X_{x\text{DJ}} &= -(1/l_{\text{DJ}})(M_{y\text{DJ}} + M_{y\text{JD}}) = -(1/5, 0)(3\varphi_{y\text{D}} + 3\varphi_{y\text{J}} - 1, 68\varphi_{z\text{AD}} + 1, 44\varphi_{z\text{GJ}}) \\ &= -0.6\varphi_{y\text{D}} - 0.6\varphi_{y\text{J}} + 0.336\varphi_{z\text{AD}} - 0.288\varphi_{z\text{GJ}}, \end{aligned}$$

 $\begin{aligned} X_{x\text{EK}} &= -(1/l_{\text{EK}})(M_{y\text{EK}} + M_{y\text{KE}}) = -(1/5, 0)(3\varphi_{y\text{E}} + 3\varphi_{y\text{K}} - 1, 68\psi_{z\text{AD}} + 1, 44\psi_{z\text{GJ}}) \\ &= -0.6\varphi_{y\text{E}} - 0.6\varphi_{y\text{K}} + 0.336\psi_{z\text{AD}} - 0.288\psi_{z\text{GJ}}, \end{aligned}$

$$\begin{aligned} X_{x\text{FL}} &= -(1/l_{\text{FL}})(M_{y\text{FL}} + M_{y\text{LF}}) = -(1/5, 0)(3\varphi_{y\text{F}} + 3\varphi_{y\text{L}} - 1, 68\psi_{z\text{AD}} + 1, 44\psi_{z\text{GJ}}) \\ &= -0.6\varphi_{y\text{F}} - 0.6\varphi_{y\text{L}} + 0.336\psi_{z\text{AD}} - 0.288\psi_{z\text{GJ}}, \end{aligned}$$

 $X_{xJG} = -(1/l_{GJ})(M_{zGJ} + M_{zJG}) = -(1/3.6)(3\varphi_{zJ} + 2\psi_{zGJ}) = -0.833\varphi_{zJ} - 0.556\psi_{zGJ},$

$$X_{x \text{KH}} = -(1/l_{\text{HK}})(M_{z \text{HK}} + M_{z \text{KH}}) = -(1/4.2)(3\varphi_{z \text{K}} + 1.714\psi_{z \text{GJ}})$$

= $-0.714\varphi_{z \text{K}} - 0.408\psi_{z \text{GJ}}$,

$$\begin{aligned} X_{x\text{LI}} &= -(1/l_{\text{IL}})(M_{z\text{IL}} + M_{z\text{LI}}) = -(1/4, 2)(3\varphi_{z\text{L}} + 1, 714\psi_{z\text{GJ}}) \\ &= -0.714\varphi_{z\text{L}} - 0.408\psi_{z\text{GJ}}, \end{aligned}$$

$$\begin{aligned} X_{xJD} &= X_{xDJ} = -0.6\varphi_{yD} - 0.6\varphi_{yJ} + 0.336\psi_{zAD} - 0.288\psi_{zGJ}, \\ X_{xKE} &= X_{xEK} = -0.6\varphi_{yE} - 0.6\varphi_{yK} + 0.336\psi_{zAD} - 0.228\psi_{zGJ}, \\ X_{xLF} &= X_{xFL} = -0.6\varphi_{yF} - 0.6\varphi_{yL} + 0.336\psi_{zAD} - 0.288\psi_{zGJ}. \end{aligned}$$

In z direction :

$$X_{zDA} = -(1/l_{DA})(M_{xDA} + M_{xAD}) = -(1/4.2)(3\varphi_{xD} + 2\psi_{xAD})$$
$$= -0.714\varphi_{xD} - 0.476\psi_{xAD},$$

$$X_{xJG} = -(1/l_{JG})(M_{xJG} + M_{xGJ}) = -(1/3.6)(3\varphi_{xJ} + 2.333\psi_{xAD})$$

= $-0.833\varphi_{xJ} - 0.648\psi_{xAD}$,

 $\begin{aligned} X_{z\text{DE}} &= -(1/l_{\text{DE}})(M_{y\text{DE}} + M_{y\text{ED}}) = -(1, 2/4, 0)(3\varphi_{y\text{D}} + 3\varphi_{y\text{E}} + 2, 10\psi_{x\text{AD}} - 2, 70\psi_{x\text{BE}}) \\ &= -0.9\varphi_{y\text{D}} - 0.9\varphi_{y\text{E}} - 0.63\psi_{x\text{AD}} + 0.81\psi_{x\text{BE}}, \end{aligned}$

$$\begin{aligned} X_{zJK} &= -(1/l_{JK})(M_{yJK} + M_{yKJ}) = -(1, 2/4, 0)(3\varphi_{yJ} + 3\varphi_{yK} + 2, 10\varphi_{xAD} - 2, 70\varphi_{xBE}) \\ &= -0.9\varphi_{yJ} - 0.9\varphi_{yK} - 0.63\varphi_{xAD} + 0.81\varphi_{xBE}, \end{aligned}$$

 $X_{zEB} = -(1/l_{BE})(M_{xBE} + M_{xEB}) = -(1, 2/5, 4)(3\varphi_{xE} + 2\psi_{xBE})$ $= -0.667\varphi_{xE} - 0.444\psi_{xBE},$

 $X_{zKH} = -(1/l_{HK})(M_{xHK} + M_{xKH}) = -(1, 2/4, 2)(3\varphi_{xK} + 2, 572\psi_{xBE})$ $= -0.857\varphi_{xK} - 0.735\psi_{xBE},$

