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Synopsis.  The bending of beams and plates is treated by the extended use of
the reciprocal theorem of Maxwell and Betti, This new method eliminates simultaneous
equations to be encountered in the ordinary method of analysis. In the case of plates,

the use of transposed matrix is especially suited.

1. Introductory Remarks

The reciprocal theorem of Maxwell and Betti is well known to be a pow-
erful weapon in many fields of mechanics. When, for example, applied to

the bending of beams, this theorem states
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mPy + ppPs + o 4 9\ Pu= 9 Py o P4 - P, for Figl d, (1)

and accordingly
7 =7, for Fig. 2. (2)
It follows from this that,

if 9= /f(x, p), then 7= f(o, #), 3

provided that » and p are respectively the same values.
The present use of the theorem is the extension of equation (3) to the
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case of Fig. 3, in which P denotes a concentrated load applied at point p = &,
7: the deflection for the domain 0<p <&k, and 7, the deflection for the
domain «<p<1. If 5, be denoted by f(«, p), then p, is given by inter-
changing r and p, that is by f(p, ).

In virtue of this, simultaneous equations to be encountered in the ordinary
method of analysis are eliminated, and hence time and labour is much reduced.
In the case of plates, the adoption of the matrix form in the course of calcul-
ation is especially suited.

2. Bending of Beams

A few cases of the bending of beams will be given.

The first case is the cantilever as illustrated in Fig. 4. Introducing di-
mensionless quantities p = %/l and « = &/, the deflection equation for the
domain 0< p<s is

¥, M Pl (r 0

e~ EICET0  O<e<a,
ET being flexural rigidity of the beam. Integrating this equation twice
with respect to x, and taking (7,),=0 =0 and (%) 0= 0 into account, we

o=
at once obtain
- 0<o<n) %
n= 6EI O" — (0 14 .

Then the deflection 7, for the alternative domain # < p <1 is given by in-
terchanging the letters » and p; that is

P

7o = @(3@52 — &%) (k< p<1). (5)

]
Equations (4) and (5) are in accordance with those given in ordinary textbooks.
It is to be noticed that in this case no continuity conditions at p = « are necessary.
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The second example is the simple beam (Fig. 5). Deflection equation for
m {0 < g <«x) becomes

dty, M P

Integrating this equation, with the condition (y,),=0 =10 at the left end A of
the beam,

PP
R CEELERICN! (©)

where c¢(x) is a constant depending on the parameter x. Then by the reciprocal

theorem, the deflection 7, (x < p < 1) is written
R g @
N2 = 6EI 0} K Cl\p)E.

The continuity conditions for equations (6) and (7) are

(1) ome = () 0, (%)z - <§§)pzﬁ. ®

The first of these equations is identically satisfied by equations (6) and (7),
while the second gives

El_c_@_c_(rc) = 3x — 247
P b

de

, since c¢(x) in equation (6) is independent of p. The

dC(p)] _delx)
dp Jo=¢" dr
general solution of the differential equation above can easily be found to be

where [

clk) =4 — 2—4x) (1 — g)r,

A being a mere constant. Substituting this solution into equation (7), and .
considering the condition (3),=1 = 0 at the right end B, we obtain 4 = 0.
Hence the wanted deflections »; and 7, become respectively
PP
= 6EI

_
7= 6EI

(1—#) 02— r)r—pp (O<p</{),]
(Fig. 5). )

1= (2~~~ (x<p<1)f
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2
This result is in accordance with that given in ordinary textbooks.

The third example is the beam indicated in Fig. 6. This beam is known
to be a statically indeterminate beam of one degree. The reaction Ra at the
left end A may easily be found by using the ordinary reciprocal theorem,
equation (1), from which we have

Ra ZEP(I — )22+ K).

7 72 ’

Wl
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_._>>§m.

Fig. 6. Fig. 7.

Then the deflection equation becomes

by M Pl .
ol Sl 2EI(1—I€) 2+ e O<p<r).

Integrating this, with the condition (31),-0 =0, we have

Pp

12EIC(1~A)2(2+K) 0° -+ clx) p)) (0<p<r),

=

¢{x) being constant. Then by the reciprocal theorem

PP

A TY-)

S (L= 0%2 + p)&* + c(p)r]) (e <p<1).

The continuity condition at point p = #, equations (8), affords

de (x) ¢ ()
de &

= 66(l — &),

the general solution of which is

clk) = Ax + 3*(2 — x).

