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Synopsis. Rigid frames in space are successfully and exactly analysed by applying the
slope-deflection equations to the flexural members and the torsion equations to the twisted
members respectively. The results are compared to those obtained from the conventional

two-dimensional analysis, the precision of which is numerically shown.

Introduction

In designing a rigid frame in space, it is usual to divide it up into several
constituent plane frames and analyse each separately. Although this conven-
tional procedure greatly facilitates the calculations, it does not determine the
torsion effects which exist and sometimes amout to considerable magnitude.
It is hoped to give an exact and easily applicable method which treats the
frame as a whole.

9),10),12)

Several three-dimensional analyses ever proposed are almost based upon the
principles of virtual work or the like which are taking the stress functions as
redundants. Accordingly the calculations become so tedious that the practical
applications are limited to the comparatively simple problems, e.g., the
symmetrical frames under symmetrical loadings or, if not symmetrical,
joints are assumed not to translate.

The author presents here a three-dimensional analysis using the slope-
deflection equations together with the torsion equations. It is well known that
the slope-deflection method is so superior to the classical methods in treating
the plane fra.mesl.n This circumstance agrees equally with the space framelss,)
and many advantages will be claimed in the illustrations which follow.

The space frames mainly considered here are of single-storied and of multi-
bayed longitudinally and laterally, whose members are all straight and

prismatic meeting each other at right angles.
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Chapter I. Fundamental Formulas

1. Notations

In dealing with a space frame, the slope-deflection method now familiar
to us will also be the most convenient, since it takes the end-deformations of
members for unknowns instead of stresses or reactions as in the other classical
methods. On this account, the number of unknowns is greatly diminished,
simple and clear sign conventions are established, the stress diagrams are
made easy to draw, and moreover the deformed structure is readily visualized.
Now, we proceed with illustrations of notations adopted.

The members of a space frame in Fig. 1 meet
each other at right angles. In this connection,

the orthogonal coordinate axes x, y and z are set
n {

' up as shown. Note that any member lies parallel

B T, l to one of these three axes. The member will be

4 ? designated by its ends, being called the near end
- ﬁ : n and the far end {.

Fig. 12 Consider, for example, a member nf which is

parallel to x axis, Fig.1l. Moments acting at its
end are denoted by M with three subscripts such as Munt, Mynt and Mens. The
first subscript designates the axis about which M acts; the remaining two,
the member and the end in question as usual. Thus, we readily tell that Mans
is the moment at the near end about (an axis parallel to) x axis, i.e., the
twisting moment; My and M.t are the moments at the near end about y and
z axes respectively, i.e., the bending moments.

The angular deflections produced by M’s are denoted by ¢ with subscripts
similarly as above. Thus, f.n is the angular deflection at n about x axis, i.e.,
the angle of twist; 0Oyt and O are the angular deflections at n about y and
z axes respectively, i.e., the end-slopes. Since the joint rotations (§9) are
always taken up instead of end-slopes in our problems, the last subscript of
¢ designating the far end will often be omitted for convenience. For the member
lying parallel to the axes other than x, the designations of M’s and of #'s will
be made by reading their first subscripts.

M’s are positive which agree with the “right-hand screw rule” when the
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arrow-heads point negative directions of reference axes; #’s are positive which
correspond to positive M’s.

The relative displacements of joints tend the member to revolve from its
original unstrained position. These angles of revolution are denoted by R,
similarly accompanied by three subscripts; thus, by Rynt and Rt are meant
that the revolutions are around y and z axes respectively. A clockwise
revolution is taken as positive when the “center line of screw driver”
through the member-end points to the negative direction of the reference axis.

2. Slope-Deflection Equations
If the member nf lies parallel to x axis, then it undergoes bending defor-
mations in the planes xz and xy, and for the member nf the well known slope-
deflection equations hold. See Fig.2. In xz plane, we have

Iy
A/lynf = 2E‘ly—f‘f (20_yn -+ Oyf — 3Ryn{) -+ Cynf, (1)
and in xy plane
Lin
Mg = 2F I f (20:11 A+ O — SRznf) -+ C:nf, (2)
nf
y

where E = the modulus of elasticity.
Iy, I. = the moments of inertia of

. Mynf
the sectiqn referred to y Mank,_
and z axes respectively. “/‘7 =
Cy, C:=the fixed-end Dbending Manf
moments about y and z
axes respectively. Their x
values will be found in
many texts or pocket— // - :i"i
books. z Byn [’9;\
Introducing the stiffness factors Fig.2
for flexure, these equations are modified:
Mynt = 2EKynt (203 + 0yt — 3Rynt) + Cynt, (3)
Meni = 2EKeni (2020 + 021 — 3Rznt) + Cant, (4)

where K, = Iy/lxi = the stiffness factor. for flexure referred to y axis,

K. = I./lsi = do. referred to z axis.
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3. Torsion Equations
We have, for a prismatic bar of length /, the relationship between the
angle of twist # of an end relative to the other and the applied torque Mrp:

Ml

where G = the modulus of rigidity,
J = the torsional constant of the section.

Applying this to the member nf which lies, for example, parallel to x axis,

Fig. 2, we obtain

G anf
A/W;L'nf == ”l[;‘ ([}xn — 01[). (6)
If the member is loaded with torques as in o Heof  Crfn
Fig.3, their effects must be added to the “a } b_?—
right-hand side of eq.(6), which will be called Inf
the fixed—end torque and denoted by Cant. Thus Fig.3
G anf
Ment = «.._}[‘,;7 (Oxn - 0.rf) -+ C:cnf, (7)
where
, b
C.z‘nf = ZZ_EIWInf. (8)
Eq‘. (7) is written in the form
Mnt = GKant (//zn - (}xf) + anf, (9)

where Kant = Jent/lns = the stiffness factor for torsion.

4. Evaluation of |
The torsional constant / must be evaluated from the St. Venant’s theory.
We see that, if the section is circular, [/ is equal to I», the polar moment of
inertia. But for non-circular sections, being the theory too long and complicated
to evaluate it exactly, approximations are mostly being made. Only the formulas
for the sections which seem to be important for our problems will be shown
below :
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<

1) Rectangular section of width @ and depth & :
The St. Venant’s exact expression is

- a*h 192a <& 1 nzb
(] — el 2 %Y 2 g ~>
7 3 ( 7 b ,Z‘:i'js,s...n‘" tanh 2a )’ (10)

which is not so tedious to compute, bhecause the series is very rapidly
convergent. For practical purposes, we may take its first term only, thus
_a3b<1 192 a xb)

J=— an

3 @b 2a (1)

2) Narrow rectangular section:

. . - 1
If b/a is large, letting tanh(uzb/2a) = 1 and 2 e =1.004 6, we obtain
j2==1,3,5, = ¥
from exp. (10)
J= oy 6’30a> (12
This gives good approximations for b/a>1.6.
If b/a = 1~1.6 the Foppl’s formula below is rather accurate.
a’b®

(13)

In the case where the width is very thin, the second term inside the paren-
theses of exp. (12) becomes neglegible, and we have

B adh

5 (14)

Note that this is the moment of inertia with respect to the longer side.

3) Square section:
For a = b, exp.(10) yields

J = 0.14064* ~ (15)

See that eq.(13) gives the value close enough to this.

4) Rolled profile sections:

For the sections such as angles, channels and [I's, divide them up into
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rectangular strips and apply exp. (14) to each strip. The summations of the
results give the satisfactory values: ‘

] =z (16)

where a = the width of the strip,
t = the thickness of the strip.

5. Relative Stijfnesses
The torsional rigidity GJ of a member can be expressed by the flexural

rigidity EI of any member chosen as reference:

_ mE B m J
7= s+ 15 = {5 51 JEE

where m = Poisson’s number,
I = the moment of inertia of the section of the reference member.

The transformation gives

G[_{ m ]/Z}E]

I Lm0l 1
or
m Ky ..
Ko—d. g
GK: {2(1'}1 NEEN K‘b}EKb’

where I, [=the lengths of the member considered and of reference member
respectively.
K: = J/l = the stiffness factor for the torsion of the member in question.
Ki = I/l = the stiffness factor for the flexure of the reference member.
This will be written in the simple form:

GK: = 4pREK, 17
in which
G m
P=4E T 8+ 1y 18
K.
ke = . {19)

K.
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k: denotes the stiffness factor for the torsion measured by the reference
stiffness factor for flexure, which is called the relative stiffness or stiffness
ratio for torsion.

Similarly, measuring the stiffness factor for flexure K» of the member
considered by K, the stiffness ratio for flexure is defined:

Ks

ko = —, 20
' (20)

whence we have, corresponding to eq.(17)
EK, = kEEK, (21)

6. Equations for Practical Use
To obtain facilities for practical calculations, the foregoing equations will
be simplified by using the stiffness ratios and the symbols below:

¢ = — 6EKWR.

Thus we have from the slope-deflection egs.(3) and (4)

Myn{ = kynf(2(pyn -+ Oyt -+ (/Jyn{) -+ Cynf, (23)

Mznf = kznf(QQDzn —)(‘ (72233 + q’)znf) + Cznf, (24)
and from the torsion eq.(9)

Mxnf = Z‘kan{((pxn o (,Dxf) ‘F anf. <25)

7. Members Free to Rotate at Far End
Consider the member is supported at the far end so as to rotate freely
against bending but fixed against torsion. For such member the slope-deflection
equations are also provided. For example, if the member in Fig. 1 is bending-
free at the far end f about y axis only, we have, in xz plane, the end-moment
expression at the near end n eliminating ¢y from eq.(23) that is using the
relation Mym=0, thus

1
Mynf = ékynf(g(Pyn -+ Q(’)ynf) —+ Hynf, (26)

where
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1
Hynf = Cynf — ’{)Cyfn. (27)

Further, if the far end of the member in question is torsion—free but
bending-fixed, we readily find that

Mznt = Cant. (28}

This becomes zero when the member has no torque applied, therefore we need
not consider such members in such a case.

8. End-Shears
If a member of the space frame acted upon by the loads, the reactions
normal to its axis are induced in addition to the

y

end-moments. These reactions, often called the
end-shears, will be denoted by X with three
subscripts as before. See Fig. 4.

Consider, for example, the member nf lying
parallel to x axis, and write the equilibrium

conditions in xy plane. Then we readily have
the expressions for X’s: Fig. 4

1 e
Xynf - Z‘f(Mznf -+ szn) -+ Xyn[,

1 (29)
-— 'l*‘(,/Wznf -+ MZf") + )(yfn,
f

n

nyn -

where X’s denote the normal reactions produced by the loads when the member
is assumed to be a simple beam.

X’s and X’s are taken as positive when they have the moments about the
far end which agree with the right-hand screw rule. For the other reaction
components such as Xent and X.m, the similar expressions will be obtained.

Chapter II. Elastic Equations

9. Joint Equilibrium Equations
The condition of continuity at the joints states that the intersection angles
between the member-axes remain unchanged even if the frame undergoes
deformation,i.e., all the member-ends rotate by the same angle at the joint
under consideration. This rotation angle, common to all member-ends, is
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termed the joint rotation angle or briefly the joint rotation. To satisfy the
condition of continuity, it is only necessary to put the respective component
joint rotations in the places of the component end-slopes in the end-moment
equations.

Having this done, we write the equilibrium equations expressing that the
component end-moments total to zero at each joint. For example, at joint a,
we have

about x axis, SN—Mazai) + Mz = 0,
about v axis, 3(—Myai) + My =0, (30)
about z axis, SY—Mei) + Mz = 0,

where i = the subscript designating the joint adjacent to a,
M = the component external moment existing at a.
Thus, we have equilibrium equations like these, each three at each joint,
which coincide in total with the number of unknown ¢’s.

10. Horizontal-Shear Equations

A typical space frame is considered to be a system of plane frames standing
parallel to xy or yz plane connected each other by a group of beams running
parallel to z or y axis. In Fig.5
the constituent plane frames are
shown by heavy lines, the con-
necting beams by fine lines; in
(a) the plane frames are arranged
in row, and in (b) in column.

Now consider a plane frame
of any row as a free~-body isolated

from the whole assembly, and

write the equilibrium of forces
acting along the section through

its column-tops. Considering the

forces transmitted from the con-
necting beams, Fig.6, we have Fig.6

}__‘_‘(—Xzak) -} Z(“‘ani —_ Xzaj) -+ Qx = 0, (31)

where i, j= subscripts designating the adjacent joints,
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k = do. the column base,
» = the x-component of the total horizontal load acting above the
section considered.
This is written in the simple form:

Similarly, observing a plane-frame of any column, we obtain
SH—Xe) + Q. = 0. (33)

These equations express the equilibrium condition of horizontal forces,
and we will call them the horizontal-shear equations; see that the number of
them equals the sum of numbers of rows and of columns.

11. Vertical-Shear Equations
The connecting beams spanning any two adjacent plane frames must be
in equilibrium under the vertical forces. Considering, for example, any beam

nf in row-arrangement shown in Fig.7, we immediately have

Xynt — Xyin — Py =0, 34
1/ Py ‘/ t 1/ ) V ¥ ¥ ¥ ( )
‘ i WT where P = the resultant vertical load
I 1 1 acting on the beam.
J [ J 1 Applying this relation to the

beams in order and adding, we

)—.x obtain
z

Fig.7 Z(Xynf — nyn) — Zpy = 0. (35)

The similar equations are also deduced in the case of column-arrangement.
These will be referred to as the vertical-shear equations, the number of
which agrees with the sum of numbers of bays of the plane frames in column-

arrangement and of those in row-arrangement.

12. Compatibility Equations
When the members of the frame change their lengths due to the axjal
forces, temperature changes etc., the displacements of joints are resulted,
which produce the revolutions of members. The matter is the same when the
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supports happen to displace. Since the members can revolve in two directions,
the number of unknown R’s (or ¢’s) is equal to twice the number of the
members. These K’s must be compatible with the geometry of the frame to
be mentioned below.

Take, for example, any space bounded by members either open or closed.
Such a space is shown in Fig.8(a), where the skeleton after deformation is
drawn by broken lines assuming the left support to be fixed in position.

Let the initial and final dimensions of the skeletons be as follows:

Initial Final
Length of member s s+ ds
Inclination of member « az — Rz O
Span l L+ 4l
Relative height of the ends h h+ 4k

@ Cf Fig. 8(d).

Then we have, by geometry, the
relations after deformation:

s + dsycos{ax — R:) =1 + 4l
2(3 -+ AS) Sin(az —_ Rz) = h + Ah

Expand these equations considering
the geometry before deformation, Fig.8
2iscosa: = 0 and 3issinw. = h; let sinR.= R. and cosR: =1, and omit the
small terms of higher order in the resulting expressions since 4s and R: are
very small. Then we finally have

>idscosaz + FIR=Ssina. = i,

(36)
>idssinaz — YR.5cosa: = dh.

These are the compatibility equations required. If we consider such spaces as
in Fig.8(b) and (c), change the subscripts of @« and R to x and y respectively.
On some particular cases it will be mentioned that:
1) When the supports do not displace, let 4/ = 4h = 0.
2) For a closed space, also put 4/ = 4h = 0.
3) For the case where the lengths of members remain unchanged and the
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supports are fixed in positions, egs.(36) reduce to the simple form:

SRssina = 0,
SiRscosa = 0.

(37)

The subscripts are here omitted.

13. Establishment of Solution

In order to carry out the analysis of the rigid frames in space, the
equilibrium equations—joint equilibrium equations, horizontal-and vertical-
shear equations—should be utilized together with the compatihility equa-
tions. To make sure the possibility of solution, we will here investigate the
numbers of unknowns sought and of condition equations available. Take, for
simplicity, a space frame of single story, and let m and # be the numbers of its
constituent plane frames in row— and column-arrangements respectively.

Then, the joints, the numbers and the spaces are respectively enumerated

as shown in Table 1.

Table 1
Item No.
Joint ; mn
Column mn
Member Beam, parallel to x axis min — 1)y 3mn — im + »n)
Do., ” z 7 wm — 1)
Parallel to yz plane mn ~ 1)
Space ” xz 7 m— 1n — 1) 3mn — 2m + n) + 1
” xy wm — 1)

With this, we can tell the numbers of condition equations as follows:
Joint equilibrium equations---3mn (three times of no. of joints).
Horizontal-shear equations---m + n (sum of nos. of rows and columns).
Vertical-shear equations---(m — 1)+ (n — 1) =m +n — 2 (sum of nos. of bays

of constituent plane frames in both arrangements).
Compatibility equations --- 6mmn — 4(m + n) + 2(twice the nos. of spaces)
Totals---9mn — 2(m + n).
On the other hand, the number of unknown ¢’s is 3mn, and of ¢’s 6mp —
2(m -+ n), which evidently agrees, in all, with that of condition equations shown
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above. Therefore, we can conclude that the solution is always possible.