$$\begin{split} X_{z\text{ED}} &= X_{z\text{DE}} = -\ 0.\ 9\varphi_{y\text{D}} - 0.\ 9\varphi_{y\text{E}} - 0.\ 63\varphi_{x\text{AD}} + 0.\ 81\varphi_{x\text{BE}}, \\ X_{z\text{KJ}} &= X_{x\text{JK}} = -\ 0.\ 9\varphi_{y\text{J}} - 0.\ 9\varphi_{y\text{K}} - 0.\ 63\varphi_{x\text{AD}} + 0.\ 81\varphi_{x\text{BE}}, \\ X_{z\text{EF}} &= -\ (1/l_{\text{EF}})(M_{y\text{EF}} + M_{y\text{FE}}) = -\ (1/6.\ 0)(3\varphi_{y\text{E}} + 3\varphi_{y\text{F}} + 1.\ 8\varphi_{x\text{BF}} - 1.\ 8\varphi_{x\text{CF}}) \\ &= -\ 0.\ 5\varphi_{y\text{E}} - 0.\ 5\varphi_{y\text{F}} - 0.\ 3\varphi_{x\text{BE}} + 0.\ 3\varphi_{x\text{CF}}, \\ X_{z\text{KL}} &= -\ (1/l_{\text{KL}})(M_{y\text{KL}} + M_{y\text{LK}}) = -\ (1/6.\ 0)(3\varphi_{y\text{K}} + 3\varphi_{y\text{L}} + 1.\ 8\varphi_{x\text{BE}} - 1.\ 8\varphi_{x\text{CF}}) \\ &= -\ 0.\ 5\varphi_{y\text{K}} - 0.\ 5\varphi_{y\text{L}} - 0.\ 3\varphi_{x\text{BE}} + 0.\ 3\varphi_{x\text{CF}}, \\ X_{z\text{FC}} &= -\ (1/l_{\text{CF}})(M_{x\text{CF}} + M_{x\text{FC}}) = -\ (1.\ 2/5.\ 4)(3\varphi_{x\text{F}} + 2\varphi_{x\text{CF}}) \\ &= -\ 0.\ 667\varphi_{x\text{F}} - 0.\ 444\varphi_{x\text{CF}}, \\ X_{z\text{LI}} &= -\ (1/l_{\text{IL}})(M_{x\text{IL}} + M_{x\text{LI}}) = -\ (0.\ 8/4.\ 2)(3\varphi_{x\text{L}} + 2.\ 572\varphi_{x\text{CF}} - 57.\ 2\mu) \\ &= -\ 0.\ 571\varphi_{x\text{L}} - 0.\ 490\varphi_{x\text{CF}} + 10.\ 895\mu, \\ X_{z\text{FE}} &= X_{z\text{EF}} = -\ 0.\ 5\varphi_{y\text{F}} - 0.\ 5\varphi_{y\text{F}} - 0.\ 3\varphi_{x\text{BE}} + 0.\ 3\varphi_{x\text{CF}}, \\ X_{z\text{LK}} &= X_{z\text{KL}} = -\ 0.\ 5\varphi_{y\text{K}} - 0.\ 5\varphi_{y\text{L}} - 0.\ 3\varphi_{x\text{BE}} + 0.\ 3\varphi_{x\text{CF}}. \end{split}$$

3) Elastic Equations, see Table 21

i) Joint Equilibrium Equations

About x axis :

At joint D, $M_{xDA} + M_{xDE} + M_{xDJ} = 0.$ " E, $M_{xEB} + M_{xED} + M_{xEF} + M_{xEK} = 0.$ " F, $M_{xFC} + M_{xFE} + M_{xFL} = 0.$ " J, $M_{xJD} + M_{xJG} + M_{xJK} = 0.$ " K, $M_{xKE} + M_{xKH} + M_{xKJ} + M_{xKL} = 0.$ " L, $M_{xLF} + M_{xLI} + M_{xLK} = 0.$

About y axis :

At joint D, $M_{yDA} + M_{yDE} + M_{yDJ} = 0.$ " E, $M_{yEB} + M_{yED} + M_{yEF} + M_{yEK} = 0.$ " F, $M_{yFC} + M_{yFE} + M_{yFL} = 0.$ " J, $M_{yJD} + M_{yJG} + M_{yJK} = 0.$ " K, $M_{yKE} + M_{yKH} + M_{yKJ} + M_{yKL} = 0.$ " L, $M_{yLF} + M_{yLI} + M_{yLK} = 0.$

About z axis :

At joint D, $M_{zDA} + M_{zDE} + M_{zDJ} = 0.$ " E, $M_{zEB} + M_{zED} + M_{zEF} + M_{zEK} = 0.$ " F, $M_{zFC} + M_{zFE} + M_{zFL} = 0.$ " J, $M_{zJD} + M_{zJG} + M_{zJK} = 0.$ " K, $M_{zKE} + M_{zKH} + M_{zKJ} + M_{zKL} = 0.$ " L, $M_{zLF} + M_{zLI} + M_{zLK} = 0.$

ii) Horizontal Shear Equations

In z direction :

For the 1st column-frame : $X_{zDA} + X_{zJG} + X_{zDE} + X_{zJK} = 0$.

//	2nd	//	:	$X_{zEB} + X_{zKH} - X_{zED} - X_{zKJ} + X_{zEF} + X_{zKL} = 0.$
//	3rd	//	:	$X_{zFC} + X_{zLI} - X_{zFE} - X_{zLK} = 0.$

In x direction :

F

or the 1st row-frame :
$$-X_{x\text{DA}} - X_{x\text{EB}} - X_{x\text{FC}} + X_{x\text{DJ}} + X_{x\text{EK}} + X_{x\text{FL}} = 0$$
.
" 2nd " : $X_{x\text{JG}} + X_{x\text{KH}} + X_{x\text{LH}} + X_{x\text{JD}} + X_{x\text{KE}} + X_{x\text{LF}} = 0$.

The simultaneous equations in Table 21 are solved, and we have the rotations;

at	joint	D,	$\varphi_{xD} = -0.020, 71,$	$\varphi_{yD} = +0.974, 7,$	$\varphi_{zD} = -0.619, 4,$
	//	Ε,	$\varphi_{xE} = -0.700, 5,$	$\varphi_{\rm yE} = + 1.829,$	$\varphi_{zE} = -0.285, 1,$
	//	F,	$\varphi_{x\mathrm{F}} = -6.073,$	$\varphi_{yF} = +1.966,$	$\varphi_{z\mathrm{F}} = -0.663, 6,$
	//	J,	$\varphi_{xJ} = -0.010, 19,$	$\varphi_{yJ} = + 0.981, 3,$	$\varphi_{zJ} = + 0.323, 4,$
	//	К,	$\varphi_{x\mathrm{K}} = -0.601, 2,$	$\varphi_{yK} = + 1.809,$	$\varphi_{zK} = -1.299,$
	//	L,	$\varphi_{xL} = +0.015, 21,$	$\varphi_{yL} = +$ 1.997,	$\varphi_{zL} = -2.025,$

and revolutions

$\psi_{xAD} = -0.071, 53,$	$\psi_{x\text{BE}} = +\ 2.\ 988,$	$\psi_{x\rm CF} = +\ 13.\ 383,$
$\psi_{zAD} = + 3.027,$	$\psi_{zGJ} = -0.258, 7.$	

Using these φ 's and ψ 's, end-moments are determined. Results are read from Table 22.

Table 21 Elastic equations

										Lef	t-hand side	2
Eq.	φxd	фхе	φxF	(φx)	фяк	ФхL	фур	фуе	фуғ	фуs	фук	ФуL
1	5.280	-0.280		1.500								
2	-0.280	5,920	-0.240		1.500							
3		-0.240	5.640			1.500						
4	1.500			5.280	-0.280							
5		1.500		-0.280	5.920	-0.240						
6			1.500		-0.240	4.840						
7							4.600	1.200		1.000		
8							1.200	6.600	1.000		1.000	1
9								1,000	4.200			1.000
10		E Contraction of the second seco					1.000			4.600	1.200	
11								1.000		1.200	6.640	1.000
12									1.000		1.000	4.160
13												
14												
15			ļ								. <u>.</u>	
16												
17												
18								ļ				
19	1.000			1.167			1.260	1.260		1.260	1.260	
20		1.200			1.543		-1.620	-0.720	0.900	-1.620	-0.720	0.900
21			1.200			1.029		-0.900	-0.900		-0.900	-0.900
22							-0.840	-0.840	-0.840	-0.840	-0.840	-0.840
23					West March Course		0.720	0.720	0.720	0.720	0.720	0.720