The conditions at the right end B are (75),-1 =0 and (Z—g L= 0, which
=
afford A = — 3.

Hence the wanted deflections 7, and 7, become
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p= o (L= K G~ @+ A0 0<p<0), 1
P (Fig. 6). (10
np = 12E1(1 — 0 (Bpr — (24 0)£*) E<p<l) J

2
This result is in accordance with that given in ordinary textbooks.

The fourth example is the beam indicated in Fig.7. By the ordinary re-
cinrocal theorem or otherwise, we have

Ra =P — &)?(1 + 2r), Ma = — Ple(l — )%
The deflection equation then becomes

d?y, _ JK Pl (1= K)2Ce — (14 26)p) 0O< p <),

dx® EI ~ EI
Integrating this, with the condition that the left end A is clamped, we simply
have
pPpB

7= gE—j(l — &) CBrp* = (14 26) 03 (0 <p <k, Fig.7), (11)

so that the deflection of the alternative domain is

P3
7y = GET —— (1 — )2 (Bpr® — (1 + 20) %] k<p<1, Fig. 7). (12)

43

The result obtained is in accordance with that given in ordinary textbooks,
The last example is the two-spanned continuous beam, in which for con-
venience equal span is assumed, as given in Fig, 8. By the ordinary reciprocal

§ P
. Mg Ms
l4 P I .
A B | c3 = B B T C
N 72 & ‘ , 7s ;
: ! | Ry Ro" Re
Ra Ry Re Re
Fig. 8. Fig. 9.

theorem, we first have

P
RA=Z(4—5/c+Ic3), RBzgx(?;—/cg), Rc

I

- —?c(l — k%)
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The deflection equation for 3, becomes

by M Pl s ]

Integrating this, with the condition (3;),~0 =0, we have

pr
— e e 3 3 .
7= 24E1E(4 e+ %)+ el (0<p<k);
and accordingly
P

=— 4 - 3) < 1).
72 spft@ St e teloel  (k<p<l)

The continuity condition at p =« affords

de(s) clr)

dr K =266~ 50),

the general solution of which is

cl{e) = Ar + (12 — 5k) &2

The condition (7),=1= 0 at the intermediate support B gives 4 = — 7. Hence
we obtain .
T - U—s— B ) 0<p<)
n= oiny K £) £p & P o<k,

s (Fig.8). (18)
1= (L= ) C(T=5p)pr — 4= p=p)s]  (<p<1)

Our last step is to find 7. To do this we first have (Fig.9)

& j2
s - 5i(), -~ P,
Ao, P
and R = — EJ( dx?)ﬂ:l =264,

RY being a part of Re, which plays as the reaction as if AB were a single-
spanned beam. Then the remaining part of Rs, say Rg, which is R = Rs
— Rf, is given by

Ri= Rs — Rg = ;::(3 — &%) - 451'5(5 — %) = i—)li(l - /cz)v.

Hence the deflection equation for z; becomes
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Pl

&y _ M Rl
1E1

[ 1— (Mp + Rgx) =

- — g2 —_
a ~ B f1=e) =),

or, on integration with the conditions (ys),=0 =0 and (y3),=1 = 0, we obtain

PP

- 2—4—E“[/C(1 ~ &%) (20 — 30* + 0% (Fig. 8), (14)

s =

o being measured from the intermediate support B to the right.

From the above analyses, it can be seen that the method here presented
is a sort of “the method of initial conditions] provided that statically—inde-
terminate quantities are known. The present method might be applicable to
the analysis of the rahmen and the arch structures.

However, when the system becomes complicated and its order of indeter-
minateness is very high, the above method would necessitate some modifica-
tion, and then recourse would be given by such as the Southwell’s relaxation
method. In fact, simple cases as above may be treated by not assuming stat-
ically-indeterminate reactions and moments, the method of which is similar
to that 'given in the subsquent article. Apart from this line of investigation,
we shall proceed on the bending of plates.