The similar discussion will hold for the frames of multi-story.

If we assume that the supports are immovable and the member-lenghths
are immutable, which is the case usually considered, the compatibility equa-
tions become needless, because we can tell, by inspection, as follows:

1) The beams can revolve about y axis only. All the beams spanning
adjacent two plane frames have the same ¢. Hence, the number of ¢'s of them
becomes (m — 1)+ (n — 1) =m +n — 2.

2)  All the columns in any constituent plane frame have the same R, if
their heights are all equal. Hence, the number of ¢’s of columns is m + n.

3) Thus, the number of ¢’s totals to 2(m + n — 1), which just comes to
the number of shear equations.

4) The matter is the same, if there is irregularity in the length of columns
and beams.

Furthermore, if the joints do not displace due to the symmetry or to the
lateral supports, ¢’s become zercs, hence the solution is carried out by the
use of the joint equilibrium equations only.

14. Comparison with Method of Redundancies

In order to obtain a statically determinate rigid connection in space by
assembling % bars, we have to apply six constraints at each knot. Since there
are £ — 1 knots, the required constraints must be 6(%# — 1) in all. The frame
thus fabricated is then attached to the foundation to complete a statically
determinate structure. For this purpose, we are again in need of six external
constraints. Thus, we see that a statically determinate rigid frame should
have the constraints of 6(k —1) + 6 = 6k in total.

If the frame under consideration is statically indeterminate, it has more
constraints than 6k, and its degree of redundancy N is found to be

N=vr -+ j— bk,

where 7 = total external constraints,
J = total internal constraints. At a rigid joint, j denotes the number
of meeting members less than one multiplied by six.
The methods of redundancies, the classical methods, take the end-forces
for unknowns, which are the constraints above mentioned. Therefore, N
denctes the number of redundant forces to be found.
Let, for example, a single storied frame of m rows and n columns be
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considered. We obtain, referring to Table 1, » = 6mn, j= 24mn — 12(m -+ n)
and k = 3mn — (m + n). Therefore

N = 12mn — 6(m + n).

Even in the case where the supports and the joints do not displace, we have
to solve as many equations as this. If such a frame is analysed by the author’s
method, the number of unknowns to be found is 3mmn, for which only the joint
equilibrium equations are enough. For a simple frame of m =n = 2, we see
N = 24 and 3mn = 12; the difference is indeed 12. This shows that how great
facilities are obtained by the author’s method.

Chapter II. Ilustrative Examples

15. Torsion E ffects in a Rigid Frame in Space

A symmetrical space frame in Fig.9 subjects P,
to symmetrical loadings as shown. The three— B o G
dimensional analysis by the author’s method T
proceeds as follows: . v E ©

. .

1) Expressions of End-Moments AT b

By inspection, we readily have the relations :

Fig.9
©aB = QaC, QaF = PG, ©OyB = OyC = QyF = @36 = 0, @B = — (20, ©2F = — ¥:G.

With these, the following end-moment expressions are written down.
For member AB:
About x axis, Mazap = kzan(¢eB + (zAB),
Do. ,  Mapa = kanB(20s8 + QzaB),
About z axis, Mas = kAB@:E,
Do. . Msa = 2k-anp:B.
For member BC:
About z axis, Ma.sc = kencezn + Cenc.
For member BF:
About x axis, Musr = Renr(2028 + @ar) + CuBr,

Do. , Maurs = kawr(0as + 2¢u5) + Caurs,

(a)

About z axis, M.er = 28kmr(0:B — @z¥),
Do. . Mare = 2f3k:pr(@:F — ©:B).
For member EF:
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About x axis, Masr = kaer(@<F + @aEF) = kzer(@zr + (H/h)dzas),

Do. ,  Moare = kzer(202F + (uEF) = ker(2¢2r + (H/R)p2aB),
About z axis, M:zer = k:Erper,
Do. ,  M:re = 2k:Er@-r.

For member FG:

About z axis, M:rc = kercper + Cero.

2y Elastic Equations
Condition equations to be satisfied by these end-moments are:
i) Joint Equilibrium Equations
At joint B:
About x axis, Maisa + Masr = 0,
About z axis, Mwma + Msc+ Mesr = 0.
At joint F:
About x axis, Murs + Mare = 0, . (b)
About z axis, M.rp + Mere + Merc = 0.
i1) Horizontal Shear Equations
X:a + Xere = 0.
Substituting the above end-moments (a) into these equilibrium equations

(b), we get the following simultaneous equations.

2(kzar + kaBF)@aB + RaBr@ar + RzaBear + Car = 0,
kapr@an + 2(Rabr + Rapr)@zr + (Hfh)kerdzas + Caorp = 0,
(2kzaB + keBc + 2Bk:BF)pn — 28k-Br@:F + Cape = 0,

(2keer + kerc + 208k=mr)pr — 28kesrzs + Circ = 0,
3hkanspes -+ 3H kagrgar -+ (2hkzas + 2(H?*/ h)kaer)dzas = 0.

Solving these, we have:

Joint rotations at B,
ox8 = (—1/){((4kepr + kzrr)(hkzas + (H*/h)kaxr) — 3(H?/h)k2er JConF
— (2kspr(hkaenn + (H¥h)kaer) — 3Hkoapkzrr JCars},
=8 = (—1/10){(2k=eF + kerc + 28k.r)Canc + 28k.prCarc ).
Joint rotations at F,
@ar = (1)0){(2kesr(hkean + (H2/h)kzer) — 3HE24Bkapr)Copr
— [4(kzaB + konr)(hkzans + (H2/h)keer) — 3hk22ap])Cars},
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@eF = (—1/p){(2kzan + kepc + 28k-pr)Cerc + 2Bkpr Cznc}. E ©
Revolution of member AB,
pazas = (—1/V){(3Hkssrkser — 6hkzan(kabr + kwer)JCaBF
— (6Hkzer(kzap + kabr) 4+ 3hkzaskzsr)CaBr},
where,
1= (2kzan + kenc + 283k:r)(2k:er + karc + 2kmr) — 45%20F,
v = 2(kzaB + R2BF){ 4(kanF + kavr)(Rkeas + (H/h)kapr) — 3(H¥ h)R?zEr}
— kapr{ 2kzpr(hkoap + (H¥h)keer) — 3HkeankoEr }

+ 3hkaas{(H/h)ksprkopr — 2kzan(kepr + koEF)}.

Finally, introducing these ¢ — and ¢ — values into the expressions of end
moments (2), we arrive at the solutions.
Consider now the case in which A:sr = kepr = 0 and Caupr = Curs = 0, then
we have from (c)
QB = QzF = (,beB = (,L’xEF - O,
0B = — CaBc/(2k=a8 + kibc), @zF = — Curc/(2k=EF + keFa).
These coincide with the solutions by the conventional two-dimensional method,

that is, the solutions for the constituent plane frames ABCD or EFGH.
In the followings, we will consider in detail about M.sa, M.sc and M.zr.

3) Relations between k.gr and M’s
Assuming that p, = Py, %eaB = k:Bc = ke8r = kerc = 1 and that 5 = 0. 11, putting
m =6 in eq.(18), we obtain p = 6.44 k.er + 3.88, Cusc = Corc and
0B = — (2k:er + 1. 44)Cerc/(6. 44k=er + 3. 88),

@ = — 3. 44Cenc/(6. 44ksrr -+ 3. 88).

Hence we get, from eqgs. (a),
Mana = — (2kasr + 1. 44)Canc/(3. 22kaer + 1. 94),
Mepc = (2. 22k.er + 1. 22)Cenc/(3. 22kEr + 1. 94),
Mepr = — 0. 22(keer — 1)Cenc/(3. 22k-er -+ 1. 94).

Thus we have the end-moments expressed by k:er, the relations between them
are shown in Table 2.
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Table 2 egr~M

N 0 0.2 0.4 ! 0.6, 0.8) 1.0 1.2 | 1.4| 1.6 1.8 2.0
Mzra —0.74/—0.71|—0.69—0.68 —0. 67| —0. 67 —0.66/—0. 66|—0. 65 —0.65—0. 65
Mezzc 0.63 0.64) 0.65 0.66, 0.66] 0.67| 0.67| 0.67] 0.67| 0.67 0.67
Mzsr 0.11} 0.07| 0.04 0.02 0.01] O —0.01]—0.01|—0.02 —0.02{—0.02

Multiplier: Cspc = — p,I2/12

See that as kw.sr increases, M-sc increases and M:sa and M.er decrease, but for
kgr>1 they remain almost constant. Again, when k:xr becomes unity, i.e.,
the frame becomes also symmetrical about xz plane, the twisting moments
vanish and the frame ABCD may be isolated and treated two-dimensionally.

4) Relations between Cerg/Ceac and M’s
For convenience sake, letting all stiffness ratios be unities and 5 be 0. 11,
we have

=5 = — (0. 31Cznc + 0. 02C:rc),
©aF = — (0. 31Czrc + 0. 02C2nc),
and
Mepa = — Czpc(0. 62 + 0. 04Cerc/Cene),
Mepc = Capc(0. 69 — 0. 02Cerc/Cenc),
Mepr = — 0. 06Csnc(l — Cara/Cane).

The relations between Cerc/Cenc and M’s are shown in Table 3.

Table 3 Czrc/Czpc~M

O o | 02| 04| 0.6] 0.8] Lol L2| L4] 16| 18] 2.0

\

Mzsa -0, 62{—0.63/—0.64—0,64,—0.65—0.67 —0.67,—0. 68 —0.68 —0.69—0.70
Mzzsc 0.69, 0.69 0.68 0.68 0.67 0.67 0.67 0.66 0.66, 0.65 0.65
Mzer ~—0.07/—0.06,—0.04/—0.02/—0.01] 0 0.01} 0.02 0.04 0.05 0.06

Miltiplier: Cesc= —p/%/12

From this table it is perceived that M.sa and M.sc are not so different
from the two-dimensional solution, 0.67 C.sc, and that the magnitudes of
twisting moments in the range considered are very small compared with those
of bending moments. Thus, it may be concluded that the variation of Caurc/Cenc
does not effect so much upon the end-moments analysed either three-dimen-
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sionally or two-dimensionally.

5) Relations between k-sr and M’s
To show the effects of the torsional rigidity of a member, consider the
frame in Fig. 10 which is the special case in Fig.9. For this frame we can put
k-er = kovc = oo and Cerc = 0 in the foregoing solution.
To investigate the relations between /%.r and the end-moments, let, for
example, kwap = k-sc = 1. Then, we have
@28 = — C:nc/(3 + 28k:nr)
and
Mepa = — 2Cac/(3 + 0. 22kz5F),
Mzpc = 2(1 + 0. 11ksr)Cenc/(3 + 0. 22k:8F),

Mepr = — 0. 22k:8rCznc/(3 + 0. 22k=5r).

Table 4 shows the relations thus obtained which are plotted in Fig. 11.

X (—0.083 p, 1%)
P, AF p, MG 0.9

q Py /] 0.8
i i‘ L I(‘: /L 2; cvetonal[\:IOT --------------
H L x 0.5 Mo

2 0.4}

) M0,3
Fig. 10 { 0.2+ Mzer
0.1+

0 il -
¢ 1 2 3 4 5 6 7 8 9 10

kZEF

Fig. 11

Table 4 fkwpr~M

~.

k=BF ]
™ o | 02] 04 06] 0.8] 10| 20| 40| 6.0] 8.0]10.0 e

Mza -0. 67, -0.66 ~0.65/ ~0. 64| -0.63| -0. 62/ —0.58 -0.52 -0. 46‘ -0.42} ~0.38 0
Mzsc 0.67) 0.67| 0.68 0.68 0.69 0.69 0.71 0.74 0.77, 0.79 0.8 1
Mzer 0 |-0.014-0.028-0. 042-0. 055/-0. 068/-0. 128~0. 227|-0. 306i~0. 370-0. 423} —

Multiplier: Czpc= —p/*/12
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See that for ks«sr = o, Mwec coincides with the end-moment of a both-
ends—fixed-beam and M:sa vanishes. Futhermore, with the decrease of k:sF,
Mpa and M.sc approach respectively to the values of the plane frame ABCD.

Table 5 shows the percentage errors in the end-moments resulting from
the two-dimensional analysis; the values from three-dimensional analysis being
taken as references. From this, it will be realized that the members BF and
CG, which are attached to the plane frame ABCD, have considerable effects
and they should never be omitted in the practical design. Provided that the
members BF and CG are very slender, the conventional two-dimensional
analysis will be satisfactorily applied. In practice, if we allow 10% errors, we
must allot the values less than 2 to &

Table 5 kesr~percentage errors

T "] 0 Joz|o406]|08|10] 20]40]6.0]|80] 100 e

|
(Mesa~Mo)/Mza | O |+1.5/43.0/4+4.546.0+7.5 +13.4i 4220 431 437 +43 — (%)
(Menc-Mo)/Mz=sc | 0 | 0 |=1.5~1.5-3.0~3.0 —9.0 —10| ~15 —18 —21 — %)

From this numerical example, it is perceived that the rigid frame in space
without side-sway may be analysed by the conventional two-dimensional
method provided that the torsional stiffness of any member is not so different
from the bending stiffnesses of other members; if it is not so, it is necessary
to solve the frame three-dimensionally.

16. Unsymmetrical Rigid Frame in Space (1) K L
. ig. 12 - ; o/ | E E J
A space frame, I*Tlg.l ? loaded laterally in 5/ G_/ 1
z direction, has the dimensions and A-values as 5

|

shown in Table 6. The procedures of analysis
and some related discussions will be given below.

Fig.12
Table 6
Member |AD BE{CF DEIEF|DJJEK|FL|JK KL;[GJ HK | IL
Length 4.2 15.413.014.0(4.0[5.0]5.0/5.0|4.0]4.0 ‘ 3.6 4,2 3.0 m)
kz 1.011.2/10.811.4]1.411.5|1.5|1.5]1.4(1.4]1.0 1.2 0.8
ey 1.01.0,101,2|1.2|1.0}10|1.0]1.21.2}1.0 1.2 0.8
ke 1.0 11.210.8/1,0(1.0|1.4|1.411.4,0.8]0.8,1.0 1.0 1.0

1) Expressions of End~-Moments
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In the followings, we allot 0.107 to 8 assuming m = 6 in eq.(18).

For member AD :

M,ap = @0 + ¢aap, Mapa = 20,0 + (eaD.
Myap = — 0. 21¢yp, Mypa = 0. 21¢yp.
M:ap = @©zp + ¢zap, M:pa = 20D + ¢zaD.

For member BE :

Mee = 1. 2028 + 1. 2¢:8E, Mars = 2. 4oae + 1. 2¢haBE.
Mype = — 0. 210yE, Myes = 0. 21¢4E.
M:pe = 1. 2¢:8 + 0. 93¢2aD, M:es = 2. 4= + 0. 93¢hzaD.

For member CF :

Macr = 0. 8¢zr + 0. 8¢:cF, Marc = 1. 6¢zr + 0. 8¢acr.
Mycr = — 0. 21eyr, Myrc = 0. 21¢yr.
Mcr = 0. 8¢=r + 1. 121D, M:rc = 1. 6¢zF + 1. 12¢)=aD.

For member DE :
Mzoe = 0. 30(gap — @aE), Mazep = 0. 30(0zE — ©2D).
Mype = 1. 2(2¢yp + @©yE + 1. 05¢hzap — 1. 35¢h4BE),
Myep = 1. 2(20s2 + ©yp + 1. 05¢za0 — 1. 35¢)«BE).
M:pE = 200 + ¢:E, Mzep = 2¢:E + @=p.
For member EF :
Maer = 0. 3(@aE — @ar), Mere = 0. 3(02F — ©2E).
Myer = 1. 2(20ye + ©yF + 1. 35¢z8e — 0. 75¢acF),
Myre = 1. 2(205F + oy + 1. 35¢BE — 0. 75¢)acF).
Mzrr = 2¢:8 + @rF, Merr = 20:7 + @25,
For member DJ :
Mipy = 1. 52020 + @a3), Map = 1. 5(2¢27 + ¢ab).
Moy = (2050 + ©y1 + 0. 724¢267 — 0. 84¢r=aD),
Myip = (20y] + 0yp + 0. 724¢=c5 ~ 0. 84¢=aD).

M:py = 0. 3(¢ed — ¢21), Mo = 0. 3(p=; — @=).

No.12
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For member EK :

Mk = 1. 5(2¢28 + @ax), Maxe = 1.5(2¢2x + @a5).

Myex = (205 + @y + 0. 72¢z6) — 0. 84¢)zaD),

Myxe = (2¢03k + o3& + 0. 72¢:65 — 0. 84¢=aD).