S. Yoshida

No. 12

Table 21-continued-

						44.899.699.699.699.699.699.699					Right-hand side
φzd	φze	<i>\$\varpsilon\zefsilon</i>	φ≈ı	фък	φzl	ψxad	$\psi_{x \text{BE}}$	$\psi_{x{ m CF}}$	ψ_{zAD}	<i>ψz</i> gj	(multiplier : μ)
		[İ	1.000		•	<u> </u>		
							1.200				
								1.200		1	- 18,000
						1.167					
	<u> </u>						1.543				
								1.029			4.880
						1.260	-1.620		-0.840	0.720	
						1.260	-0.720	-0.900	-0.840	0.720	
							0.900	-0.900	-0.840	0.720	
						1.260	-1.620		-0.840	0.720	
	}					1.260	-0.720	-0.900	-0.840	0.720	
							0.900	-0.900	-0.840	0.720	
4.280	1.000		-0.280						1.000		
1.000	6.680	1.000		-0.280					0.933		
	1.000	4.680			-0.280				0.933		
-0.280	1		4.280	1.000					1	1.000	
	-0.280		1.000	1.280	1.000					0.857	-10.000
		-0.280		1.000	4.280					0.857	-10.000
						3.339	-2.268				
						-2.268	6.118	-1.080			
						*	-1.080	2.761		[19.611
1.000	0.933	0. 933							3.046	-1.210	
			1.000	0.857	0.857				-1.210	2,683	

.

Table 22 Values of end-moments (multiplier : μ)

Member	А	D	В	Е	С	F	DE		
End	А	D	В	E	С	F	D	E	
M_x	-0.092	-0.113	+2.745	+1.904	+8.772	+1.484	+0.190	-0.190	
$M_{\mathcal{Y}}$	-0.195	+0.195	-0.366	+0.366	-0.393	+0.393	-0.397	+0.629	
Mz	+2.408	+1.788	+2.484	+2.142	+2.030	+1.233	-1.524	-1.190	

Member	E	F	D	J	E	K	FL		
End	End E F		D	J	E	К	F	L	
Mx	+1.289	-1.289	-0.077	-0.062	-3.003	-2.854	-0.196	+8.936	
$M_{\mathcal{Y}}$	-3.732	- 3. 595	-0.202	+0.208	+2.738	+2.718	+3.200	+3.231	
M_z	-1.234	-1.612	-0.264	+0.264	+0.284	-0.284	+0.381	-0.381	

Member	J	K	К	L	G	J	НК		
End	J	K	K	L	G	J	Н	K	
Mx	+0.165	-0.165	-0.148	+0.148	-0.094	-0.104	+3.890	+3.168	
$M_{\mathcal{Y}}$	-0.405	+0.588	-3.741	-3.553	-0.196	+0.196	-0.434	+0.434	
Mz	-0.652	-2.275	+5.377	+4.651	+0.065	+0.388	-1.521	-2.820	

Member	I L					
End	I	L				
Mx	- 9. 099	9. 087				
$M_{\mathcal{Y}}$	-0.320	+0.320				
Mz	-2.247	-4.272				

4) Comparison with the Current Solutions

To solve this frame by the current two-dimensional method, we treat two constituent plane frames in Fig. 30 separately and the results and the errors are shown in Table 23. The moment diagrams are drawn by broken lines in Figs. 31, 32, 33 and 34.

Fig. 30 Deflected skeleton

						_				
Member	G	J	J	K	Н	K	K	L	IL	
End	G	J	J	к	Н	К	К	L	I	L
М	+2.077	+1.893	-1.893	-3.234	+0.413	-1.112	+4.347	+3.269	-0.665	-3.269
Mz	+0.065	+0.388	-0.652	-2.275	-1.521	-2.820	+5.377	+4.651	-2.247	-4.272
(M-Mz)/Mz	(+3095)	(+388)	(+190)	+42.2		-60.6	-19.2	-29.7	-70.4	-23.5 (5
Н	+1.103				-0.166				-0.937	
Hx	+0.126				-1.034				-1.552	
(H-Hx)/Hx	(+775)				-83.9				-39.6	(5
V	+1.282				-2.551				+1.796	
$V_{\mathcal{Y}}$	+0.705				-3.573				+3.420	
(V-Vy)/Vy	+81.8				-28.6				-47.5	(5

Table 23Percentage errors of end-moments and reactions(a)The 2nd-row-frame (multiplier : μ)

(b) The 3rd-column-frame (multiplier : μ)

Member	CF		FL	,	IL		
End	С	F	F	L	I	L	
М	+11.916	+3.563	- 3. 563	+6.200	-5.841	-6.203	
M_x	+8.772	+1.484	-0.196	+8.936	- 9.099	-9.087	
(M-Mx)/Mx	+35.8				- 35.8	(9	
Н	-2.866				+2.867		
H_z	-1.898				+4.331		
(H-Hz)/Hz	+51.0				-33.4	(9	
V	-0.527				+1.796		
$V_{\mathcal{Y}}$	-2.222				+3.420		
$(V - V_y)/V_y$	-76.3				-47.5	(9	

Fig. 33 My diagram

Fig. 34 Torsional moments and reactions

See, for example, Fig. 31. The effect of the vertical settlement at support I does not reach far away beyond the bay considered, and we find that the column at the left in the adjacent bay is affected very little as shown by full line. This tendency does not appear at all in the results obtained by the conventional solution which are shown by broken lines.

It should be especially noticed that the twisting moment of the remarkable magnitude is acting upon the member EF, see Fig. 34.

Chapter IV. Analysis of Grid Works

20. A Square Grid Supported Simply at the Corners, Concentrated Load on the Center

A grid work can be regarded as a rigid frame in space from which the columns are taken off. Therefore, the author's method is equally applicable to its analysis as before. The loads are assumed here, as usual, to act perpendicularly to the structural plane, hence the horizontal shear equations are not required.

The analyses of the grid works have been presented by many investigators. Among these, Prof. T. F_{UKUDA} 's exact method⁷⁰ is the most famous in this country. On this account, the illustrative examples treated below are taken from his paper mainly to show the accuracies of the author's solutions. Fig. 35^{*} shows the grid work to be considered. The condition of symmetry gives the following relations, that is, the grid is dealt with four unknowns.

1) Expressions of End-Moments

Due to the condition of symmetry, only the following end-moment expressions are required, where k_b and k_t mean the stiffness ratios for bending and for torsion respectively.

$$egin{aligned} M_{z A E} &= k_b (2 arphi_1 + \psi_1), & M_{z A F} = 2 eta k_t (arphi_1 - arphi_2), \ & M_{x E G} &= k_b (2 arphi_2 + \psi_2), & M_{z E A} = k_b (arphi_1 + \psi_1), & M_{x G E} = k_b (arphi_2 + \psi_2). \end{aligned}$$

The remainders are expressed by these:

 $M_{xAE} = M_{zAF}$, $M_{xAF} = M_{zAE}$, $M_{xBE} = M_{zAF}$, etc.