Mgk = 0. 3(@E — @©:2x), Maxe = 0. 3(@:x — @:E).
For member FL :

MarL = 1. 5(2¢zF + @aL), Mk = 1. 5202 + @21).

MyrL = (2037 + @31 + 0. 72¢:65 — 0. 84¢)zaD),

MyLr = (2051 + @yF + 0. 72¢261 — 0. 84¢hzaDn).

ML = 0. 3(par — @21), Moy = 0. 3(pa1. — @ar).
For member JK :

Mzix = 0. 3pz) — @ax), Mexy = 0. 3(02k — @a1).

My = 1.2(2¢y1 + ¢y + 1. 05¢zap — 1. 35¢)-BE),

My = 1. 2(2pyx + @y + 1. 05¢zap — 1. 35¢)z8E).

Mk = 0. 8(2¢: + 0:x), Mexy = 0. 8(2¢0:k + @=1).
For member KL :

M = 0. 3(pax — ©aL), Max = 0. 3L — @ax).

Myxr = 1. 2(2pyk + @y + 1. 35¢haE — 0. 75¢hacF),

Myix = 1. 2(2¢y1 4 @yk + 1. 35¢=8E — 0. 75¢bacr).

MaxL = 0. 8(20:x + @=1), Max = 0. 8(2¢:1 + @zk).

For member GJ :

M6y = @21 + 1. 17¢hzap, M6 = 2025 + 1. 17dzan.
Mycy = — 0. 21y, My = 0. 21¢y.
M1 = @23 -+ =01, M6 = 221 + ¢=c1.

For member HK :

Maux = 1. 2025 + 1. 54¢hanE, Maxn = 2. 4p2x + 1. 54¢xnE.

1

w
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Mynx = — 0. 2605k, Myxn = 0. 26¢yk.
M:ux = ¢xx + 0. 86¢:c1, M:xn = 2¢:x + 0. 86¢:c1.

For member IL :

Mar = 0. 8par + 0. 8¢acr, Mar1 = 1. 6par + 0. 8¢hacr.
My = — 0. 17041, My = 0. 1701
Mae = a1 + 1. 2¢:0, M1 = 2021, + 1. 2¢c1.

2) Expressions of End-Shears
Xepa = — (0. 71ezp 4 0. 48¢2aD),
XepE = — (O g(pyD -+ CyE -+ 0. 63¢IAD — 0. Slgl)xBE),

X = — (0. 832y + 0. 65¢a0),

Xeve = Xeep, Xegp = — (0. 67028 + 0. 44¢2zE),
Xexy = — (0. 90y1 + 0. 90yx + 0. 63dzap — 0. 81¢zpE),

Xax = Xexy, Xexn = — (0. 86¢zx + 0. 73¢)2BE),
Xere = — (0. 9¢ye + 0. 9pyr + 0. 81z — 0. 45¢)xcF),

Xepr = Xerg, Xare = ~— (0. 8par + 0. 53¢zcF),
KXotk = — (0. 9yx + 0. 9¢y1 + 0. 81¢hzne —0. 45¢)zcF),

Xexr = Xax, Xerr = — (0. 8¢ar + 0. 53¢hacr),

Xepa = — (0. 7Tig=p + 0. 48¢z4D),

XagB = — (0. 67¢:€ + 0. 34¢p2a0), KXave = — (0. 8ger + 0. 7T5¢2aD),
Xapy = — (0. 6@yp + 0. 6¢y5 -+ 0. 299261 — 0. 34¢zaD),

Xzip = Xapy,

Xapx = — (0. 606 + 0. 60y + 0. 29¢267 — 0. 34¢hzaD),

Xoxe = Xaek,
Xarl = — (0. 6@yr + 0. 60y + 0. 29¢c) — 0. 34¢zab),
Xarr = Xarr, Xaje = — (0. 83¢21 + 0. 56¢):61),

Xaxn = — (0. Tlox + 0. 41¢c1), Xar1 = — (@=L + 0. 80¢cy).

No. 12
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3) Elastic Equations

i) Joint Equilibrium Equations

At joint D :
Mzpa + Mape + Mapy = 0.
szDA + MzDE+ MzD] = Q.

At joint E :

Mzep + MzeB + Mazer 4+ Maex = 0.

Maep + Mees + Mevr + Merk = 0.
At joint F :

Mave + Marc 4 Marr = 0.

Mre 4+ Merc 4+ Mern = 0.
At joint J :

Mzje 4+ Mzix + Mayp = 0.

M6 + Mejx 4 Mz = 0.
At joint K :

Maxy + Maxu + Maxy + Maxe =0.
Mexy + Mexu -+ Mkl + Mexe = 0.

At joint L :
Mk + Mzt + Mok = 0.
Max + Meut + May = 0.

Mypa -+ Mype + Mypy = 0.

Myep + Myes + Myer + Myex = 0.

Myve + Myrc + MyrL = 0.

My]G + My]K "I" My}D = 0.

Myxy + Myxu + Myxe + Myxe = 0.

MyLK + A{yLI ‘%— A{yLF = 0.

These conditions give egs.(1)~(18) in Table 7.

ii) Shear Equations

For the 1st column—frame :

7 2nd ”
7 3rd o
For the lst row-frame

v 2nd ”

Xepa -+ XepE + Xeio + Xoagx — 3 =0,

Xerp ~ Xops — Xovr + Xoky — Xoxu — Xexr + 5 =0,
Xore — Xere + Xax — Xa1+4 =0,

Xapa + Xzes -+ Xerc — Xany — XzEx — XarL = 0,
Xzi6 + Xoxu 4+ Xart + Xap + Xake + Xoir = O.

From these conditions we get egs. (19)~(23) in Table 7.
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Table 7 Elastic equations

Left-hand side
Eq 7 ; i
pab | par | g | g1 | gex | gm | gep | gor | @oF | o3 | gok | oot
(1) | 5.30—0.30 1.50
(2) |—0.30] 6.00/—0.30 1.50
(3) —0.03 4.90 1.50
(4) | 1.50 5.30/—0.30
(5) 1.50 —0.30] 6.00]—0.30
(6) 1.50 —0.30 4.90
(7) 461 1.20 1.00
(8) 1.20, 7.01 1.20 1.00
(9) 1.20| 4.61 1.00
(10) 1.00 461 1.20
(11) 1.00 1.200 7.06 1.20
(12) 1.00 1.20, 4.57
(13)
(14)
(15)
(16)
17)
(18)
19 | o0.71 0.83 0.90 0.90 0.90 0.90
(20) 0.67 0.86 —0.90 0. 90|—0. 90 0.90
(21) 0.80 | 0.80 —0.90/-0.90 —0.90/—0.90
(22) —0. 60— 0. 60|—0. 60/ —0. 60— 0. 60— 0. 60
(23) 0.60] 0.60 0.60 0.60 0.60 0.60

Thus, we finally have twenty-three simultaneous equations in total, which
give the solutions as follows:

Joint rotations at D, @.p = 4+ 0.615, oyp = — 0. 175, @0 = — 0.008, 5,
Do. at E, o=+ 0.627, oyt = + 0. 040, £ = — 0.002, 9,
Do. at F, @ = 4 0.733, yr = -+ 0.239, @ = — 0.010, 6,
Do. at J, a3 = 4+ 0.833, oyy = — 0.175, =3 = -+ 0.008,9,
Do. at K, @k = + 0.944, oyk = + 0. 039, wx = + 0.003, 2,

Do. at L, ¢ = + 0.761, oyt = + 0.243, oL = + 0. 010, §,
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Table 7—continued—

Right-hand
side
©zD | QzE | ¢zF @zl | @zK | @z | zAD | JFBE | paCF | ¢zaD | (D263
‘ 1.00
1. 20
0. 80
1.17
1.54
0. 80
1.26|—1. 62, —0.84/ 0.72
1. 26 —0.90/—0.84 0.72
1.62—0.90/—0.84] 0.72
1. 26{—1. 62 -0.84] 0.72
1.26 —0.90;—0.84| 0.72
1.62|—0.90/—0. 84| 0.72
4.30| 1.00 —0.30 1.00
1.00] 6.70 1.00 —0.30 0.93
1.00] 3.90 -0.30 1.12
—0.30 3.900 0.80 1.00
—0.30 0.80| 5.50, 0.80 0.86
—0.30 0.80 3.90 1. 20
2.39 —1.62 —3.00
—1.26, 4.41]—0. 90 5. 00
—1.62| 1.96 4,00
0.71] 0.67, 0.80 2.58/—0. 86
0.83 0.71) 1.00 ~1.01] 2.63
and revolutions
Qaap = — 4. 32, ¢zBE = — 3. 98, ¢zcF = — 5. 68,

¢zap = - 0.042, 2, @61 = — 0.039, 7.

The end-moments are found substituting these ¢’s and ¢’s into the
expressions in 1). The results are shown in Table 8 and in Fig. 13~16.

The horizontal and vertical reactions at supports are determined from the
end-moments by statics.
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Table 8 Values of end-moments (t-m)
Member AD BE CF DE EF
End A D B E C F D E E
M= —3.705 —3.090] —4. 0243 —3.271 —3.958 —3.371 —0.004 -+0.004 —0.032
My +0.037, —0.037] —0. 008§ +0.008 —0.0500 +0.050] +0.632 -+0.890 —0.953
M= +0.034] +0.025 +0.036 +0.032 +0.039 +0.030] —0.020 —0.014 -—0.016
Member| EF DJ EK FL JK
End F D J E K F L J K
M= 4+0.032) +3.095 +3.422 +3,297) +3.773 +3.341] +3.383 —0.033] +0.033
My —0.714] —0.589 —0.588 40.055 +0.054] +0.657| -+0.660, +0.632| +0.888
M- —0.024) —0.005 -+0.005 —0.002 +0.002 —0.006 +0.006 +0.017} +0.012
Member KL GJ HK IL
End K | L G J H K I L
Mz +0.055] —0.055 —4.221) ~—3.388 —4.996, —3.864 —3.935 —3.326
My —0. 951§ —0.7070 +0.037] —0.0371 —0.010, +0.0100 —0.041 +0.041
M- +0. 014} +0.020, —0.031 —0.022 —0.031, —0.028 —0.037, —0.026
4) End-Moments Analysed Two-Dimensionally

The usual two-dimensional analysis treats the constituent plane frames
ADJG, BEKH and CFLI separately. The solutions are easily carried out, and
we have the results shown by broken lines in Fig. 13, which compares with
the exact values, shown by full lines. Note that the two-dimensional analysis
does not produce the values of Mys and M-'s.

In Table 9 the end-moments are compared,
It should be mentioned that the errors

and the errors produced by
the conventional analysis are shown.
are remarkable and that they appear either on the safe side or on the dangerous
side. The moments in Figs.14, 15 and 16 are never been found by the
conventional analysis, which leads us to the conclusion that the economical
design can only be attained through the rigorous three-dimensional analysis.

Especially, the rigid frames in space accompanying side-sways should be
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analysed three-dimensionally, otherwise, the design will come far from economy

and considerable dangers will arise at times.
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(a) Frame ADJG
Mzap Mzpa Moy Mazip Mz Mazay
Three-dim. (t-m) ~3.71 | —3.10 | +3.10 | +3.42 | —3.39 | —4.22
Two-dim. (t-m) —2.98 —2.48 +2.48 +2.73 —2.73 —-3.39
Error (%) —19.7 -20.0 —20.0 —20.0 —19.5 —19.7
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(b) Frame BEKH
MazsE MzEs Mz Mazke Mazku Mazux
Three-dim, (t-m) —4,02 —3.27 +3.30 +3.77 —3.86 —5.00
Two-dim, (t-m) -~ 5. 84 —4.77 +4.77 +5.54 —5.53 —7.21
Error (%) +45.2 +45.9 +44.6 +47.0 +43.2 +44.2
(¢c; Frame CFLI
Mzcy Mazrc MzrL ML | Mz } Mz
Three-dim (t-m) —3.96 —3.37 +3.34 +3.38 —3.33 ‘ —3.94
Two-dim. (t-m) —3.24 —2.76 +2.75 +2.75 —2.75 ! —3.24
Error (%) ~18.2 | -18.1 | ~17.7 | -187 | —17.4 | —17.8
Note: Three-dim, : Three-dimensional solution
Two-dim. : Two-dimensional solution
17. Unsymmetrical Rigid Frame in Space (2)
6 ton
Fig. 17 shows an unsymmetrical " I - P Q
. . mid point 1 ton
rigid frame in space. The member— A l /l
. Iton/m I mid point 4
lengths and stiffnesses are tabulated / Ty J M
in Table 10. The calculations will ¢ X D Lol
be carried out assuming, for E F .
simplicity, g = 0.1 1 B 2
A
Fig.17
Table 10
Member]ACIBDICDICHCIIEHIFIIGJHI|I]J HN%VIP JQKNiLPMQNP PQ
Length| 5.0/ 5.0 8.03 5.0? 5.0/ 6.0, 6.0 4.0} 8.0 6.0, 4.0] 4.0 4.0, 6.0 6.0 4.0} 8.0 6.0(m)
kx 0.8 0.8 1.0 1.5 1.0/ 1.2 1.0/ 1.1/ 1.2/ 1.5 0.7 1.0/ 1.6/ 1.2 1.2 1.3/ 1.2 1.0
ky 1.2/1.1 0.9 1.2 0.7 1.4} 1.0 1.3/ 1.0/ 1.3 0.9 0.8/ 1.4] 0.8/ 1.0; 0.8, 0.6/ 0.6
k= 1.0, 1.0 0.7 0.8 0.9/ 1.2/ 1.0/ 0.9 0.8 1.4 1.3 0.9 0.9 1.2 1.2 1.4/ 1.2/ 1.0
Though the frame seems to have twenty-six unknown ¢’s, they can be

reduced to six by inspection or by referring to the compatibility condition in

§ 12. Taking d¢zac, ¢zBd, ¢z0],

¢=AC,

unknowns, the others are denoted as follows:

¢=n and ¢=xn for the independent
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1)

¢zen = (5/6) X ¢zac = 0. 833, 3¢zac,
dzn = (5/6) X daac = 0. 833, 3¢zac,
¢ar1 = (5/6) X ¢zmp = 0. 833, 3¢=BD,
darr = (5/6) X ¢amp = 0. 833, 3¢znp,
¢ama = (4/4) X ¢ac1 = ¢acy,

=BD = (5/5) X ¢hzac = ¢rzac,
=r1 = (6/6) X ¢eEH = IzEH,
¢=c1 = (6/4) X ¢=pn = 1. 5¢=xH,
=1 = (6/6) X ¢axnN = kN,
¢d=ma = (6/4) X dzkn = 1. 5¢=kN,
dycp = (5/8) gzac — (5/8)danp = 0. 625¢zac — 0. 625¢2ED,
¢om1 = Pycp = 0. 625¢zac — 0. 625¢28D,

¢yNP = ycp = 0. 625¢zac — 0. 625¢=8D,
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dy1i = (6/6)¢par1 — (4/6)¢261 = dar1 — 0. 666, Tdac) = 0. 833, 3¢h=8p — 0. 666, 7¢hzcy,

dyrq = ¢y = 0. 833, 3¢znp — 0. 666, 7¢cy,

dycr = (6/5)g=eu — (5/5)¢zac = 1. 2¢02EH — ¢=ac,
¢yp1 = ycH = 1. 2¢28H — ¢hzAc,

dyN = (6/4)exn — (6/4)eEn = 1. D¢hzkN — 1. B¢agn,
GyiP = yuN = 1. SeherN — 1. D¢erH,

dy1q = dyun = 1, 5¢zxn — 1. 5¢zEn.

Using these, we have the necessary expressions which follow:

Expressions of End-Moments

For member AC :

Mazac = 0. 8(pzc + ¢aac),

Myac = — 0. 240,c, Myca = 0. 240,c,

M:ac = @:¢ + ¢zac, M:ca = 20:c + ¢=ac.

For member BD :

Mzep = 0. 8(pzp + ¢2BD),

Moaca = 0. 8(2{[)1C + (/)xAC),

M:zpe = 0. 8(2¢p + ¢uBD),
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MyBD = —0. 22§.OyD, MyDB = (0. QQQDyD,
M:Bp = @20 + ¢rzac, M:pB = 20D + ¢=ac.

For member CD :

Macp = 0. 2(pzc — ©aD), Mapc = 0. 2{gpp — @ac),

Myen = 0. 9(205c + ¢y -+ 0.625¢zac — 0. 625¢)zBD),

Mype = 0. Hese + 200 + 0.625¢zac — 0. 625¢)z8D),

Mecp = 0. 7(2¢:c + @:0), M:pc = 0. (wzc + 2¢:p).
For member CH :

Macu = 1. 5(2¢0ac + @zn), Manc = 1. 5(pzc + 2¢2H),

Mycn = 1. 2(2¢05c + 0yn + 1. 2¢:EH — ¢zac),

Myuc = 1. 2(psc + 2¢yn + 1. 2280 — ¢ac),

Mcn = 0. 16(p=c — @an), Manc = 0. 16(p=n — @xc).
For member DI :

Mzpr = 2¢ap + @a1 — 2. 083, 3, Map = @2p + 2021 + 2. 083, 3,

Mypr = 0. 7(2¢0yp + @y + 1. 2d=EH — ¢zac),

Myip = 0. 7(oyp + 2031 + 1. 2d2E0 — ¢rzac),

Mpr = 0. 18(@:p — ©21), M:p = 0. 18(¢pz1 — @an).

For member EH :

Maen = 1. 2(¢an + 0. 833, 3¢zac), Mane = 1. 22021 + 0. 833, 3¢zac),
Myen = — 0. 28¢,m, Myue = 0. 28¢yn,
Meen = 1. 2(p=n + ¢=En), M:ne = 1. 2(20:1 + ¢=EH).

For member FI :

ZW:CFI = @zl 4+ 0. 833, 3([.’”1BD, Moarp = 2(,011 -+ 0. 833, 3¢IBD,
Myrr = — 0. 2¢1, Myr = 0. 2041,
Mer1 = a1 + ¢ern, Mar = 2z + ¢ern.

For member GJ :
Mzcy = 1. Lear + ¢x61), Mz = 1. 12025 + ¢zcy),
Mycy = — 0. 26051, Myie = 0. 260y,
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My = 0. 9= + 1. 5¢=en), Mzi6 = 0.9(2¢z1 + 1. 5¢zEn).
For member HI :

Mani = 0. 24(pan — @a1), Man = 0. 24(pa1 — @an),

My = 2051 + oy + 0. 625¢zac — 0. 625¢ 28D,

My = @yu +205 + 0. 625¢zac — 0. 625¢)28D,

Menr = 0. 8(2¢=n + @), Man = 0. 8(0=1 + 2¢21).
For member IJ :

Ma1y = 0. 30(p21 — 0a1), Mzy = 0. 3021 — @a1),

My = 1. 3(2051 -+ oy -+ 0. 833, 3¢hamp — 0. 666, 7¢hac1),

My = 1. 3(¢s1 + 2055 + 0. 833, 3¢pzBp — 0. 666, T¢hacy),

My = 1. 4(20s1 + @=1) — 3, My = L. 4(ga1 + 2¢21) + 3.
For member HN :

Mann = 0. 7(2¢21 + @an), Mazxn = 0. 7(pat1 4 2pan),

Myun = 0. 9(2¢sm + @yn + 1. 5¢h=xn — 1. 5¢en),

Mynm = 0. 9@+ 2pm + 1.5 ¢ern — 1.5 ¢zEn),

Menn = 0. 26(pzn— ©2N), Mexn = 0. 26(0sN — @zn).
For member IP :

Map= 2021 + @ap, Mzpr = @a1 + 202,

Myr = 0. 8(2ps1 + @yp + 1. 5¢=xn — 1. S¢zgn),

Myp1 = 0. 8(oy1 + 20yp + 1. 5¢zrn — 1. 5¢zgn),

Map = 0. 18(@=1 — @zp), Mzpr = 0. 18(pzp — @a1).
For member JQ :

Majq = 1. 6(2¢02) + ©zq), Meq; = 1. 6(¢21 + 2¢2q),

Myia = 1. 42055 + @yq + 1. bzt — 1. S¢hsen),

Myay = 1. 4py+ 29y + 1. 5N — 1. S¢hzxn),

Mza = 0. 18(¢=1 — ¢2q), My = 0. 18(p2q — @21).
For member KN :

Maxn = 1. 2(pan + 0. 833, 3¢zac), Manx = 1. 2(2¢pan + 0. 833, 3¢zac),
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Myxn = — 0. 160y, Mg = 0. 160N,
Mexn = 1. 2(@=n + gekn), Mang = 1. 2(2p=n + ¢zkN).

For member LP :

Marp = 1. 2(pap + 0. 833, 3¢728D), MaprL = 1. 2(20zp + 0. 833, 3¢zBD),
Myp = — 0. 20,p, MypL = 0. 20yp,
Maip = 1. 2(@2p + ¢2KN), M:pr = 1. 2(202p + ¢=xn).

For member MQ :

Mama = 1. 3(pzq + ¢ac1), Maam = 1. 3(202q + ¢ac3),
Myma = — 0. 16¢1q, Myam = 0. 16¢yq,
Mava = 1. 4(p2a0 + 1. Seh=in), Meam = 1. 4(2¢zq + 1. 5dzxn).

For member NP :
Manp = 0. 24(pan — @zp), Mapn = 0. 24{@zp — @aN),
Miyne = 0.6(2pyn + oyp + 0. 625¢zac — 0. 625¢)2BD),
Mypn = 0. 6(psn + 2030 + 0. 625¢zac — 0. 625¢28D),
Mene = 1. 2(2¢20 + ©2p) — 6, Mepn = 1. 2(@an + 2¢2p) + 6.
For member PQ :
Mzra = 0. 2(pzp — ©2q), Mear = 0. 2(pzq — ©zp),
Myra = 0. 6(205p + ©ya + 0. 833, 3¢zs0 — 0. 666, 7d=c1),
Myar = 0. 6(pyp + 20yq + 0. 833, 3¢=8p — 0. 666, 7¢=61),

M:pq = 202 + @2q, M:qp = @zp + 20:q.

2} Expressions of End-Shears

Observing constituent frames in row:
Xaca = — (Ulea)Mzac + Meca) = — (1/5)(3pzc + 2¢zac) = — 0. 6¢=c — 0. 4¢=ac,
Xaps = — (1/lps)( M=o + Meps) = — (1/5)(3¢=p + 2¢=ac) = — 0. 6¢p=p — 0. 4¢rac,

KXoctt = — (leu)(Mycu + Myuc) = — (1/5)(3. 6@sc + 8. 6¢yn + 2. 88¢en — 2. 4¢hzac)
= — 0. 72¢yc — 0. 72031 — 0. 576¢:En + 0. 48¢=ac,

Xopr = — (/loi)(Myp1 + Myp) = — (1/5)(2. 1oy + 2. 1oyt + 1. 68¢gn — 1. 4¢)=ac)
= — 0.42¢yp — 0. 42¢y1 — 0. 3 36¢)=en + 0. 28¢=ac,
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Xaoue = — (1/lse)(Meue + Meen) = — (1. 2/6)(3pzu + 2¢:en) = — 0. 60 — 0. 4¢2EH,
Xatr = — (1/lw)(Mar + Mzr1) = — (1/6)(3pz1 + 2¢)z0) = — 0. 5pe1 — 0. 333, 3¢=eH,
Xaio = — (Vo) Mze + Mecy) = — (0. 9/4)(3¢z1 + 3¢En) = — 0. 675021 — 0. 675¢:£H,
Xatic = Xacn = — 0.72¢yc — 0. 72¢yn — 0. 576¢p=en + 0. 48¢zac,

Xain = Xapt = — 0. 4200 — 0. 42051 — 0. 336¢)zen + 0. 28¢=ac,

Xonn = — (1/lan)(Mynn + Monm) = — (0. 9/4)(3pya + 3oy + 3¢zxn— 3¢b=en)
= — 0. 675¢y1 — 0. 675¢yn — 0. 675¢=kn + 0. 675¢:EH,

KXo = — (1/lw)(Myp + Myp1) = — (0. 8/4) (3031 + 30yp + 3¢h=xn — 3¢heEH)
= — 0. 6@y — 0. 6pyp — 0. 6¢=xn + 0. 6¢zEH,

Xziq = — (1/lio)(Myia + Myar) = — (1. 4/4)(Bpy + 3pyq + 3¢z — 3¢zEH)
= — 1. 05py1 — 1. 05¢yq — 1. 05¢=xN + 1. 05¢=EH,

Kank = — (v} (Mank + Maxn) = — (L. 2/6)(3p2n + 2¢xn) = — 0. 6@an — 0. 4¢akn,
KXapr = — (/o )(MepL + Merp) = — (1. 2/6)(30zp + 2¢pexn) = — 0. 6¢zp— 0. 4¢=KN,
Xeam = — (Vlam)(Mzam + Mama) = —(1. 4/4)(3pzq + 3¢exn)

= — 1. 05¢zq — 1. 05¢zkN,
Xann = Xanun = — 0.675pyu — 0. 675¢,n — 0. 675¢=kn + 0. 675¢:EH,
Xapt = Xaip = — 0. 6051 — 0. 6¢yp — 0. 6¢=xN + 0. 6¢=En,

Xza) = Xaiq = — 1. 05py1 — 1. 0505q — 1. 05¢hzxn + 1. 05 ¢hegH.
Similarly in column :

Xeca = — (Ulca)(Mazac + Maca) = — (0. 8/5)(3pac+ 2¢zac)
= — Q. 48901(, — 0. 32(/)1AC,

Xewie = — (1/Ine)(Mang + Mepn) = — (1. 2/6)(3psn + 1. 667¢zac)
= — 0. 6§DIH — 0. 333, 3€/}1‘AC
Xenk = — (1/lnx)(Mank + Maxn) = — (L. 2/6)(3pan + 1. 667¢zac)

= — 0.6¢@zn — 0. 333, 3¢zac,

Xecp = — (1/lep)(Mycp + Mync) = — (0. 9/8)(3psc + 3030 + 1. 25¢zac — 1. 25¢izmD)
= - 0.337,50yc — 0.337, 5pyp — 0. 140, 6¢p2ac + 0. 140, 6¢zBD,
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Xent = — (UIm)(Mym + M) = — (1/8)(Besn + 3¢y + 1. 25¢zac — 1. 25¢)z8D)
= — 0. 375pyu — 0. 375¢y1 — 0. 156, 25¢zac + 0. 156, 25¢8D,

Xenp = — (1/Ine)(Mynp + Mypn) = — (0. 6/8)(3pn + 3 0yp + 1. 25¢hzac — 1. 25¢28D)
= — 0. 2250 — 0. 225¢50 — 0. 093, 75¢eac -+ 0. 093, 755D,

Xeps = — (1/lsp)(Ma8p + Mzpr) = — (0. 8/5)(3p2p + 2¢z8D)
= ~— 0. 48pzp — 0. 32¢aBD,

Xar = — (Vhr)(Mar + Mer1) = — (1/6)(3pa1 + 1. 667¢=8D)
= — 0.5¢z1 — 0. 277, 8¢pzBDp,

Xerr = — (1/lpL)(MzpL + Marp) = — (1. 2/6)(30zp + 1. 667¢28D)
= — 0. 6pzp — 0. 333, 3¢=8D,

Xenc = Xacp = — 0. 337, 5pyc — 0. 337, 5oyp — 0. 140, 6¢zac -+ 0. 140, 6¢znp,
Ko = Xomt = — 0. 3750yu — 0. 375¢51 — 0. 156, 25¢zac + 0. 156, 25¢28D,
Xopn = Xaonp = — 0. 225058 — 0. 225¢,0 — 0. 093, 75¢zac + 0. 093, 75¢28D,

Xay = — (/Iy} (Ms1y + Mym) = — (1. 3/6)(3ps1 + 301 + 1. 666, Tdhznp — 1. 333, 3¢hzc1)
= — (. 65903'1 — 0. 65y] — 0. 361, 1(/)3:BD -+ 0. 288, 9¢IG],
.XzPQ = — (I/ZPQ)(IWyPQ + ]V]yQP) = — (O 6/6)(3903/? + 3‘,DyQ + 1. 667¢'xBD — 1. 333(/)1(3])
= — 0.3¢yr — 0. 3pya — 0. 166, 7¢z8p + 0. 133, 3¢zq7,
Xejo = — (1lie)(Maic + Macy) = — (1. 1/4)(3pa1 + 2¢a61) = — 0. 825021 — 0. 55¢207,
Xean = — (Vlam)(Mzau + Mavq) = — (1. 3/4)(3pq + 2¢2c3)
= — 0. 975¢2q — 0. 65¢zcy,
Xeyp = Xey = — 0. 65051 — 0. 65¢51 — 0. 361, 1dapp -+ 0. 288, 9¢zc1,
Xeap = Xepq = — 0. 3¢yp — 0. 30sa — 0. 166, 7¢znp + 0. 133, 3¢cy.
3} Elastic Equations

i) Joint Equilibrium Equations
About x axis :

At joint C, Maca + Macp + Macn = 0.

7 D, Moaips+ Mapc -+ Mapr = 0.
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At joint H,
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About y axis :
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At joint C,
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About z axis :
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At joint C,
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7
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Manc + Meue + Mann 4+ Mapn = 0.

Map + Mar + Man + Moy + Map = 0.
M 4+ Man + Mziq = 0.

Mazu + Mang + Manp = 0.

Map1 + Mapr + Mazen + Mara = 0.

Mzay 4 Maam + Mzqe = 0.

Myca -+ Mycp + Mycn = 0.

Mo + Mypc + Myp1 = 0.

Myuc + Myne + Myur + Myun = 0.

Myp 4+ Myr + Mym + My + My = 0.
Myic + My + My = 0.

Myzu + Moz + Myne = 0.

Mypt + Mypr -+ Mypn + Mypa = 0.

Myar + Myam + Myar = 0.

Mzca + Mecp + Mecn = 0.

Mpp + Maxpc + Mep1 = 0.

Menc + Meag 4+ Ment - Meun = 0.

Map + My + Mau + My -+ Merp = 0.
Mzye + Mz + Meq = 0.

Menn + Mang +Maxpe = 0.

Mept + Mepr -+ Mepn + Mepq = 0.

Meqy + Mean + Meaqpr = 0.

ii) Horizontal Shear Equations

For the Ist column-frame :

Xeca + Xene + Xang + Xecp + Xenn + Xeng = 0.
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Table 11 Elastic equations

Left-hand side

Eq. ; ]
pac @D pzH 1 Pl QN : pzp | @z 0yC ©yD @yu oy ©y] ©yN oy | pxa

1 4.800/—0.200; 1.500

2 —-{0. 200/ 3.800 1.000

3 1. 500 7.040{—0. 240 0,700

4 1.000{—0. 240] 6.540,~0. 300 1. 000

5 —0.300, 5,700 1. 600

6 0. 700 4. 040[—0. 240

7 1. 000 —0.240] 4.840 —0.200

8 1. 600 —0.200 6.000

9 4. 440, 0.900] 1.200
10 0.900/ 3.420 0.700
11 1. 200 6.480 1.000 0. 900
12 0,700, 1.000 7.800/ 1.300 0. 800
13 . 1.300. 5.660 1. 400
14 0. 900 3.160] 0.600
15 . 0.800 0. 600{ 4.200f 0.600
16 1. 400 0.600 4.160
17
18
19
20
21
22
23
24
25 0. 800 1. 000 1.000 0.563 0.563 0.625 0.625 0.375 0.375
26 0. 800 0.833 1.000] 1.300—0.563 —0.563 0,625 0.458 1.083 —0.375/ 0.125/ 0.500
27 1.100 —0, 867/ —0. 867 —0. 400, —0. 400
28 —1.200—0.700 —1. 200,~0. 700
29 1.440, 0.840 0.090:—0.360;—2, 100 —1. 350, —1. 200|—2. 100
30 1.350 2.100 1.350{ 1.200f 2.100

1. 200,

VAIHSOX 'S

g1 'ON



Table 1l—continued—

Right-hand
@zC ©=D ©zH e | g ©zN [ Q=P ©zQ dzac ¢BD ; ¢xG] ¢zac b ¢r=ER (h=KN side
0. 800
0. 800 2.083
1.000
0. 833 —2.083
1. 100,
1. 000
1.000
1. 300
0.563| -0, 563 ~1.200 1.440
0.563 —0.563 -0.700,  0.840
0. 625/ —0. 625 -1.200] 0.090; 1,350
0.625 0.458 —0.867] —0.700, —0.360, 1.200
1.083 —0.867 —2.1000 2,100
0.375] —0.375 -1.350, 1.350
0.375  0.125/ —0.400 —1.200, 1.200
0.550, —0. 400 —2.100, 2.100
3,560, 0.700 —0.160 1.000
0.700, 3.580 —0.180 1. 000
—0.160 4,420, 0.800 ~0. 260 1. 200
-0.180] 0.800 6.760  1.400 —0.180 1. 000 3.000
1.400  4.780 —0.180 1. 350 —3.000
—0.260 . 5,060 1.200 1. 200 6. 000
—0. 180 I 1.200; 6.980, 1.000 1. 200 ~6, 000
+ ~0.180 1.000,  4.980 2.100
2.296/ —0.651
-~0.651  3.083 —0.704
—0.704; 2.163
1.000; 1.000 ; 2.600] —1.520
1.200, 1.000. 1.350 —1.520, 9.290 —4.650
’ p1.200]  1.200, 2.100 —4,650  8.350

S1ON
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For the 2nd column-frame:
Xeps + Xewr + Xerr — Xene — Xan — Xepn + Xenp + Xepq = 0.
For the 3rd column-frame:

Xege + Xeam — Xeyp — Xeaqr = 0.