^{*)} FUKUDA: II Abschnitt, §2, 2)

2) Elastic Equations

i) Joint Equilibrium Equations

At joint A,
$$\sum M_{xA} = M_{xAE} + M_{xAF} = 0.$$

" E, $\sum M_{xE} = M_{xEA} + M_{xEB} + M_{xEG} = 0.$

ii) Vertical Shear Equations

At joint E,
$$\sum X_{yE} = X_{yEA} - X_{yEB} - X_{yEG} = 0$$
.
"G, $\sum X_{yG} = X_{yGE} + X_{yGF} - X_{yGH} - X_{yGI} = P$,

where,

$$\begin{split} X_{\text{yEA}} &= -(1/l)(M_{\text{zEA}} + M_{\text{zAE}}), & X_{\text{yEB}} &= -(1/l)(M_{\text{zEB}} + M_{\text{zBE}}), \\ X_{\text{yEG}} &= -(1/l)(M_{\text{xEG}} + M_{\text{xGE}}), & X_{\text{yGE}} &= -(1/l)(M_{\text{xGE}} + M_{\text{xEG}}), \\ X_{\text{yGF}} &= -(1/l)(M_{\text{zGF}} + M_{\text{zFG}}), & X_{\text{yGH}} &= -(1/l)(M_{\text{zGH}} + M_{\text{zHG}}), \\ X_{\text{yGI}} &= -(1/l)(M_{\text{xGI}} + M_{\text{xIG}}). \end{split}$$

Substituting the end-moments in 1), we have the simultaneous equations:

$$(2k_b + 2\beta k_t)\varphi_1 - 2\beta k_t \varphi_2 + k_b \psi_1 = 0,$$

$$4\beta k_t \varphi_1 - (2k_b + 4\beta k_t)\varphi_2 - k_b \psi_2 = 0,$$

$$6\varphi_1 - 3\varphi_2 + 4\psi_1 - 2\psi_2 = 0,$$

$$12\varphi_2 + 8\psi_2 = - (l/k_b)P.$$

Solution gives :

$$\varphi_1 = \frac{Pl}{8k_b} \cdot \frac{k_b + 16\beta k_t}{k_b + 12\beta k_t}, \qquad \qquad \varphi_2 = \frac{Pl}{4k_b} \cdot \frac{k_b + 8\beta k_t}{k_b + 12\beta k_t},$$
$$\varphi_1 = -\frac{Pl}{4k_b} \cdot \frac{k_b + 15\beta k_t}{k_b + 12\beta k_t}, \qquad \qquad \varphi_2 = -\frac{Pl}{2k_b} \cdot \frac{k_b + 9\beta k_t}{k_b + 12\beta k_t}$$

3) Values of End-Moments

Using these, we have from 1):

$$M_{zAE} = \frac{Pl}{4} \cdot \frac{1}{k_b + 12\beta k_t} (k_b + 16\beta k_t - k_b - 15\beta k_t) = \frac{Pl}{4} \cdot \frac{\beta k_t}{k_b + 12\beta k_t},$$

$$M_{zEA} = \frac{Pl}{8} \cdot \frac{1}{k_b + 12\beta k_t} (k_b + 16\beta k_t - 2k_b - 30\beta k_t) = -\frac{Pl}{8} \cdot \frac{k_b + 14\beta k_t}{k_b + 12\beta k_t},$$

$$M_{xGE} = \frac{-Pl}{4} \cdot \frac{1}{k_b + 12\beta k_t} (-k_b - 8\beta k_t + 2k_b + 18\beta k_t) = -\frac{Pl}{4} \cdot \frac{k_b + 10\beta k_t}{k_b + 12\beta k_t},$$

$$M_{xEG} = \frac{-Pl}{2} \cdot \frac{1}{k_b + 12\beta k_t} (-k_b - 8\beta k_t + k_b + 9\beta k_t) = -\frac{Pl}{2} \cdot \frac{\beta k_t}{k_b + 12\beta k_t},$$
$$M_{zAF} = \frac{Pl}{4} \cdot \frac{\beta k_t}{k_b (k_b + 12\beta k_t)} \cdot (k_b + 16\beta k_t - 2k_b - 16\beta k_t) = -\frac{Pl}{4} \cdot \frac{\beta k_t}{k_b + 12\beta k_t}$$

Prof. FUKUDA's values are as follows, where $\alpha = EI/GH$ and H represents the coefficient of twisting resistance; note that in his analysis eight unknowns being employed.

$$M_{zAE} = \frac{Pl}{16(\alpha+3)}, \qquad M_{zEA} = -\frac{Pl(2\alpha+7)}{16(\alpha+3)},$$
$$M_{xGE} = -\frac{Pl(2\alpha+5)}{8(\alpha+3)}, \qquad M_{xEG} = -\frac{Pl}{8(\alpha+3)},$$
$$M_{zAF} = -\frac{Pl}{16(\alpha+3)}.$$

The relation between α and the author's factor β is:

$$\alpha = \frac{EI}{GH} = \frac{2(m+1)}{m} \cdot \frac{I}{H} = \frac{2(m+1)}{m} \cdot \frac{I}{\frac{l}{H}} = \frac{2(m+1)}{m} \cdot \frac{k_b}{k_t}$$
$$= \frac{1}{4} \cdot \frac{8(m+1)}{m} \cdot \frac{k_b}{k_t} = \frac{1}{4} \frac{k_b}{\beta k_t}.$$
$$\therefore \quad \alpha = \frac{k_b}{4\beta k_t}.$$

Referring to this relation, it is seen that Prof. FUKUDA's solutions just

come to the authors' except signs. It is to be noticed that the author's method needs only four independent unknowns, half of the FUKUDA's method, and that the slopedeflection method is a powerful means also in dealing with the grid works. The

Fig. 36 Moment diagram

21. A Square Grid Supported Simply at the Corners, Concentrated Load on an Edge Joint. Fig. 37.*)

From symmetry, we have the following nine φ 's and four ψ 's as unknowns:

	At joint	Α,	$\varphi_{x\mathrm{A}},$	φzA	(For member	AE,	$\psi_{x \mathrm{AE}}$
			//	FG,	$\psi_{z{ m FG}}$			
(a · ·	"	F,	$\varphi_{x\mathrm{F}},$	$\varphi_{z\mathrm{F}}$	φ	//	CI,	$\psi_{z{ m CI}}$
φ : ·	"	G,	φ_{xG}		ĺ	11	AF,	$\psi_{x\mathrm{AF}}$
	"	С,	φ _x c,	φzC				
	/ //	Ι,	φ_{xI}					

The remainders are expressed by these :

$$\varphi_{xH} = \varphi_{xF}, \qquad \varphi_{zD} = -\varphi_{zC}, \quad \text{etc.},$$

and

 $\psi_{xEG} = \psi_{xAF} + \psi_{zFG} - \psi_{zAE}, \quad \psi_{xGI} = -\psi_{zFG} - \psi_{xAF} + \psi_{zCI}, \quad \text{etc.}$