For the 1st row-frame :

Xeca + Xz — Xacu — Xupr = 0.
For the 2nd row frame:

Xazng + Xt + Xejo + Xzne + Xaip — Xoun — Xatp — Xago = 0.
For the 3rd row frame:

Xank + Xepr + Xaom + Xent + Xerr + Xazqr = O,

Substituting the expressions in 1) and 2), the required elastic equations
are obtained as shown in Table 11, in which twenty-four from the beginning
are the joint equilibrium equations and the remainders are the horizontal
shear equations.

4} Solutions Obtained

Simultaneous equations in Table 11 are solved, and we have the joint

rotations;
at joint C, @ac= +0.049,75,  @yc= —0.016,63,  ¢«c = — 0.012, 36,
7 D, @wp=+0.697,2, @sp = — 0.017,36,  @=c = + 0.025, 36,
s H, @m=—0.014,73,  @m=+0.021,97,  @m=—0.027,17,
v 1, @ar = —0.425,0, oyt = - 0.030, 89, oua = -+ 0.577,9,

7 , a1 = — 0.029, 68, vy = ~+ 0.082, 26, ©zJ —0.796,9,

I

J
v N, oe~n=-0.033, 81, oyn = -+ 0.065, 21, o:n = + 1.488,1,
v P

,  wer = 4+ 0.123,7, oyp = -+ 0. 046, 74, wep = — 1. 109, 2,
7z Q, @sq=+0.0055%, @y = - 0.094,59, vzq = + 0. 266, 2,
and revolutions

¢zac = — 0.0 96, 59, ¢anp = — (. 164, 4, Gy = -+ 0.029, 73,

deac = + 0. 021, 90, gepn = + 0. 035, 56, Gaxn = — 0.171, 3.
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5) Results Obtained
Using these ¢’s and ¢'s,

Analysis of Rigid Frames in Space by Applying Slope-Deflection Formulas

end-moments in 1) are now determined. The

results are found in Table 12. In Fig. 18~20 the moment diagrams are shown

by full lines. The reactions at supports are also computed and are shown in ~

Fig. 21.
Table 12 Values of end-moments (t-m)
Member AC BD CD ‘ cH
End A C B D C D C H
Mz ~—0.038] +0.002] +0.426] +0.984] —0.130] -+0.130 +0.127] +0.030
My +0.004] —0.004] +0,004 -—0.004 -—0.007] -—0.008 +0.011 +0.058
M= +0.010] —0.003] +0.047] +0.073, +0.000; -0.027, -+0.002 —0.002
Member DI EH FI GJ
End D I E H ¥ 1 G J
Mz —~1.114| +41.931} —0.114] -—0.132] -0.562] —0.987] +0,000 —0.033
My +0.012f +0.046] —0.006, -+0.006, —0.006; +0.006 —0.021] +0.021
M= -0.100{ +0.100; +-0.010; —0.023; +0.613] -+1.191} -0.669 —1.386
Member HI I7J HN Ip
End H I 1 J H N I P
Max 4+0.099, —0.099 —0.119] +0.119f +40.003; -+0.037, —0.726/ —0.178
My +0.117) +0.126] -—0.017; +0.050; -0.181] —0.142 —0.161, —0.149
M= +0.419, +0.903 —2.500] +1.578] —0.394] +0.394 +40.304 —0.304
Member JQ KN LP MQ
End J Q K N L P M Q
. Mz —0.086f —0.030, —0.056] —0.015f —0.016] -+0.133 +0.046 -0.033
My —0.072 —0.056f -—0.010] +0.010f —0.009, -+0.009 —0.015 +0.015
M= —0.191, +40.191} +1.580, -+3.370, —1.537) —2.870| -0.013] +0.386
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Table 12—continued—

Member NP PQ
End N P P Q
Mz —0.022] +0.022] +0.024 —0.024

My +0.132) +0.121 40.019 +-0.046
M= —3.760, +5.120 -1.952 —0.577

6) Comparison with the Current Solutions

The frame is analysed two-dimensionally and the results are compared with
the values above obtained, see Table 13. Also, they are shown by broken lines
in Fig. 18~20. Serious errors preduced by the two-dimensional analysis are
found in Table 13. Especially, the percentages enclosed by the brackets are
noticeable. In the 2nd-and the 3rd-row-frames, the differences between
exact values (M.) and those obtained by the conventional solution (M) are
remarkable. The reason will be such that while the 2nd-row-frame tends to
deflect towards negative x and the 3rd-row-frame tends to positive x, the
connecting girders tend to prevent these swayings. The existence of the
connecting girders are not taken into account in the two-dimensional analysis.

Table 13 Percentage errors

‘a) The 2nd-row-frame

Member EH FI G]J HI 17

End E | H F I G J H | 1 I J

M +0.109|—0. 162 +0. 971|+ 1. 625|—0. 422/ — 1. 272|+0. 162|+0. 866 — 2. 491\ + 1. 272
M= |4+0.010 —0.028/-+0. 613/+1. 191/ —0. 669|— 1. 386|+0. 419+ 0. 903/ — 2. 500|-+ 1. 578
(M-Mz)/ M= |(+990)/(+604)| +58.4 +36.4 —36.9] —8.2| —61.8 —4.1 —0.4 —19.4(%)

H —0.009 +0.433 —0.424
Hz —0. 002 +0. 300 —0.514

(H-Hz)/Hz |(+350) 4+33.3 —17.5 (%)
v —0.129 +5.238 +1.797
Vy —0.144 +5.208 +1.875

(V-Vy)/Vy | —=10.4 +0.6 —4.2 (%)
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(b) The 3rd-row-frame
Member KN LP MQ NP PQ
End K N L P M Q N P P Q
M +1.500;+3. 465/ — 1. 861|—3. 258/ —0. 237|+-0. 339, —3. 465/+ 5. 173|—1. 915{—0. 340
M= +1. 580{+ 3. 370~ 1. 537|— 2. 870+ 0. 013{+0. 386~ 3. 760|+5. 120, — 1, 952|—0. 577
(M-Mz)/M=| -—5.1} +2.8 +21.1] +18.5, — ~12.2] —7.8 +1.0, —1.9 —41.1(%)
H +0. 828 -0, 853 +0. 026
Hz +0. 825 —0.735 4-0.100
(H-Hz)/Hz | -+0.4 +16.1 —74.0
(%)
14 +3.214 +2.933 —0.376
Vy +2. 840 +-3.366 —~0.450
(V-Vy)/Vy | +18.2 —12.9 —16.4 (%)
(¢) The 2nd-column-frame
Member BD FlI Lp DI ip
End B | D |F I L | P | D I 1 P
M +0.413+1.024/—0, 673{—1.141/—0. 052/+0. 143|—1, 024{+ 1. 912 —0. 772/ ~0. 142
Mz +0.426/+0. 984/—0, 562/ 0. 987|—0. 016/+0. 133 —1. 114{+ 1. 931]—0. 726/ —0. 178
(M-Mz)/M= —3.1 4.1 +19.8 +15.6(+225) +7.5| —8.1 —1.0 +6.3 —25.4(%)
H —0. 287 -+0.302 —0.015
H: —0.282 +0. 258 —0.019
(H-H=)/H=z | +1.8 +17.1 —21.1 »
(%)
14 +2.322 +5.238 +2.933
Vy +2.340 +5. 208 + 3. 366
(V=-V5)/Vy —0.8 +0.6 -12.9 (%)
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Fig.21 Torsional moment diagram and reactions,
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Temperature Effects

To show the analysis of temperature effects, take,
for example, the frame in Fig.22. Let the girder BC
and the column CG be subjected to the temperature
rises of #; = 10°C and t, = 15°C respectively. The coef-
ficient of the thermal expansion is e. The member-lengths

and their relative stiffnesses are as shown in Table 14.

Analysis of Rigid Frames in Space by Applying Slope-Deflection Formulas

Table 14
Member AB BC CD BF CG EF FG GH
Length 5.4 4.0 3.0 5.0 5.0 4,2 4.0 3.0
bz 1.2 1.4 0.8 1.5 1.5 1.2 1.4 0.8
Ry 1.0 1.2 1.0 1.0 1.0 1.2 1.2 0.8
)2 1.2 1.0 0.8 1.4 1.4 1.0 0.8 1.0

To analyse this frame,

(m)

deflection angles by applying the conditions of compatibility described in §12,

which are to be read from Table 15, and we have

R:cp = 1. 8R=as + 0. 000, 16,
Racu = Rzcp + 0. 000, 30,
Ryce = Rysr —0. 000, 096,

RzBC == 0,

RJ)CG = 0,

RyFG = RyBC — 0. OOO, 225.
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we have to find at first the relations among



Table 15 Compatibility conditions

— 5.0Rycc = 4l =0

4+ 4,0Rycs = dh =0

Space |Member i,engyt h (52) gxlfgelfztl(i:; sina COSaiE:gI%lutlon %;g;%e(z) ds cos a Rs sin o ds sin «a Rs cos «
AB 0 5.4 0 az=x/2 1, 0} Reas 0 0 5.4RzaB 0 0
ABCD
BC 4.0 0 0] az=0 o] 1 Rzpc 48 x1073 48 x 107 0 0 4. 0R=nc
(xy plane)
CD [0 3.0 0 az=3=/2|—1] 0| KRecp 0 0 —38.0R=cp 0 0
48 x 1075 4 5. 4R=aB
3 0 — 4.0Rzmc = dh =0
— 3.0Rwxcp = 4l =0
DC |0 3.0 0asx=z/2 | 1| 0| Renc 0 0 3. 0Rznc 0 | 0
DCGH \
CG |0 0 5.0 az=0 0| 1| Racs 90 x107° 90 x 10~° 0 0 5. 0Rzcc
{yz plane)
GH |0 3.0 0 az=3z/2|—-1 0] Racu 0 0 —3.0Rz6H 0 0
90 x 10™° 4 3.0Rzpc |
> 0 — 5.0Rwce = 4l =0
— 3. 0Rzeu=4dl =0
BF 0 0 5.0 ay=x/2 110 Rysr 0 0 5.0Ryer 0 0
BFCG FG 4.0 0 0l ay=0 0 1 ] Ryrc 0 0 0 0 4. 0RyrG
(xz plane) GC |0 0 5.0 ay=3z/2|—1| 0 i Ryce 90 x 1073 0 —b. 0Rysc —90 x 1079 0
CB 400 0 ay=x 0 |—1 l Rycs 48 %1078 —48 x 107 0 0 —4.0Rycn
—48x107% + 5. 0RysrF —90 x 107 — 4, 0Ryrc
2

84
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For remaining spaces ABFE and EFGH, the relations among deflection
angles can easily be known without using the compatibility conditions. The
relations thus found, taking Raas, Ricp, Reas and R=er as the independent
unknowns will be summarized in the following :

Rysc = 1. 35Rza8 — 0. 75 Rcp, Rysr = 0. 84R:er — 1. 08 Rzas,

Raer = 1. 286 RzaB, R:cu = 1. 4RzEr.

Multiplying # = 6 EK/1000 and transforming we have :

For member AB : ¢zaB, ¢=aB.

z BC :  ¢ypc = 1. 35¢za8 — 0. 75¢zcD.

7 CD : b, ¢zop = 1. 8¢hzan — 0. 164

7 BF :  ¢ysr = 0. 84¢zer — 1. 08¢hzaB.

4 CG : d¢yeo = 0. 84¢er — 1. 08¢zas -+ 0. 09642,
z EF : ¢eer = 1. 286¢)2aB, ¢:EF.

y FG : dyrc = L. 35 dans — 0. T5¢hacp + 0. 2251,
z GH : ¢ucu = ¢zco — 0. 30y, ¢=ou = 1. 4¢zer.

Now the analysis goes cn as before.
1) Expressions of End-Moments

For member AB :

Mazag = 1. 2(pen + ¢2aB), Mzpa = 1. 2(2028 + (2an),
Myas = — 0. 2¢y8, Myea = 0. 2048,
Mens = 1. 2(p=B + zaB), Mepa = 1. 2(2¢28 + (=aB).

For member BC :
Mpc = 0. 28(p23 — @z0), Mce = 0. 28(¢2c — @aB),
Myec = 1. 2(20y8 + @sc + 1. 35¢za8 — 0. T5¢acp),
Myce = 1. 2(oy8 + 205c + 1. 35¢zan — 0. 75¢zcp),
M:sc = 2¢:5 + @z, M.cs = @3 + 2¢:c.
For member CD :

Mzcp = 0. 8(2¢ac + ¢zcp), M.zpc = 0. 8(gac -+ dacp),
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Myep = 0. 2¢5¢, Mypc = — 0. 2¢c,

M:zcp = 0. 8(2¢sc + 1. 8¢hzan — 0. 16),  Mapc = 0. 8(¢:c + 1. 8¢p=as — 0. 162).
For member BF :

Mapr = 1. 5(2¢02B + @ax), Mzrp = 1. 5(pzn + 2¢aF),

Mypr = 2048 + @y + 0. 84¢h-er — 1. 08¢hzaB,

Myre = @©y8 + 2057 + 0. 84¢h:eF — 1. 08¢hzas,

MpF = 0. 28(2B — @=F), Mrs = 0. 28(p=r — ©zB).
For member CG :

Mace = 1. 5(2¢0ac + @a6), Mzcc = 1. 5{gac + 2¢.G),

Myco = 2p5c + ¢s6 + 0. 84¢herr — 1. 08¢zar + 0. 0961,

Miyce = gyc + 2056 + 0. 84¢hzer — 1. 08¢zan - 0. 096,

Mco = 0. 28(p=c — ¢:6), Meoe = 0. 28(026—=c).

For member EF :

Mazr = 1. 2(@ar + 1. 286¢)2a8), Mare = 1. 220 + 1. 286¢)2a8),
Myer = — 0. 24pyF, Myrs = 0. 24@,F,
Mer = @er + ¢upF, Mere = 20:F + JepF.

For member FG :
Marc = 0. 28(0ar — ©a0G), Macr = 0. 28(0z6 — @aF),
Myre = 1. 220y + ¢36 + 1. 35¢zan — 0. 75¢zcp + 0. 2251),
Miyor = 1. 2@y + 2056 -+ 1. 35¢eas — 0. 75¢scn + 0. 225.1),
Mo = 0. 8(20:F + ©:6), Moy = 0. 8{¢er + 20:0).

For member GH :

Macn = 0. 82026 + dacp — 0. 30p), Monc = 0. 8{gac + ¢acp — 0. 304),
Mycn = 0. 16¢yc, Myne = — 0. 16¢yc
Mecn = 206 + 1. 4dreEr, Meuc = @6 + 1. ddsrr.

2) Expressions of End-Shears

In x direction:
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Xzpa = — (1/Iap)(Maas + Masa) = — (1. 2/5. 4)(3pz8 + 2¢zaB)
= — 0. 667¢z — 0. 444¢=a3,

Xacp = — (1/lcp)(Macp + Menc) = — (0. 8/3. 0)(3¢pzc + 3. 6¢pza — 0. 32y)
= — 0. 8pzc — 0. 96¢1=a8 + 0. 085, 3,

Xapr = — (1/Isr)(Myer + Myrs) = — (1/5. 0)(3pys + 30yF + 1. 68¢zer — 2. 16¢=a8)
= — 0.6¢y8 — 0.60yr — 0. 336¢:zEr - 0. 432¢)zaB,

Xaco = — (lee)(Myce + Myce) = — (1/5.0)(3gsc + 3036 + 1. 68¢:Er — 2. 16¢)zaB
+0.192p) = —0. 6¢yc—0. 6936 —0. 336¢=er+0. 432¢za8—0. 038, 411,

Xaorg = — (1ler)(Meer + Mere) = — (1/4. 2)(3psr + 2¢28F) = — 0. T14@zr — 0. 476¢=5F,
Xaon = — (lon)(Mewcu + Meuc) = — (1/3. 0)(3p:c + 2. 8¢:2er) = —¢zc — 0. 933¢:EF,
Xarp = Xapr = — 0. 60y — 0. 6gyr — 0. 336¢7:5F + 0. 432¢hzaB,

Xace = Xace = —0. 6pyc — 0. 60y — 0. 336¢5r + 0. 432¢p2a8 — 0. 038, 4.