1) Expressions of End-Moments

At joint A:
$$\begin{cases} M_{xAF} = k_b(2\varphi_{xA} + \varphi_{xF} + \psi_{xAF}), & M_{xAB} = 2\beta k_t(\varphi_{xA} - \frac{1}{2}\varphi_{xE}), \\ M_{zAF} = 2\beta k_t(\varphi_{zA} - \varphi_{zF}), & M_{zAE} = k_b(2\varphi_{zA} + \psi_{zAE}). \end{cases}$$

$$\# B: \begin{cases} M_{xBH} = M_{xAF}, & M_{xBE} = M_{xAE}, \\ M_{zBH} = -M_{zAF}, & M_{zBE} = -M_{zAE}. \end{cases}$$

$$\# C: \begin{cases} M_{xCF} = k_b(2\varphi_{xC} + \varphi_{xF} - \psi_{xAF}), & M_{xCI} = 2\beta k_t(\varphi_{xC} - \varphi_{xI}), \\ M_{zCF} = -M_{zFC}, & M_{zCI} = k_b(2\varphi_{zC} + \psi_{zCI}). \end{cases}$$

$$\# D: \begin{cases} M_{xDH} = M_{xCF}, & M_{xDI} = M_{xCI}, \\ M_{zDH} = -M_{zCF}, & M_{zDI} = -M_{zCI}. \end{cases}$$

* FUKUDA : II Abschnitt, §2, 4)

At joint E:
$$\begin{cases} M_{xEA} = -M_{xAE}, \quad M_{xEB} = -M_{xAE}, \\ M_{xEG} = k_b(2\varphi_{xE} + \varphi_{xG} + \psi_{xAF} + \psi_{zFG} - \psi_{zAE}), \\ M_{zEA} = k_b(\varphi_{zA} + \psi_{zAE}), \quad M_{zEB} = -M_{zEA}, \quad M_{zEG} = 0. \end{cases}$$

$$\# \quad F: \begin{cases} M_{xFA} = k_b(2\varphi_{xF} + \varphi_{xA} + \psi_{xAF}), \quad M_{xFC} = k_b(2\varphi_{xF} + \varphi_{xC} - \psi_{xAF}), \\ M_{xFG} = 2\beta k_t(\varphi_{xF} - \varphi_{xG}), \\ M_{xFA} = -M_{zAF}, \quad M_{zFC} = 2\beta k_t(\varphi_{eF} - \varphi_{zC}), \quad M_{eFG} = k_b(2\varphi_{eF} + \psi_{zFG}). \end{cases}$$

$$\# \quad G: \begin{cases} M_{xGF} = -M_{xAF}, \quad M_{zFC} = 2\beta k_t(\varphi_{eF} - \varphi_{zC}), \quad M_{eFG} = k_b(2\varphi_{eF} + \psi_{zFG}). \\ M_{xGF} = -M_{xFG}, \quad M_{xGF} = -M_{xFG}, \\ M_{xGF} = -M_{xFG}, \quad M_{xGF} = -M_{xFG}, \\ M_{xGI} = k_b(2\varphi_{xG} + \varphi_{xI} - \psi_{zFG} - \psi_{xAF} + \psi_{zCI}), \\ M_{zGE} = 0, \quad M_{zGF} = k_b(\varphi_{eF} + \psi_{zFG}), \\ M_{zGH} = -M_{zGF}, \quad M_{zH} = 0. \end{cases}$$

$$\# \quad H: \begin{cases} M_{xHB} = M_{xFA}, \quad M_{xHD} = M_{xFC}, \quad M_{xHG} = M_{xFG}, \\ M_{xHB} = -M_{zFA}, \quad M_{zHD} = -M_{eFC}, \quad M_{zHG} = -M_{zFG}. \end{cases}$$

$$\# \quad I: \begin{cases} M_{xIG} = k_b(2\varphi_{xI} + \varphi_{xG} - \psi_{zFG} - \psi_{xAF} + \psi_{zCI}), \\ M_{zIG} = k_b(2\varphi_{xI} + \varphi_{xG} - \psi_{zFG} - \psi_{xAF} + \psi_{zCI}), \\ M_{zIG} = k_b(2\varphi_{xI} + \varphi_{xG} - \psi_{zFG} - \psi_{xAF} + \psi_{zCI}), \\ M_{zIG} = k_b(2\varphi_{xI} + \varphi_{xG} - \psi_{zFG} - \psi_{xAF} + \psi_{zCI}), \\ M_{zIG} = k_b(2\varphi_{xI} + \varphi_{xG} - \psi_{zFG} - \psi_{xAF} + \psi_{zCI}), \\ M_{zIG} = k_b(2\varphi_{xI} + \varphi_{xG} - \psi_{zFG} - \psi_{xAF} + \psi_{zCI}), \\ M_{zIG} = k_b(2\varphi_{xI} + \varphi_{xG} - \psi_{zFG} - \psi_{xAF} + \psi_{zCI}), \\ M_{zIG} = k_b(2\varphi_{xI} + \varphi_{xG} - \psi_{zFG} - \psi_{xAF} + \psi_{zCI}), \\ M_{zIG} = k_b(2\varphi_{xI} + \varphi_{xG} - \psi_{zFG} - \psi_{xAF} + \psi_{zCI}), \\ M_{zIG} = k_b(2\varphi_{xI} + \varphi_{xG} - \psi_{zFG} - \psi_{xAF} + \psi_{zCI}), \\ M_{zIG} = k_b(2\varphi_{xI} + \varphi_{xG} - \psi_{zFG} - \psi_{xAF} + \psi_{zCI}), \\ M_{zIG} = k_b(2\varphi_{xI} + \varphi_{xG} - \psi_{zFG} - \psi_{xAF} + \psi_{zCI}), \\ M_{zIG} = k_b(2\varphi_{xI} + \varphi_{xG} - \psi_{zFG} - \psi_{xAF} + \psi_{zCI}), \\ M_{zIG} = k_b(2\varphi_{xI} + \varphi_{xG} - \psi_{zFG} - \psi_{xAF} + \psi_{zCI}), \\ M_{zIG} = k_b(2\varphi_{xI} + \varphi_{zCI}), \\ M_{zIG} = k_{zG} + \psi_{zG} - \psi_{zFG} - \psi_{zFG$$