In z direction :

Xepa = — (1/Iap)(Mazan + Mana) = — (1. 2/5. 4)(3¢z8 -+ 2¢2aB)
= — 0.667¢z8 — 0. 444¢ a5,

Xare = — (1/[er)(Maer + Marr) = — (1. 2/4. 2)(3par+ 2. 571¢P2aB)

= — 0. 8570zr — 0. 735¢zaB,

Xepe = — (1/lsc)(Mync + Mycs) = — (1. 2/4. 03¢y + 3uyc + 2. Taan — 1. 5hzcn)
= — 0.9¢y8 — 0. 9¢yc — 0. 8l¢zas + 0. 45¢)zcp,

Xere = — (1/lre)(Myro 4 Myor) = — (1. 2/4. 0)(3@yr + 3056 + 2. Tdhzan — 1. Beacp
+ 0.45p) = — 0.9¢yr — 0.9¢y6 — 0. 81¢hzan + 0. 45¢:cp — 0. 135,

Xecp = — (1/lco)(Macp + Mznc) = — (0. 8/3. 0)(3¢.c + 2¢=cp)

= — 0. 8gzc — 0. 533¢zcn,

Xeon = — (Ylen)(Macn + Maue) = — (0. 8/3. 0)(3¢ac 3 2¢hacp — 0. 6p2)
= — 0. 8¢xc — 0.533¢zcp + 0. 164,

Xecn = Xepc = — 0. 9uy8 — 0. 9psc — 0. 81¢hean -+ 0. 45¢1zcp,

Xeor = Xare = — 0. 9¢sF — 0. 9936 — 0. 81¢zan -+ 0. 45¢rcp — 0. 1354
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i)

S. YOSHIDA

Elastic Equations

Joint Equilibrium Equations

About x axis :

At joint B,

a

V4

V4

C7
F;
G;

About y axis :

At joint B,

i

V4

4

About z axis :

MIBA + MxBC -+ MxBF = Q.

MxCB -+ MxCD -+ MxCG = (.
MxFB -+ M:cFE -+ MxFG = Q.

Mzce + Macr + Mzcu = 0.

Mysa + Mysc + Mysr = 0.
Mycs + Mycp + Myce = 0.
Myrs + Myre + Myrc = 0.
Mycc + Mycr + Mycu = 0.

Table 16 Elastic equations

No. 12

Left-hand side

Eqa. |-
©»xB l @zC ‘ YxF ©xG ©wyB ©oyC ©QyF ©wyG
1 5.680 | —0.280 1.500
2 ~0.280 4,880 1.500
3 1.500 5.680 | —0.280
4 1.500 | —0.280 4.880
5 4. 600 1.200 1.000
6 1.200 4. 600 1. 000
7 1. 000 4. 640 1.200
8 1.000 1.290 4. 560
9
10
11
12
13 1.200 1.543 1.620 1. 620 1. 620 1.620
14 0. 800 0.800 | —0.900 | —0.900 | —0.900 | —0.900
15 —1.080 | —1.080 | —1.080 ; —1.080
16 0. 840 0. 840 0. 840 0. 840




No. 12  Analysis of Rigid Frames in Space by Applying Slope-Deflection Formulas

At joint B, M:sa + Masc + Mesr = 0.
” C, M.+ Mecp + M:icc = 0.
v F, Moz + Mz + Mwrc = 0.
7 G, M.wc+ Mxr + Mgu = 0.

ii) Horizontal Shear Equations

In z direction :
For the 1st column~frame : Xasa + Xere + Xenc + Xorc = 0.
Y 2nd v : Xsep + Xeou — Xecp — Xeor = 0.

In «x direction :
For the 1st row-frame : — Xupa — Xzcp -+ Xanr + Xace = 0.
7 2nd ” i — X are — XacH — Xarp — Xzce = 0.

These are summarized in Table 16.

Table 16—continued—

Right-hand side

=B @ @F @6 dzaB | ¢zcp ¢zaB eEF (multiplier: z)
1.200
0. 800
1.543
0. 800 0. 240

1.620 | —0.900 |—1.080 | 0.840

1.620 1—0.900 |—1.080 | 0.840 —0.096

1.620 |[—0.900 |—1.080 | 0.840 —0.270

1.620 {—0.900 {—1.080 | 0.840 —0.366

4.680 | 1.000 |—0.280 1.200

1.000 | 3.880 —0.280 1. 440 0.128
—0.280 3.880 | 0.800 1.000
~0.280 | 0.800 | 3.880 1. 400

5.038 |~1.620 —0.243

—1.620 1 1.967 0.295

1.200 | 1.440 4.082 |—1.210 0.223

1.000 | 1.400 —1.210 | 2.913 —0.054

83
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Solving these simultaneously, we obtain:

At joint B, .= — 0.001,865, ¢ys = +0.042,13, o= = — 0.018,57,
v C, @zxc=—0.036,07, oyc=-40.020,51, @«c= +0.016,12,
” F, @ar = 4+ 0.003,216, @oyr = — 0.013,79, o=r = — 0.002, 133,
v G, = +0.03536, @=—0.036,25 «c= 4 0.000,693,3,
and
¢zap = — 0.003, 609, ¢zcp = + 0.153, 1, ¢=aB = -+ 0.058, 48,
gezr = + 0.002, 521.

Replacing these ¢’s and ¢'s in the expressions of end-moments 2), we find
the solutions shown in Table 17.

Table 17 Values of end-moments (t—m)

Member AB BC cD BF
End | A | B B c C D B F
Ms | —6.57| —881| +9.58| —9.58| +64.77 | +93.62| —0.77 | +6.85
My | —8.43| +8.43| —17.91 | —43.86 | +4.10 | —4.10 | +9.43 | —46.49
M: | +47.89 | +25.61 | —21.02 | +13.67 | —18.00 | —30.89 | —4.60 | -+4.60

Member cG ‘ EF FG GH
End c G E F F | G G H
Mz —55.17 | +51.98 —1.71 +2.15 —9.00 49,00 —60.94 | —89.23

My +39.73 | —-17.03 | +3.31 —3.31 | +49.77 | +22.82| —5.80| +45.80

Mz +4.32 | —4.32 +0.39 —1.75, —2.86| —0.60| +4.92| +4.22

4) Comparison with the Current Solutions

In the two-dimensional analysis, we treat only the two plane frames shown
in Fig. 23 and the results obtained are compared with the exact values as
shown in Table 18 and in Fig. 24~27. See that the two-dimensional analysis
does not give the moments about y axis in Fig.26 and that the magnitudes
of them are as large as those of moments about the axes x and z, so that
they can never been neglected. The deflection diagram is shown in Fig. 28.
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Table 18 Percentage errors
(a) The 1st-row-frame Multiplier: g/
Member AB BC CDh
End A B B C C D
M +48.8 +24.4 —24.4 +13.2 -13.2 —26.6
M= +47.9 +25.6 —21.0 +13.7 —18.0 —30.9
(M — M=)/ M= +1.9 —4.7 +14.3 -3.6 —26.7 -13.9 (%)
H +13.4 —13.3
Hz +13.6 —16.3
(H~Hz)/Hz -1.5 -18.4 %)
14 +2.7 —2.7
Vy +0.6 —-1.2
(V—Va)Vy (+350) (+125) ‘%)
(b) The 2nd-column-frame Multiplier: p/
Member DC CG GH
End D C C G G H
M +89.0 +58.1 —58.1 +58.1 —58.1 —89.0
Mz --93.6 +64.8 —55.2 +52.0 -60.9 —89.2
(M~ Mz)/ M=z —4.9 —-10.3 +5.3 +11.7 —4.6 —0.2 (%)
H —49.0 +49.0
Hz —52.8 +50.1
(H— Hz)/H>= —7.2 -2.2 (%)
1% —2.7 0.0
Vy —1.2 —1.5
(V—Vy)/Vy (+125) (—100) (%)
F
(+10°C) c t15°C) G
K
y
D\ N | H

(a) 1 st-row-frame

(b) 2 nd-column frame

Fig.23

A

(a) 1 st-rowframe

0 50 100(p’)

(b) 2nd-rowrame

Fig.24
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B c
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Fig.27 Torsional moment diagram and reactions
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Frame ABFE
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Frame DCGH
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x==0 32

19. Settlements of Supports

The frame in Fig. 29 under-
goes settlements at supports;
they are 12 cm at C in nega-
tive z direction horizontally,
and 6 cm at I vertically upward.
The dimensions and stiffnesses
are to be read from Table 19.

% =+0.16 #0404
=10 46
(e) Freme BFGC
0 02 04(mm)
Scale of deflection © -
Fig.28 Deflection diagram
Table 19
Member [AD BE?CF DE EFiDJ EXIFLIJK|KL|IGJ|HKIIL
Length 4.2 1 5.4 {5.414.0 6.0‘;5.0 5050 4.016.0[3.6]4.2]|4.2 (m)
kz 1.0)1.2|1.2|1.4|1.2]1.5|1.5!1.5/1.4]1.2{1.0{1.2]0.8
ky 1.01.01.01.211.0}1.0}1.0/1.0/1.211.011.0]1.2]0.8
fez 1.0 1.21.2|1.0]1.0|1.4)1.4 1.4 1.0}1.0}1.0}1.0}1.0
J K I.
D =
el Bl ylv F| 1
)_‘x
A Bl , ¢

Fig. 29

As in the manner previously shown, the compatibility equations, Table 20,

give the following relations :

(,/)J:IL = 1. 29¢'1CF — 28. 61&,

g1 = 0. 857¢=ay,

where z = 6EK/1000.

¢=x1. = 10g,

darL = 127,
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Table 20 Compatibility conditions
. . . Revo-
Mem-| Length (s) | Direction |sin|cos : :
Space | | ° ~| lution Rs sin «a Rs cos
ber x y z angle (a) | a | « angle
HKLI HK 0 4.2 0 a=z=x/2 1 0 ZHK 4. 2Renx 0
(xy KL 6.0 0 0| az=0 0 1 RexL 0 6. OR=xL
plane) ol
LI 0 4.2 0a:=3z/2 |—~1 0 Re — 4. 2ReL1 0
3 4.2Rznk —4, 2Re11 || —6. 0RzxL=4h
=Al=0 =0.06
CFLI CF 0 5.4 0]az=qa/2 11 0f Racr 5. 4Rzcr 0
(yz FL O 0 5.0 ax=0 0| 1, RaxrL 0 5. 0RzrL
planel| 1 1 6 42 0 ae=37/2 |—1| 0 Reu — 4. 2Ra11 0
! 5.4Rzcr—4. 2Rz11 || —5. 0RzrL =1l
=Al=—0.12 =0.06
The relations below are readily found by inspecting the remaining spaces:
e = 0. 778¢=aD, =CF == (J=BE, ¢ype =1. 05¢zap — 1. 35¢z8E,
(/:’yEF = 0. 9¢1BE —0. 9¢ICF, ¢yD] = — 0. 84¢2AD -+ 0. 72(/)!:G],
¢yEK = ¢ypj, PyIK = QyDE, DyKL = (IyEF,
@263 = 1. 167¢zap, dzux = 1. 286¢=E, ¢rux = 0. 857¢=c7.
1) Expressions of End-Moments

For member AD :
Mazap = @ap + Paap,
Myap
M:ap

= — 0. 2¢y0,

= ¢zD T (=AD,

For member BE :
Mase
Mye
M:pe = 1. 2(0:e + 0. 778¢=aD),

= 1. 2(¢ze + ¢aBE),

= — 0. 2@yE,

For member CF :
Macr = 1. 2(gaF + ¢acF),

Mycr =0. 2¢4F,

Mzpa = 2020 + ¢paaD,
Mypa = 0. 2¢yp,

Mzpa = 2¢=p + (zap.

Mars = 1. 2(2¢z8 + ¢aBE),
Myes = 0. 2¢4E,

Megs = 1. 2(2¢:£ + 0. 778¢=aD).
Marc = 1. 2(202F + ¢ucr),
Myrc = 0. 204F,
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Mecr = 1. 2(per + 0. 778¢za), Meec = 1. 2(20 + 0. 778¢=a0),
For member DE :

MzpE = 0. 28(¢p«D — @zE), Maep = 0. 28(pze — @2D),

Mype = 1. 2(20yp + @yt + 1. 05¢zap — 1. 35¢)28E),

Myep = 1. 2(¢sp + 2¢55 -+ 1. 05¢2ap — 1. 35¢2BE),

M:pe = 2¢:p + @z, MzEp = @sp + 20:E.
For member EF : '

Maxr = 0. 24(p<E — @aF), Mre = 0. 24 (@pzr — @aE),

Myer = 2058 + @y¢ + 0. 9¢2BE — 0. 9¢zcF,

MyrE = @yE + 2057 + 0. 9zne—0. 9¢dacF,

Mzer = 20:8 + @oF, Mepe = @& + 2¢-F.
For member DJ :

Mapy = 1. 5(202D + 1), Mz = 1. 5(¢zp + 20z1),

Mypy = 200 + @y5 — 0. 84¢=AD + 0. 72¢20J,

Myip = @y + 2051 — 0. 84¢=ap + 0. 72¢:cJ,

M:p; = 0. 28(¢=p — ¢23), Mip = 0. 28(pz1 — D).
For member EK : '

Maex = 1. 5(202E + @ax), Maxe = 1. 5(paE + 202K),

Mgk = 2058 + @y — 0. 84¢=ap + 0. 72¢xcy,

Mixe = @uE + 205k — 0. 84¢=ap -+ 0. 72¢=c1,

Mzex = 0. 28(pzE—p:k), Mxe = 0. 28(0:k — @2E).
For member FL :

Marr = 1. 5(20zF + a1 +122), Moair = 1. 5(@ar + 2021 + 12p),

MyrL = 2¢57 + @y1 — 0. 84¢h=ap + 0. 72¢267,

MyLr = @yF + 2051 — 0. 84¢=ap + 0. 72¢01,

MerL = 0. 28(pzr — @21), Mrr = 0. 28(¢-L — ©xF).
For membef JK :

Mz = 0, 28(¢zj — @aK), Moy = 0. 28(pzk — @x3),

89



90 S. YosHIDA . No. 12

Myix = 1. 2(2¢051 4+ @sx + 1. 05¢zap — 1. 35¢:8E),
Myxy = 1. 2(¢31 + 2¢5& + 1. 05¢hzap — 1. 35¢)28E),
Mg = 2021 + @k, Mexy = @zy + 202x.
For member KL :
MaxL = 0. 24 (pax — @a1), Maix = 0. 24{gar — @ax),
Myxr = 20k + @s1 + 0. 9¢ase — 0. 9¢=cr,
Mk = @oyx + 2051 + 0.9¢upE — 0. 9¢acrF,
MexL = 20+ @z -+ 10p, Mk = @zx + 20-L + 102

For member GJ :

Mazcy = @z1 + 1. 167¢zaD, Mzic = 2¢z1 + 1. 167¢zan,
Mycy = — 0. 20,7, My = 0. 2¢,7,
My = @=1 + ¢:03, MG = 2021 + ¢ec1.

For member HK :

Mzeuk = 1. 2{@ak -+ 1. 286¢28E), Maxn = 1. 2(2¢ax + 1. 286¢28E),
Myux = — 0. 240k, Myxn = 0. 240K,
Mg = ¢=x + 0. 857¢:cJ, Mexn = 2¢:x + 0. 857¢=c1.

For member IL :
Mz = 0. 8(par + 1. 286¢acr — 28.64), Moart = 0. 8(2¢zL -+ 1. 286¢=cF — 28, 671),
My = — 0. 16¢,1, i My = 0. 16,1

Mo = @z + 0. 85705, My = 2 -+ 0. 857¢a).

2) Expressions of End-Shears
In x direction :
Xeva = —(1/lap)(Mzap + Mepa) = —(1. 0/4. 2)(3p=D -+ 2¢=an)
= — 0. 714¢zp — 0. 476¢=aD,
Xzes = — (1/lee)(M=e + M=er) = — (1. 2/5. 4)(3¢:& + 1. 556¢:aD)
= — 0.667¢x — 0. 346¢)zaD,
Xarc = — (Ylce)(Mzcr + Mzrc) = — (1. 2/5. 4)(3¢=r + 1. 556¢=4D)
= — 0.667¢zr — 0. 346¢zaD,
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Xapy = — (1/lop)(Mypy + Myp) = — (1/5. 0)(3pyp + 3¢y — 1. 68¢=ap + 1. 44¢h26))
= — 0.6¢yp — 0. 6¢y1+ 0. 336¢zap — 0. 288¢c1,

Xapx = — (1/ler)(Myex + Myxe) = — (1/5. 0)(3pyE + 30yk — 1. 68¢=ap + 1. 44¢xcy)
= — 0.6pye — 0. 605k + 0. 336¢=ap — 0. 288¢:c1,

XarL = — (UlsL)}(MyrL + Myr) = — (1/5. 0)(3psr + 3psn — 1. 68¢hzap + 1. 44¢hc1)
= — 0. 6pyr — 0. 60y + 0. 336¢zap — 0. 288¢c1,

X216 = — (Yles)(Mzcy + Mzic) = — (1/3. 6)(3p=1 -+ 2¢5263) = — 0. 833¢=3 — 0. 556¢:c1,

Xoxkn = — (1/Iax)(Menx + Mexu) = — (1/4. 2)(3p=x + 1. 714¢:c1)
= — 0. 7149k — 0. 408¢c1,

Xert = — (VY Maw + Men1) = — (1/4. 2)(3p-L + 1. 714¢rc))
= — 0. 714¢a1. — 0. 408¢=c1,

Xaip = Xapy = — 0. 60yp — 0. 60y5 + 0. 336¢zap — 0. 288¢).67,
Xoke = Xazpx = — 0. 6pyE — 0. 603k + 0. 336¢)2ap — 0. 228263,

Xonr = Xarr = — 0. 6pyF — 0. 6¢s + 0. 336¢hzap — 0. 288¢:G;.