2) Elastic Equations

i) Joint Equilibrium Equations

About x axis:

$$\begin{cases}
\sum M_{xA} = M_{xAF} + M_{xAE} = 0, \\
\sum M_{xC} = M_{xCF} + M_{xCI} = 0, \\
\sum M_{xE} = M_{xEA} + M_{xEB} + M_{xEG} = 0, \\
\sum M_{xF} = M_{xFA} + M_{xFC} + M_{xFG} = 0, \\
\sum M_{xG} = M_{xGF} + M_{xGH} + M_{xGE} + M_{xGI} = 0, \\
\sum M_{xI} = M_{xIC} + M_{xID} + M_{xIG} = 0.
\end{cases}$$
About z axis:

$$\begin{cases}
\sum M_{zA} = M_{zAE} + M_{zAF} = 0, \\
\sum M_{zC} = M_{zCF} + M_{zCI} = 0, \\
\sum M_{zF} = M_{zFA} + M_{zFC} + M_{zFG} = 0.
\end{cases}$$

ii) Vertical Shear Equations

At joint E:
$$X_{yEA} - X_{yEB} - X_{yEG} - P = 0.$$

"
F: $X_{yFA} - X_{yFC} - X_{yFG} = 0.$
"
G: $X_{yGF} - X_{yGH} + X_{yGE} - X_{yGI} = 0.$
"
I: $X_{yIC} - X_{yID} + X_{yIG} = 0.$

where,

$X_{ m yEA}=-$ (1/ l)($M_{ m zAE}+M_{ m zEA}$),	$X_{ m yEB}=-~(1/l)(M_{ m zEB}+M_{ m zBE}),$
$X_{ m yEG} = - \ (1/l) (M_{ m xEG} + M_{ m xGE})$,	$X_{yFA} = - (1/l)(M_{xAF} + M_{xFA}),$
$X_{ m yFC}=-(1/l)(M_{ m xFC}+M_{ m xCF})$,	$X_{ m yFG}=-~(1/l)(M_{ m zFG}+M_{ m zGF}),$
$X_{ m yGF} = - ~(1/l) (M_{ m zFG} + M_{ m zGF})$,	$X_{ m yGH}=-~(1/l)(M_{ m zGH}+M_{ m zHG}),$
$X_{ m yGE} = - \ (1/l) (M_{x m EG} + M_{x m GE})$,	$X_{ m yGI} = - (1/l)(M_{x{ m GI}} + M_{x{ m IG}}),$
$X_{ m yIC} = - (1/l)(M_{ m zCI} + M_{ m zIC}),$	$X_{ m yID}=-$ (1/ l)($M_{ m zID}+M_{ m zDI}$),
$X_{ m yIG} = - (1/l)(M_{x{ m GI}} + M_{x{ m IG}}).$	

Using expressions in 1), we have the simultaneous equations shown in Table 24, which produces the following solutions :

					Left-l	hand s	ide							Right-
Eq.	φxa	φxc	φxe	$\varphi x \mathbf{F}$	φxG	φxI	φza	φzc	фzF	ψ_{xAF}	¢≈ле	ψzCI	ψ zfg	side
1	2a+1		-1	a						a				0
2		2a + 1		a		-1				-a				0
3	-2		2a + 2		a					a	<i>a</i>		a	0
4	a	a		4 <i>a</i> +1	-1									0
5			a	-2	4a + 2	а					-a	а		0
6		-2			a	2a+2				- <i>a</i>		a	- <i>a</i>	0
7							2a + 1		-1		a			0
8								2a + 1	-1			a		0
9							-1	-1	2a + 2				a	0
10			3		3		-6			2	6		2	Pl/k_b
11	3	3							3	-4			2	0
12			3			3			6	-4	2	2	-8	0
13					3	3		6		-2		6	-2	0
										1		1	1 1	1

Lable ME Llastic equations	Table	24	Elastic	equations
----------------------------	-------	-----------	---------	-----------

$$\begin{split} \varphi_{xA} &= n(-6 - 15a - 5a^2 + 4a^3 + a^4), \\ \varphi_{xC} &= -n(6 + 23a + 25a^2 + 8a^3 + a^4), \\ \varphi_{xE} &= -n(6 + 45a + 86a^2 + 46a^3 + 6a^4), \\ \varphi_{xF} &= -n(6 + 13a + 2a^2), \\ \varphi_{xG} &= -n(6 + 49 + 92a^2 + 38a^3 + 4a^4), \\ \varphi_{xI} &= -n(6 + 29a + 46a^2 + 22a^3 + 2a^4), \\ \varphi_{zA} &= n(96 + 314a + 311a^2 + 108a^3 + 11a^4), \\ \varphi_{zC} &= n(96 + 206a + 77a^2 - a^4), \\ \varphi_{zF} &= n(96 + 248a + 164a^2 + 36a^3 + 2a^4), \\ \varphi_{xAF} &= -n(12 + 38a + 38a^2 + 15a^3 + 2a^4), \\ \varphi_{zAE} &= -n(258 + 775a + 694a^2 + 225a^3 + 22a^4), \\ \varphi_{zCI} &= -n(150 + 325a + 118a^2 - 3a^3 - 2a^4), \\ \varphi_{zFG} &= -n(168 + 436a + 292a^2 + 66a^3 + 4a^4), \end{split}$$

where,

$$\mu = Pl/24(2+a)(6+a)(2+4a+a^2),$$

$$n = \mu/k_b.$$

3) Moments and Reactions

From eqs. (a) and (f), end-moments are determined.

At joint A:
$$\begin{cases} M_{xAF} = -\mu(30 + 81a + 50a^2 + 7a^3), \\ M_{xAE} = \mu(30 + 81a + 50a^2 + 7a^3), \\ M_{zAF} = 3\mu(22 + 49a + 24a^2 + 3a^3), \\ M_{zAE} = -3\mu(22 + 49a + 24a^2 + 3a^3), \\ M_{zAE} = -3\mu(22 + 49a + 24a^2 + 3a^3), \\ M_{zAE} = -\mu(6 + 21a + 14a^2 + a^3), \\ M_{xCI} = \mu(6 + 21a + 14a^2 + a^3), \\ M_{zCI} = 3\mu(14 + 29a + 12a^2 + a^3). \end{cases}$$

$$\# E: \begin{cases} M_{xEG} = 2\mu(30 + 81a + 50a^2 + 7a^3), \\ M_{zEA} = -\mu(162 + 461a + 383a^2 + 117a^3 + 11a^4). \end{cases}$$

At joint F:
$$\begin{cases} M_{xFA} = -\mu(30 + 79a + 47a^2 + 11a^3 + a^4), \\ M_{xFC} = \mu(-6 - 11a + 9a^2 + 7a^3 + a^4), \\ M_{xFG} = 2\mu(18 + 45a + 19a^2 + 2a^3), \\ M_{zFC} = 3\mu(14 + 29a + 12a^2 + a^3), \\ M_{zFG} = 6\mu(4 + 10a + 6a^2 + a^3). \end{cases}$$

$$\# G: \begin{cases} M_{xGE} = 2\mu(30 + 79a + 47a^2 + 11a^3 + a^4), \\ M_{xGI} = -2\mu(-6 - 11a + 9a^2 + 7a^3 + a^4), \\ M_{zGF} = -2\mu(36 + 94a + 64a^2 + 15a^3 + a^4). \end{cases}$$

$$\# I: \begin{cases} M_{xIG} = 2\mu(6 + 21a + 14a^2 + a^3), \\ M_{zIC} = -\mu(54 + 119a + 41a^2 - 3a^3 - a^4). \end{cases}$$

Putting $a = 2\alpha$, we see that these are in agreement with Prof. FUKUDA's solutions which are obtained from twenty-five equations. Consider now the case where all members are of steel (m=4) with square sections, i.e., a = 2.992, 6 and $\mu = 0.000, 042, 670$ Pl. Then we have:

At joint A:
$$\begin{cases} M_{xAF} = -0.037,06Pl & (B) \\ M_{xAE} = +0.037,06Pl & (T) \\ M_{zAF} = +0.056,98Pl & (T) \\ M_{zAF} = -0.056,98Pl & (B) \end{cases}$$

$$\ll C: \begin{cases} M_{xCF} = -0.009,04Pl & (B) \\ M_{xCI} = +0.009,04Pl & (T) \\ M_{zCI} = +0.028,96Pl & (B) \end{cases}$$

$$\ll E: \begin{cases} M_{xEG} = +0.074,12Pl & (B) \\ M_{zEA} = -0.362,87Pl & (B) \\ M_{xFG} = +0.012,22Pl & (B) \\ M_{xFG} = +0.030,87Pl & (T) \\ M_{zFC} = +0.028,96Pl & (T) \end{cases}$$

 $M_{zFG} = +0.028,02Pl$ (B)
No. 12 Analysis of Rigid Frames in Space by Applying Slope-Deflection Formulas 107

$$" G: \begin{cases} M_{xGE} = + 0.086, 18Pl & (B) \\ M_{xGI} = -0.024, 44Pl & (B) \\ M_{zGF} = -0.111, 35Pl & (B) \end{cases}$$

v I:
$$\begin{cases} M_{xIG} = +0.018, 09Pl & (B) \\ M_{zIC} = -0.025, 78Pl & (B) \end{cases}$$

Note: (B): Bending moment, (T): Torsional moment.

These coincide with the values shown by Prof. F_{UKUDA} except signs. Fig. 38 shows the moment diagram.

Vertical reactions are calculated as follows :

$$A = -(1/l)(M_{xAF} + M_{xFA}) - (1/l)(M_{zAE} + M_{zEA})$$

= -(1/l)(-0.037,06 - 0.043,09)Pl - (1/l)(-0.056,98 - 0.362,87)Pl = 0.5P,
$$C = (1/l)(M_{xFC} + M_{xCF}) - (1/l)(M_{zCI} + M_{zIC})$$

$$= (1/l)(0.012, 22 - 0.009, 04)Pl - (1/l)(0.028, 96 - 0.025, 78)Pl = 0.$$

4) Deflections

Obtaining end-moments and ϕ 's, we readily determine the deformation of the structure, which are shown in Fig. 39. It will be worth while to mention that this diagram gives the influence diagram for the deflection at the joint considered if we put P = 1.

S. YOSHIDA

22. A Square Grid of 3×3 Panels Supported Simply at Corners, Concentrated Loads on the Inner Joints. Fig. 40.*)

By symmetry, the following six unknowns are enough.

1) Expressions of End-Moments

At joint A:
$$M_{zAE} = k_b(2\varphi_1 + \varphi_2 + \psi_1), \quad M_{zAG} = 2\beta k_t(\varphi_1 - \varphi_3).$$

$$M_{zEA} = k_b(\varphi_1 + 2\varphi_2 + \psi_1), \quad M_{xEA} = 2\beta k_t(\varphi_3 - \varphi_1),$$

$$M_{zEF} = k_b\varphi_2, \quad M_{zEH} = 2\beta k_t(\varphi_2 - \varphi_4),$$

$$M_{xEH} = k_b(2\varphi_3 + \varphi_4 + \psi_2), \quad M_{xEF} = 0.$$

$$M_{zHG} = k_b(\varphi_3 + 2\varphi_4 + \psi_2), \quad M_{zHE} = 2\beta k_t(\varphi_4 - \varphi_2),$$

$$M_{zHI} = k_b\varphi_4, \quad M_{zHL} = 0, \quad M_{xHE} = k_b(\varphi_3 + 2\varphi_4 + \psi_2).$$

$$M_{zFE} = -k_b\varphi_2.$$

$$M_{zHI} = -k_b\varphi_4.$$
(a)

2) Elastic Equations

i) Joint Equilibrium Equations

At joint A,
$$\sum M_{zA} = M_{zAE} + M_{zAG} = 0.$$

" E, $\sum M_{zE} = M_{zEA} + M_{zEF} + M_{zEH} = 0,$
 $\sum M_{xE} = M_{xEA} + M_{xEF} + M_{xEH} = 0.$
" H, $\sum M_{zH} = M_{zHG} + M_{zHE} + M_{zHI} + M_{zHL} = 0.$ (b)

108

^{*)} FUKUDA: II Abschnitt, §3, 2)

No. 12 Analysis of Rigid Frames in Space by Applying Slope-Deflection Formulas 109

ii) Vertical Shear Equations

At joint E,
$$\sum X_{yE} = X_{yEA} - X_{yEH} - X_{yEF} = 0$$
,
 H , $\sum X_{yH} = X_{yHG} + X_{yHE} - X_{yHI} - X_{yHL} = P$, (c)

where,

$$X_{yEA} = -(1/l)(M_{zAE} + M_{zEA}), \qquad X_{yEH} = -(1/l)(M_{xEH} + M_{xHE}),$$

$$X_{yEF} = -(1/l)(M_{zEF} + M_{zFE}), \qquad X_{yHG} = -(1/l)(M_{zGH} + M_{zHG}),$$

$$X_{yHE} = -(1/l)(M_{xHE} + M_{xEH}), \qquad X_{yHI} = -(1/l)(M_{zHI} + M_{zIH}),$$

$$X_{yHL} = -(1/l)(M_{xHL} + M_{xLH}).$$
(d)

Here, we have the equations shown in Table 25, which produces the following results :

Eq.	Left-hand side						Right-
	$arphi_1$	$arphi_2$	$arphi_3$	φ4	ψ_1	ψ_2	side
(1)	$2(kb + \beta k\iota)$	kı	$-2\beta kt$		k6		0
(2)	kb	$3kb+2\beta ki$		$-2\beta kt$	kb		0
(3)	$-2\beta ki$		$2(kb+\beta kt)$	kb		kb	0
(4)		$-2\beta kt$	kb	$3kb+2\beta kt$		kb	0
(5)	3	3	-3	-3	2	-2	0
(6)			3	3		2	-(Pl/2kb)

Table 25 Elastic equations

$$\varphi_{1} = \frac{Pl}{k_{b}}, \qquad \varphi_{2} = \frac{Pl}{2k_{b}}, \qquad \varphi_{3} = \frac{Pl}{k_{b}},$$

$$\varphi_{4} = \frac{Pl}{2k_{b}}, \qquad \psi_{1} = \frac{-5Pl}{2k_{b}}, \qquad \psi_{2} = \frac{-5Pl}{2k_{b}}.$$
(e)

•

3) End-Moments

Eqs. (a) and (e) determine the end-moments;

$$M_{zAE} = k_b \left(\frac{2Pl}{k_b} + \frac{Pl}{2k_b} - \frac{5Pl}{2k_b} \right) = 0,$$
$$M_{zEA} = k_b \left(\frac{Pl}{k_b} + \frac{2Pl}{2k_b} - \frac{5}{2}\frac{Pl}{k_b} \right) = -\frac{1}{2}Pl,$$

S. YOSHIDA

$$M_{zEF} = k_b \left(\frac{Pl}{2k_b}\right) = \frac{1}{2}Pl,$$

$$M_{xEH} = k_b \left(\frac{2Pl}{k_b} + \frac{Pl}{2k_b} - \frac{5}{2}\frac{Pl}{k_b}\right) = 0,$$

$$M_{zHI} = k_b \frac{Pl}{2k_b} = \frac{1}{2}Pl,$$

$$(f)$$

$$M_{zAG} = 2\beta k_l \left(\frac{l}{k_b} - \frac{l}{k_b}\right) = 0,$$
$$M_{zEH} = 2\beta k_l \left(\frac{Pl}{2k_b} - \frac{Pl}{2k_b}\right) = 0.$$

These coincide again with Prof. FUKUDA'S solutions which he found from thirteen equations.