In z direction :

I

Xepa = — (1/Ipa)(Mapa + Mazap) = — (1/4. 2)(3pzp + 2¢)zaD)

= — 0. 714¢@zp — 0. 476¢zAD,

Xaye = — (Yhe)(Mac + Mzcy) = — (1/3.6)(3pa1 + 2. 333¢24D)
= — 0. 833¢z; — 0. 648¢zaD,

Xepe = — (1/IpE)(MypE 4+ MyeD) = — (1. 2/4. 0)(3¢sp + 30y + 2. 10¢pzap — 2. 70¢2BE)
= — 0.9¢yp — 0.9¢se — 0. 63¢zap + 0. 81 ¢uzE,

Xegx = — (U} (Myx + Myxy) = — (1. 2/4. 0) (301 + 3pyx + 2. 10¢zap — 2. 70¢28E)
= — 0. 9@y — 0. 9¢yk — 0.63¢zap + 0. 81 ¢zBE,

Xeep = — (1/le)(Mape + Mags) = — (1. 2/5. 4)(3¢aE + 2¢)zBE)
= — 0.6670zr — 0. 444¢zBE,

Xexku = — (Ylng)(Manx -+ Maku) = — (1. 2/4. 2)(3p2x + 2. 572¢28E)
= — 0. 857psx — 0. 735¢z8E,
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X:ep = XepE = — 0. 9¢yp — 0. 99y — 0. 63¢zap + 0. 81dznE,
Xy = Xaxx = — 0.9¢y1 — 0. 9¢yx — 0.63¢zap + 0. 8l¢aBE,

Xeer = — (1/ler)(Myer + Myre) = — (1/6. 0)(3¢se + 30yr + 1. 8¢zsr — 1. 8dzcr)
= — 0. 5pye — 0.5¢yr — 0. 3¢zE + 0. 3¢zcr,

Xekr = — (Yl ){(Myxr + Myrx) = — (1/6. 0)(3@sx + 3pyL-+ 1. 8¢danE — 1. 8¢rzcF)
= — 0.5¢yx — 0.5py. — 0. 3¢esE + 0. 3¢zcF,

Xerc = — (1/lcr)(Mzcr + Marc) = — (1. 2/5. 4)(3¢zr + 2¢acF)
= — 0. 667¢zr — 0. 444¢=crF,

Xorr = — (Y)Y (Maw + Marr) = —(0. 8/4. 2)(30sr + 2. 572¢zcr — 57. 2p)
= — (. 571¢ar — 0. 490¢zcr + 10. 8954,

Xere = Xevr = — 0. 5058 ~— 0. 5058 — 0. 3¢ze + 0. 3¢acr,
Xax = Xexe = — 0. 59k — 0. 5oy — 0. 3¢zpE + 0. 3d«cr.

3) Elastic Equations, see Table 21
i) Joint Equilibrium Equations
About x axis :
At joint D, Mapa + Maoe + Mepy = 0.
” E, Muaues + Maep + Maer + Maex = O.
v F, Moarc + Mzre + MarL = 0.
7 J, Mz + Maic + Max = 0.
” K, Moaxe + Maxn + Maxy + Mok = 0.
7 L, Mauar + Mzt + Max =0.
About y axis :
At joint D, Mypa + Mype + Myp; = 0.
v E, M+ Myep + Myer +Myex =0.
v F, Myrc+ Myre + My = 0.
v ], Myp+ Myc + Myx = 0.
v K, Mske -+ Myxun + Myxi+ MyxL = 0.
L

7

, Myr + My + MyLK = (.
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About z axis :
At joint D, Mo:pa -+ Meps + Mepy = 0.
v E, M-+ Muwep +Meer + Mexx = 0.
7 F, Merc + Mere + MerL = 0.
v J, Mp + Mec + Max = 0.
v K, Mg+ Mxy + M:xy -+ Mg = 0,
L

4

,  Mar + Mt + Max = 0.
ii) Horizontal Shear Equations
In z direction :
For the 1st column-frame : Xepa + Xzie + Xeoe + Xax = 0.
» 2nd Y : Xems + Xexu — Xepp — Xexy + Xowr + Xexe = 0.
» 3rd v i Xerc + Xen1 — Xepe — Xaik = 0.
In x direction :
For the 1st row-frame : — Xeoa — Xamp — Xarc + Xapy + Xaek + Xaepr = 0.
7 2nd v : Xzj6 + Xaxn + Xern 4 Xep + Xaxe + Xorr = 0.

The simultaneous equations in Table 21 are solved, and we have the

rotations;
at joint D, ¢ap= —0.020,71, @y = +0.974,7, @ = — 0.619,4,
» E, == —0.700,5, @yE = + 1.829, o2 = — 0.285, 1,
v F, @r= —6.073, yF = -+ 1. 966, g = — 0.663, 6,
v ], ou=—0.010,19,  @wy=4+0.981,3, @ = +0.323,4,
” K, ozx = —0.6012, oy = + 1. 809, oK = — 1.299,
v L, @ = +0.015,21, o5 = + 1.997, gL = — 2.025,

and revolutions
¢zap = — 0. 071, 53, ¢zBE = 4 2. 988, ¢zcr = + 13. 383,
dzap = + 3.027, hecy = — (. 258, 7.

Using these ¢’s and ¢’s, end-moments are determined. Results are read
from Table 22.



Table 21

Elastic equations

Left-hand side

Eq.
@zD QxE QxF ©x3 PxK L ©yD OYE PYF ©y5 PIK oYL
1 5.280 | —0.280 1. 500
2 -0, 280 5.920 —0.240 1. 500
3 —0.240 5. 640 1. 500
4 1.500 5.280 | —0.280
5 1.500 —0.280 5.920 | —0.240
6 1.500 -0, 240 4, 840
7 4. 600 1. 200 1.000
8 1.200 6. 600 1.000 1. 000
9 1.000 4,200 1. 000
10 1.000 4,600 1.200
11 1.000 1. 200 6. 640 1.000
12 1. 000 1. 000 4,160
13
14
15
16
17
18
19 1. 000 1.167 1.260 1. 260 1.260 1.260
20 1. 200 1.543 —1.620 | —0.720 0.900 | —1.620 | —0.720 0. 900
21 1.200 1.029 —0.900 k —0.900 —0.900 —0.900
22 —0.840 | —0.840 —0.840 | —0.840 | —0.840 | —0.840
23 0.720 0.720 0.720 0.720 0.720 0.720
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Table 21-—continued—

Right-hand side

©zD QzE pzF @z1 ¥zK @zL UETN} PaBE pacr dzAD &zG3 (multiplier : )
1.000
1.200
1. 200 --18.000
1.167
1.543
1.029 4. 880
1.260 | ~1.620 —0. 840 0.720
1.260 | —0.720 | —0.900 | —0.840 0.720
0.900 | —0.900 | —0.840 0.720
1.260 | ~—1.620 ~0.840 0.720
1.260 | —0.720 | —0.900 | —0.840 0.720
0.900 | —0.900 | —0.840 0.720
4,280 1. 000 —0.280 1.000
1,000 6. 680 1. 000 —0.280 0.933
1.000 4.680 —0.280 0.933
—0.280 4.280 1.000 1.000
—0.280 1.000 1. 280 1. 000 0. 857 -10.000
—0.280 1.000 4. 280 0. 857 —10.000
3.339 | —2.268
—2.268 6.118 | —1.080
—1.080 2.761 19. 611
1. 000 0.933 0.933 3.046 | —1.210
1. 000 0. 857 0. 857 -1.210 2. 683

sejnuio uonoeye-adols Suif|ddy Aq eoedg wur sewery piSry jo Siséjeuy
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Table 22 Values of end-moments (multiplier : #)

Member AD BE CF DE
End | A D B | E c F D | E
Mo | —0.002 | —0.113 | 42745 | 1004 | +8.772 | 41484 | +0.190 | —0.190
My | —0.195 | +0.195 | —0.366 | +0.366 | —0.393 | +0.393 | —0.397 | +0.629
M: | +2.408 | +1.788 | +2.484  +2.142 | +2.030 | +1.233 | —1.524 | —1.190

Member EF D] EK ‘ FL

End | E F D 7 E | K | F L

M=z +1.289 | —1.289 | —0.077 | —0.062 | —3.003 | —2.854 | —0.196 | 4-8.936
My —3.732 | —3.595 —0.202§+O.208 +2.738 | +2.718 | 4-8.200 | +3.231

M= —-1.234 | —1.612 | ~0.264 | +0.264 | +0.284 | —0.284 | +0.381 | —0.381

Member JK KL GJ HK

End J ; K K L G ] H K

Mz | +0.165 | —0.165 | —0.148 | +0.148 | —0.094 | —0.104 | +3.890 | +3.168
|

My | =0.405 | +0.588 | ~3.741 | ~8.553 | ~0.196 | +0.196 | ~0.434  +0.434

M: | —0.652 | —2.275 | +5.877 | +4.651 | +0.065 | +0.388 | —1.521 | —2.820
i

Member IL

End 1 | L

Ms | —9.099 | —9.087

My | —0.320 | +0.320

M= —2.247 | —4.272

4) Comparison with the Current Solutions

To solve this frame by the current two-dimensional method, we treat two
constituent plane frames in Fig. 30 separately and the results and the errors
are shown in Table 23. The moment diagrams are drawn by broken lines in
Figs. 31, 32, 33 and 34.
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ez T2 + L
F 18] K i
\ I !
| \ \
G !
H x I Téem
Cl (b) 2 nd-rowframe
—
12c¢m
(a) 3rd-column- frame
Fig.30 Deflected skeleton
Table 23 Percentage errors of end-moments and reactions
(ta)y The 2nd-row-frame (multiplier : p)
Member GJ JK HK KL IL
End G J J K H K K L I L
M +2,077,41. 893 —1. 893 — 3. 234/+0. 413/ — 1. 112|+ 4. 347+ 3. 269|—0. 665/— 3. 269
M= +0. 065+ 0. 388/—0. 652|— 2. 275|—1. 521|— 2. 820,+ 5. 377+ 4. 651|— 2. 247|—4. 272
(M — M=)/ M= +3095)(+388)(+190){+42.2 | —— |—60.6 i—~19.2 —29.7 |—70.4 |—23.5 (%)
H +1.103 —0.166 —0.937
Hz +0.126 —1.034 —1.552
(H—Hz)[Hz {(+775) —83.9 —39.6 (%)
|4 +1.282 —2.551 +1.796
Vy +0.705 —3.573 +3.420
(V—-Vy)/Vy|+81.8 —28.6 —47.5 (%)
(b) The 3rd-column-frame (multiplier : z)
Member CF FL 1L
End C F FoloL 1 L
M +11.916] +3.563 3. 563 +6.200f —5.841, —6.203
Mz +8.772 +1.484  —0.196, -+8.936  ~9.099] —9.087
(M — Mz)/ M= +35.8 —~35.8 (%)
H —2. 866 +2. 867
H: —1.898 +4.331 ,
(H—Hx)/H:= +51.0 ~33.4 9%
14 —0.527 +1.796
Vy —2.222 +3. 420
(V—Vy)/Vy —76.3 ~47.5 (%)
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Fig.33 My diagram
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Fig.34 Torsional moments and reactions

See, for example, Fig.31. The effect of the vertical settlement at support
I does not reach far away beyond the bay considered, and we find that the
column at the left in the adjacent bay is affected very little as shown by full
line. This tendency does not appear at all in the results obtained by the
conventional solution which are shown by broken lines.

It should be especially noticed that the twisting moment of the remarkable

magnitude is acting upon the member EF, see Fig. 34.
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Chapter IV. Analysis of Grid Works
20. A Square Grid Supported Simply at the Corners,

Concentrated Load on the Center

A grid Woraié 8éan be regarded as a rigid frame in space from which the
columns are taken off. Therefore, the author’s method is equally applicable to
its analysis as before. The loads are assumed here, as usual, to act
perpendicularly to the structural plane, hence the horizontal shear equations
are not required.

The analyses of the grid works have been presented by many investigators.
Among these, Prof. T.Fukupa’s exact methodn is the most famous in this
country. On this account, the illustrative examples treated below are taken
from his paper mainly to show the accuracies of the author’s solutions. Fig. 3?
shows the grid work to be considered. The condition of symmetry gives the
following relations, that is, the grid is dealt with four unknowns.

QYxA = Q2B = PzA = P=C = @y, D

y

C I

. Q€ = Pz D = Q2B = @D = — ¢y, //B P /

v PaE = QPaF = Py, {/F 4 / z)""'
4

PP
Pzl = @zH = — Qq. : .

Fig.35

[*D)

GzAF = QaBH = (2AE = eC1 = ¢y,
@zFC = (pzHD = (JzEB = (h2ID = — ¢y,
P2EG = (IzFG == ¢y,
PGl = P=GH = — ¢,
1) Expressions of End-Moments
Due to the condition of symmetry, only the following end-moment

expressions are required, where £k, and %, mean the stiffness ratios for
bending and for torsion respectively.

Meae = ky(20, + &), Mear = 28k(p) — ¢2),
Maec = k(200 + ¢), Mzea = k(o1 + &), Mace = ky(@s + ¢a). -

The remainders are expressed by these:

Mazag = Mzar, Mazar = Mzag, Mg = M.ar, etc.

# Fukupa: II Abschnitt, §2, 2)
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2) Elastic Equations
i) Joint Equilibrium Equations

At joint A, iMoo = Maar + Maar = 0.
” E, > Mse = Mzea + Mzen + Maec = 0.
il) Vertical Shear Equations
At joint E, 21Xye = Xyea — Xyes — Xsec = 0.
4 G, 21X = X6 + Xyor — Xyou — Xyo1 = P,

where,
Xyea = — (YI)(Meea + Mzag), Xye = — (/1) (Mn + M),
Xsee = — (YI){(Mazxc + Macr), Xyoe = — (Y/)(Mzce + Mzxc),
Xyor = — (Y)Y Mecr + Mzrc), Xyon = — (/) (M:en + Mznc),
Xyo1 = — (I Mact + Maio).

Substituting the end-moments in 1), we have the simultaneous equations:
(2ks + 25ke)pr — 28Ry + ko = 0,
48kupy — (2ke + 4BRe)ps — Ry = 0,
6p; — 3py + 4¢; — 2¢y = 0,
120, + 8¢y = — (I/ks)P.

Solution gives :

_ Pl ks + 168k Pl o+ 8Bk
T S ke + 128k = Yk T+ 128k
L _PL B+ 15k . _ Pl kst 9k
DT Tl ks -+ 128k, 2T ok h + 128k

3) Values of End-Moments
Using these, we have from 1) :

Pl 1 Pl Bk

MeAE = v (Bt 168k — By — py = LL Bk
NS Bt 1ogk e 160k — ke = 158k = o e
Pl 1 Pl ks + 148k
‘V[z = P ] 16 kt . 2k _ okt _
YT ki 12/3kt( o8 o = 30Pk:) 8 v+ 128k
— P !k
Mazcg = —— (b 80k: + 2ks + 18k) = — PL fe & 108k

4 kot 120k 4 kst 128k
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—PI 1 Pl Bk
oBG = o+ o (= Fp — + OBk = — e
M.xG SR 1213kp< b — 8Pk ko + 9Bk:) 5 Tt 120k

Pl 3 Pl i
Mg =2 P (ko + 168k — 2ky — 168k:) = — B

4 ko(ks + 12ks) 4 R+ 128k

Prof. Fukupa’s values are as follows, where a = EI/GH and H represents
the coefficient of twisting resistance; note that in his analysis eight unknowns
being employed.