In this case, as Prof. FUKUDA points out, all the torsional moments vanish and hence the girders act as if they were simply supported at their extreme ends; refer to Fig. 41.

Fig. 41 Moment diagram

23. A Square Grid of 3×3 Panels Fixed at the Periphery, Concentrated Loads on the Inner Joints. Fig. 42.*)

This problem is rather simple to analyse than the preceding, because the independent unknowns are only two, i.e.,

$$\varphi_{zI} = \varphi_{zJ} = \varphi_{zK} = \varphi_{zL} = \varphi_{xI} = \varphi_{xJ} = \varphi_{xK} = \varphi_{xL} \equiv \varphi,$$

$$\varphi_{xAI} = \varphi_{zCI} \equiv \psi.$$

Thus we have the end-moment expressions :

$$M_{zCI} = k_b(\varphi + \psi), \quad M_{zIC} = k_b(2\varphi + \psi),$$

 $M_{zIA} = 2\beta k_t \varphi, \quad M_{zIJ} = k_b \varphi, \quad M_{zIK} = 0.$

110

^{*)} Fukuda: II Abschnitt, §4, 2)

No. 12 Analysis of Rigid Frames in Space by Applying Slope-Deflection Formulas 111

These must satisfy the equilibrium conditions below:

$$\sum M_{zI} = M_{zIC} + M_{zIA} + M_{zIJ} + M_{zIK} = 0,$$

$$\sum X_{yI} = X_{yIC} + X_{yIA} - X_{yIJ} - X_{yIK} = P,$$

which give the following simultaneous equations:

$$(3k_b + 2\beta k_l)\varphi + k_b \psi = 0,$$

 $3k_b \varphi + 2k_l \psi + \frac{Pl}{2} = 0.$

Solution gives

$$\varphi = \frac{Pl}{2k_b} \cdot \frac{\alpha}{3\alpha + 1}, \qquad \qquad \psi = \frac{Pl}{4k_b} \cdot \frac{6\alpha + 1}{3\alpha + 1},$$

where

$$\alpha = k_b/4\beta k_t.$$

Introducing these in eqs. (a), the end-moments are determined :

$$M_{z\text{CI}} = -\frac{Pl}{4} \cdot \frac{4\alpha + 1}{3\alpha + 1}, \qquad M_{z\text{IC}} = -\frac{Pl}{4} \cdot \frac{2\alpha + 1}{3\alpha + 1},$$
$$M_{z\text{IJ}} = \frac{Pl}{2} \cdot \frac{\alpha}{3\alpha + 1}, \qquad M_{z\text{IA}} = \frac{Pl}{4} \cdot \frac{1}{3\alpha + 1}.$$

These results agree with those of Prof. F_{UKUDA} which are obtained by solving seven equations simultaneously. Fig. 43 shows the moment diagram.

Fig.43 Moment diagram

S. YOSHIDA

Summary

Some of the features of the foregoing investigations may be summarized as follows:

(1) To analyse the rigid frames in space, the so-called classical methods which take the stress functions for unknowns are considered not to be useful in practice, because they require numerous condition equations. In addition, we are very often confused in drawing moment diagrams, because those methods require to pay constant attensions in reading the sign conventions adopted. To this, the author's method, depending upon the slope-deflection theory, requires far smaller number of condition equations, about half of those of the classical methods, because it takes end deformations for unknowns, and the moment diagrams are mechanically drawn without confusion.

(2) For the frames without sways, the current two-dimensional analysis may be applied with good accuracy except the cases in which there exist large unbalances among the stiffnesses of members; for such exceptional cases we must treat the frame three-dimensionally.

(3) For the frames with sways, which is the usual case, the conventional two-dimensional treatment produces results containing large errors; the errors will appear either on the safe side or on the dangerous side due to the arrangement of members and loading conditions. Hence, these frames must be analysed three-dimensionally.

(4) The author's method is successfully applied to the analysis of the grid works.

References

- Andersen, Paul : 1935, Experiments with Concrete in Torsion, Transactions, A.S. C.E. Vol. 100, p. 949.
- Andersen, Paul : 1938, Design of reinforced concrete in Torsion, Transactions, A. S. C. E. No. 2009.
- Chronowicz, A : 1950, Torsion in Continuous Structures, Concrete & Constr. Eng., Vol. 45, No. 10, pp. 363~365.
- 4) Cornelius, W. u. Fröhlich, H.: 1949, Brücken in Verbundbauseise, Z. VDI, Bd. 91, s. 553~555.
- Cornelius, W.: 1950, Entwicklungsmöglichkeiten des Stahlbaues durch die Verbundbauseise. Z. VDI. Bd. 92, s. 667~670.
- Ewell, W. Walter : 1951, Deflection in gridworks and slabs, Proc. A. S. C. E. Vol. 77, No. 89.

No. 12

112

No.12 Analysis of Rigid Frames in Space by Applying Slope-Deflection Formulas 113

- Fukuda, Takeo : 1931, Theorie der Roste und ihre Anwendungen, Journal of the Civil Engineering Society, Vol. 17, No. 5.
- 8) Haulena, B.E.: 1948, Brücken in Verbundbauweise, Z. VDI. Bd. 90, s. 145~150.
- Mann, L.: 1939, Grundlagen zu einer Theorie R\u00e4umlicher Rahmen-tragwerke, Stahlbau, Vol. 12, No. 19~20, und No. 21~22.
- Millies, Alfred : 1927, Räumliche Vieleckrahmen mit eingespannten Füssen unter besonderer Berücksichtigung der Windbelastung, Berlin.
- Murakami, Tadashi: 1953, Studies on the Slope-Deflection Method, Memoirs of the Faculty of Engineering, Kyushu University, Vol. 14, No. 1.
- 12) Reisinger, Erich : 1924, Zur Berechnung Räumlicher Rahmenwerke, Der Bauingenieur, Heft. l.
- Yuki, Tomoyasu and Yoshida, Shun-ya : 1953, On Twisting Moments of Space Structural Members, Journal of the Civil Engineering Society, Vol. 38, No. 8.