Pl Pl(2e + 7)
Mese = ———, Map = — —— 12
A= T6(a+3) B 16(a + 3)
Pl(2a + 5) Pl
MI R e e ij G = e e
oF S(a + 3) Be Sl + 3)
Pl
Moas = — oo
AT 16(c + 3)

The relation between « and the author’s factor 3 is:

L EL _2mt1) T 2m+1) I 2m+1) ke
T GHT om H  m H  m ket
[
1 8m+1) ke 1k
T4 m ke~ 48k
. ke
@ = ——,
. 45k

Referring to this relation, it is seen that Prof. Fukupa’s solutions just
come to the authors’ except
signs. It is to be noticed that

the author’'s method needs
only four independent un-

knowns, half of the Fuxupa’s
method, and that the slope—

deflection method is a power -

(h) Torsional moment.

(a) Bending moment

ful means also in dealing
with the grid works. The Fig.36 Moment diagram
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moment diagrams are shown in Fig. 36.

21. A Square Grid Supported Simply at the Corners,
Concentrated Load on an Edge Joint. Fig.37.™

Fig. 37

From symmetry, we have the following nine ¢’s and four ¢’s as unknowns:

At joint A, @aa, @za / For member AE, ¢aax

4 E, CzE 4 FG, g[JzFG
¢
v F, @, @eF z ClL,  d¢e
[/2]

Y4 G, o v v AF, dzar
v C, @ac, @
4 I s (31

The remainders are expressed by these :

YaH = QazF, ©zD = — @=C, etc.,
and
p2EG = paAF + Pz FG — (zAE, (a6l = — FG — PzAF T ¢ec1,  etC.

1) Expressions of End-Moments

. Mzar = k(2028 + @ar + ¢aar), Mazag = 28k{pza —Jp2E),
At joint A:
Mar = 28k(pza — ©zp), Meae = ko(20:a + ¢=ag).
{ Mzsu = Mzar, Mg = Mzak,
v B:
Mepy = — Mzar, M:pg = — Mzak.
{ Macr = ko(20z¢c 4+ @25 — @zar), Mzt = 28k(psc — 0a1),
v C:
Mxcr = — MZFC, - M:c1 = kb(2§9:C + ¢ZCI).
{ Mzou = Macr, Mot = Moacr,
v D:
Meoon = — Mecr, Mep1 = — M.

# Fykupa : II Abschnitt, §2, 4)
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Maga = — Mzag, Mz = — Maag,
At joint E: § Maic = k(2028 + ©26 + dzar + aFc — (eaE),
M:ea = ki{@za + ¢zag), Megs = — M:pa, M:c = 0.
Mara = ki{2@ar + @za + dzar), Marc = k(2028 + @©2c — @aar),
” F: { Marc = 28k{pzr — @20),
Mera = — Maar, Mrrc = 28k:(@Fr — @zc), Merc = k(2028 + ¢rc).
Mace = k(2026 + @zE + @zaF + ¢uFG — (P=AF),
Mzor = — Marc, Mz = — Mare,
” G: { Mzt = ke(2¢26 + a1 — ¢Fc ~ ¢zar + =),
Mg =0, M:or = ke(@sr + arc),
Moy = — Mwcr, M1 = 0.
Mang = Mara, Maup = Merc, Manc = Marc,
H { Mzup = — Mzpa, Meup = — Merc, Mewc = — Mora.

Mazic = —Mzct, Mauap = — Mac,
7 1: $ Muc = k(2001 + 026 — ¢2r6 — Pzar + ¢=1),

M:c = k{@zc + ¢=c1), Map = — Meac, Mxc =0.

2) Elastic Equations

i) Joint Equilibrium Equations

SiMaza = Maar + Mzag = 0,

S Mac = Maucr + Maci = 0,

SA\MaE = Mura + Mzep + Marc = 0,

SIMar = Mara -+ Marc + Merc = 0,

SIMac = Mazcr + Macu + Macr + Mzcr =0,
SIM a1 = Maic + Map + Maic = 0.

About x axis: <

SIMea = Mzag + Mear = 0,
About z axis: { SIMec = Mecr + Mec1 = 0,
ZMzF b= MzFA + IWzFC + MzFG = 0

ii) Vertical Shear Equations
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At joint E:
” F:
7z G
v 1:
where,

Xora = — (I M:ar + Mzra),
Xsee = — (YI)(Maec + Mace),
Xore = — (1/D)(Marc + Moacr),
Xyor = — (1/I)(Merc + M.cr),
Xyoe = — (1/1)(Matc + Macs),
Xyc = — (/) {(Mect + Mac),

(
Xoie = — (Y} Mzc1 + M),

Using expressions in 1),

we have

Xyea — X yeg — Xype — P = 0.
Xyra — Xyre — Xyre = 0.

Xyor — Xyon + Xyce — Xyo1 = 0.
Xyic — Xy + Xyie = 0.

Xyew — — (1/0)(Mesn + Mese),
Xoypa = — (U} (Mzar + Mara),
Xsrc = — (Y1) Mere + Mecr),
Xycu = — (/) (Mcu -+ Mauc),
Xyer = — (Y1) Mact + Mazic),
Xy = — (Y)Y Mep + Mzpi),

No.12

the simultaneous equations shown in

Table 24, which produces the following solutions :

Table 24 Elastic equations

Left-hand side Right-

Eq.]- hand

QzA | QrC | QIE 1 @xF } ©zG | Pl @A | @zC i ©zF §¢1AF§¢:AEE¢ZCI !g!,szG side
1§ 2a+1 -1 a a 0
2 2a-+1 a -] —a 0
31 —2 2a+2 a a|—~a a 0
4 a a 4a+1 —1 0
5 a | —2 | 4a+2 a —~a| a 0
6 —2 a | 2a+2 —a al|—a 0
7 2a+1 -1 a 0
8 2a+1 —1 a 0
9 -1 —~1 | 2a+2 a 0
10 3 3 —6 2 |—6 2 | Pllky
11 3 3 3 -4 2 0
12 3 3 6 —4| 2 i 2 /-8 0
13 3 3 6 -2 6 |—2 ; 0
! !
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where,

pza = n{ — 6 — 15a — 5a® + 4a® + a*),

pzc = — n(6 + 23a 4 25a° 4 84 + a*),
par = — n(6 + 45a + 86a® + 46a® + 6a*),
o = — n(6 + 13a + 24%),

a6 = — 06 + 49 + 92a% + 384® + 4a*),
1 = — n(6 + 29a + 46a* - 22a° + 2a%),

p:a = n(96 + 314a + 311a®+ 108a® + 1la*),

o:c = n(96 + 206a + 77a® — a?),

oF = (96 -+ 248a + 164a? 4 36a® + 2a*),

¢zar = — n(12 + 38a + 38a® + 1543 4 2a%),

@zaE = — n(258 + 775a + 694a* 4 225a° + 22a*%),
¢=c1 = — n(150 -+ 325a +- 118a* — 3a® — 2a*),
derc = — n(168 4 436a + 292a2 -+ 66a® + 4at),

¢ = PU24(2 + a)(6 + a)(2 + da + a?),

7 = pfke.

3) Moments and Reactions

From eqgs.

At joint A:

” C:

” E:

(a) and (f), end-moments are determined.

Maar = — (30 + 8la + 50a® + 7a®),
Mzae = p(30 -+ 81la + 50a* 4 7a®),
Moear = 3p(22 + 49a -+ 2402 + 3a?),
Maae = — 3p(22 + 49a + 24a® -+ 3a®).

Mzcr = — p(6 + 21a + 14a® + ad),
Mzt = p(6 + 21a + 14a@* + a?),
M.ct = 3p(14 4 29a + 124 + a®).

{ Mzrc = 21430 + 8la + 504 + 7a®),
2EA = — (162 + 461a + 383a% + 117a® + 1la*).

105
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Mera = — (30 + 79a + 47a® + 11a® + a*),

Marc = p(— 6 — 11la + 9a® + 7a® + a*),
At joint F: § Marc = 2p(18 + 45a + 19a% + 2a%),

Merc = 3p(14 + 29a + 12a%> + @),

Merc = 644 + 10a + 6@ + a?).

Mzoe = 2p(30 + 79a + 47a% + 11a® + a*),
4 G: { Micr = — 2p(— 6 —1la + 9a® + 7a® + a*),
Macr = — 2p(36 + 94a + 64a% + 15a® + at).

{ Mac = 2¢{6 + 21a + 14a® + a?),
1:
Mac = — (54 + 119a + 41a® — 3a® — a*).

Putting a = 2¢, we see that these are in agreement with Prof. Fuxupa’s
solutions which are obtained from twenty-five equations. Consider now the
case where all members are of steel (m=4) with square sections, i.e., a=
2.992,6 and p = 0.000,042,670 P.. Then we have:

Moaar = — 0.037,06P! (

Mzae = + 0. 037, 06P! (
At joint A:

M:ar = + 0. 056, 98P/ (

Mg = — 0. 056, 98P/ (

Maucr = — 0.009, 04P! (B)

Y C: { Mzct = + 0.009, 04P1 (T)
Mecr = + 0.028, 96 P (B)
{ Marc =+ 0.074, 12P! (B)

” E:
Mzea = — 0. 362, 87P! (B)
Mara = — 0.043,09P! (B)
Mzrc = + 0.012, 22P! (B)
7 F: 3 Marc = + 0.030,87P/ (T)
M:rc = + 0.028,96P! (T)

Mzrc = -+ 0. 028, 02P! (B)
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Mo = +0.086,18P  (B)
P G: { Mt = — 0.024, 44P1 (B)
Mcr = — 0.111,35P1  (B)
M = + 0.018,09P1  (B)
. { Mzc = — 0.025, 78PI (B)

Ve

Note: (B): Bending moment, (T): Torsional moment.

These coincide with the values shown by Prof. Fukupa except signs. Fig.38
shows the moment diagram.

(reaction)

{a) Bending moment
Fig.38 Moment diagram (multiplier : Pl)
Vertical reactions are calculated as follows :
A = — () (Mazar + Mzra) — (/1) (Mzar + Mzga)
= — (1/[)(— 0.037,06 — 0. 043, 09)P] — (1/1)(— 0. 056,98 — 0. 362, 87)P/ = 0. 5P,

C = (1/I{Mzrc + Maucr) — (I} Mect + Mec)
= (1/1)0. 012, 22 — 0. 009, 04)P! — (1/1)(0. 028,96 — 0. 025, 78)Pl = (.

4) Deflections
Obtaining end-moments
and ¢’s, we readily determine

the deformation of the struc-
ture, which are shown in
Fig. 39. It will be worth while
to mention that this diagram

gives the influence diagram

. .. {Pr/EK)
for the deflection at the joint 0115 Scale of deflection : 9005010
considered if we put P = 1. Fig.39 Deflection diagram
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22. A Square Grid of 3x3 Panels Supported Simply at Corners,
Concentrated Loads on the Inner Joints. Fig.40.™

e
//G/PI/L/M/N
Al E FoP )—'

l l

Fig. 40

By symmetry, the following six unknowns are enough.

( OzA = QzA @, Q=AE = JzAG = ¢y,
Oz = Q26 = @y, QzEH = (2GH = ¢fg,
© ¢
QaE = @26 = @3, (¢=EF = 26K = =H1 = Jamir. = 0).

©zH = QzH = @4,
1) Expressions of End-Moments

At joint A: Moaar = k(20 + @5 + ¢1), Meac = 28k{p1 — @3).
M = k(o) + 205 + ¢1), Maea = 28k{0s — ©1),
Y E:q M:er = ke, Mgu = 2Bk{0s — ©4),
Mapn = k(205 + ¢4+ ¢0), Maer = 0.
. Menc = ki{og + 205 + &), Mue = 28kl0s — ©2),
H{ Mewt = kogy, Menr = 0,  Maue = k(o + 204 -+ &).

(a)

V4

7 F: Me = — koo,

7 I: Mau= — koo
2) Elastic Equations
i) Joint Equilibrium Equations
At joint A, X Mea = Meae + Mzac = Q. }
” E, 2M:e = M:ea + Mzer + Meen = 0,
SIMeE = Mzea + Maer + Meen = 0.

‘, (b}

v H, 2Me = Mewc + Mzue + Meur +Menn = 0.

* Fugupa: II Abschnitt, §3, 2)
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i) Vertical Shear Equations

At joint E, 31Xpe = Xoea — Xypit — Xoer = 0, {
s H, D= Xywo + Xome — Xont — Xyur = P, (©
where,
Xypa = — (LI)(Mear + Mesa), Xyen = — (Y1) Meret + Masie),
Xyor = — (UI)(Mesr + Mers), Xyuo = — (Y1) (Meon + Mes), [
Xyme = — (YI)(Mans + Mag), Xyt = — (/1) (Masst + M), J (@
Xynr = — (YD)(Mani + MavLn).

Here, we have the equations shown in Table 25, which produces the follow -
ing results :

Table 25 Elastic equations

Left-hand side Right-
Eq - ] ————1 hand
¥1 Pe @5 Ps n &2 side
1) | 2o+ ko) ks — 28kt L ke 0
(2) kb 3kb+25kt — 2Bkt kb 0
(3) — 20kt 2(kb+ ) kb 23 0
(4) — 28k b 3b+ 28k kb 0
(5) 3 i 3 -3 -3 2 —2 0
6) 3 3 2 —(Pl/2k»)
Pl i i
121 P P2 = o @3 = B’
(e)
i _ — 5Pl T 5P
= oy AT T
3) End-Moments
Egs. (a) and (e) determine the end-moments;
2Pl Pl 5P 7
=z = k —— —— o e )= )
Meas b( o 2kb>
Pl 2Pl 5P 1
zE _ — b dilll B l
Mexa kb(kb + 2ky 2 ks ) 2P ’



110 S. YosHipa No. 12

Megr = kb(%) = ~1»Pl,

3]

Mz = }eb<g§:;l + ) 5 Pl)

ok 2k/) ()
Mot = k,,% - ;Pl,
Mg = 2,3/@(2% II:) —0,
Mo = 2%(% _ gkfb) -

These coincide again with Prof. Fuxupa’s
solutions which he found from thirteen
equations.

In this case, as Prof. Fuxkupa points out,
all the torsional moments vanish and hence
the girders act as if they were simply

supported at their extreme ends; refer to
Fig. 41. Fig.41 Moment diagram

23. A Square Grid of 3x3 Panels Fixed at the Peviphery,
Concentrated Loads on the Inner Joints. Fig.42.™

This problem is rather simple to analyse

than the preceding, because the independent

unknowns are only two, i.e.,

Ozl = Q2] = QK = @QzL T Q2] 5= Qr] = QaK = QzL = @,
hzal = ¢ec1 = .
Thus we have the end-moment expressions :
Mect = k(o + ¢), Mec = k(20 + &),
Maia = 28ki0, Moy = koo, Meax = 0.

#) Fukupa: II Abschnitt, §4, 2;
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These must satisfy the equilibrium conditions below:
SIMet = Mac + Maa + May + Mag = 0,
SV X1 = Xaic + Xoia — Xy — Xy = P,
which give the following simultaneous equations :

(3ks + 28k -+ kegp =0,

Pl
Bhg -+ 2k + - = 0.

Solution gives

3
2
I
.G)
B
4

RS
I
|

)
g
w
2
4
=
RS
H
&
w
&
+
H\A

where
o = kb/ 4 ﬁkt.

Introducing these in egs.(a), the end-moments are determined :

Pl 4 1 Pl 2 1
Mwci = — — fat , Mac = — — — i )
4 3a+1 4 3a-+1
Pl « Pl 1
Mz = — Mz =
Y2 s r "TY 3t 1

These results agree with those of Prof. Fuxupa which are obtained by
solving seven equations simultaneously. Fig.43 shows the moment diagram.

(a) Bending moment (b) Torsional moment

Fig.43 Moment diagram
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Summary

Some of the features of the foregoing investigations may be summarized
as follows:

(1) To analyse the rigid frames in space, the so-called classical methods
which take the stress functions for unknowns are considered not to be useful
in practice, because they require numerous condition equations. In addition,
we are very often confused in drawing moment diagrams, because those
methods require to pay constant attensions in reading the sign conventions
adopted. To this, the author’s method, depending upon the slope-deflection
theory, requires far smaller number of condition equations, about half of those
of the classical methods, because it takes end deformations for unknowns, and
the moment diagrams are mechanically drawn without confusion.

(2) For the frames without sways, the current two-dimensional analysis
may be applied with good accuracy except the cases in which there exist large
unbalances among the stiffnesses of members; for such exceptional cases we
must treat the frame three-dimensionally.

(3) For the frames with sways, which is the usual case, the conventional
two-dimensional treatment produces results containing large errors; the errors
will appear either on the safe side or on the dangerous side due to the arrange-
ment of members and loading conditions. Hence, these frames must be
analysed three-dimensionally.

(4) The author’s method is successfully applied to the analysis of the grid

works.
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