3. Bending of Plates

The first example of the present method applied to plate problems is the
case in which a rectangular plate is subjected to an eccentric concentrated
load, the four sides of which are supposed to be of simple support. Rectangular

coordinates are taken as shown in
Fig. 10, in which both sides are
denoted by ¢ and b, and the con-
centrated load P is applied at point o
A g 7

R

oy
N e L |

The deflection w of plate in D
general satisfies the biharmonic ' ‘_l.
ati ' @
equation y
o 22 Flg. 10.
02 02
V“w:( 9+~—>w:0, (15)
ox®  9y*

in the domain where there are no loads applied. If the plate under considera-
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tion be divided into two parts (I) and (II) by the straight line BC (y =)
parallel to the axis of Ox, the deflection w; for the first part (I) (— 0 <y <p)
takes the form

wi = SICA®E chp+ B(m)oshp+ Cle)sho+ D(x)och o) sinzl;—?, (16)
n=1

in which for brevity
nay nxy
T e I JE———

b >

a a

Alg), Bx), Clr), D(x) being constants depending on the parameter «. Then
by the reciprocal theorem the deflection wy for the second part (II) (y <y < 1b)
is given by interchanging ¢ and « in equation (16); that is
wa = SICA(0) chi + B(o)eshs + C(o) shr + D (o) chJsin ”—;f (17)
ne=l
Equations (16) and (17) satisfy the condition that the sides x =0 and x =4«

are of simple support.

Now since the function (17) must satisfy the biharmonic equation (15),
Alw), -, D) take the form

Alx) a; Ay a3 a4 che

Bw)| _ & b b b £she , (18)
Cx) Ci €y C3 €4 sh

D (x) d dy dy d, tche

where a,, a,, -+, dy are independent of «. In what follows matrix form will
be used exclusively, which greatly facilitates our calculations. Then by sub-
stitution equations (16) and (17) are written in the forms

a G A a4 (che )
o . nax
wi=Y)(chp, pshp, shp, pchgy| 0t b2 Bo bol | wshe |, B )
n=1 € Cy €3 €y sh a

dl do da d4 Echh:

P

( N
a a a; a, chp

be by by} | oshp) g PTE 0
a

o0

Wi = Z} {che, gshe, she, cche]
=1 €, € €3 Cs shp

dl dg d3 d4 \pch pJ

=
o,
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and the latter can be rearranged in the form

(/3 b1 Cy d] Ch K

S s cshr | . #xx
wu = Y J(chp, pshp, shp, pchpl | % by e @ wshr | g 7% (21)
n=1 as b3 C3 d3 Sh K a
a, by ¢, d, cche

The coefficient matrices consisting of a,, @, -+, d; In equations (19) and (21)
are of transposed matrix each other, and it can be stated that the reciprocity
in equations (16) and (17) is the same thing as the transposableness of the
coefficient matrices.

The problem to be solved then reduces to determine the coefficient matrices
£0 as to satisfy the continuity conditions along the straight line BC where
y = pand the supporting conditions along the sides y = =+ g These conditions

will be taken into account successively.

The continuity conditions are the continuity of deflections, slopes and bend-
ing moments of the domains (I) and (II) along the straight line y =, that
is p =, and as to the shearing forces there must be a discontinuity caused
by the point load P, which may be represented in the form of Fourier sine
series. Thus they take in this case the expressions

w w Owr own % 0w
1 = Wi — = — =
dp op’ ap* opt’
. (o =) (22)
By dwu 2Pagi 1 . nmé | nax ’
——— = - —8ln —— 811 —
0p® 0p° 7D 7= nd a

where D is the flexural rigidity of the plate, i.e. D = Eh?/12(1 — ). The first
of equations (22) is identically satisfied in virtue of the forms of equations
(19) and (20). The second to the fourth in equations (22) will be considered.
To do this it will be convenient to refer to the successive derivatives

( 1 chp e, ey e, 84\ cho
d
Tp oshp e +e e e +e e oshp
2 |le e e e = . (23)
EP sh o e+ 2e, e, 03+ 2e, e shp
03
53—3 ochp e 3¢, e, e, + 3¢, e ochp
Leo")

where ¢ represents one of @, b, ¢, d. Then after a little rearrangement the
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continuity conditions (22) afford

a a a; a, a @ @
by by by b, a, b, by by
€ €y C3 C4 N a3+g b3“% cs co | (24)
dy dy dy d, J a—%5 b d
where for brevity
o= ifg- % sin%. (25)

It is noted here that, as to the last of equations (22), reference should bhe
made to the identity ch®x — sh?r = 1.

The remaining conditions are then those along the sides y = 1%. As-
suming these sides to be of simple support, we have

0%,
@)= =0, (53),._,=0 (26)
0%wn
=0, (557),, =0 (27)
where
B nwh
T 2a°

The formers of these equations afford respectively

a b ¢ 4 ch2 a, a a; a, chz

s bg Ca d‘l Ash A = Q. b1 b2 bg b4 A Sh A = 0. (28)
ag bs Cs da —sh 1 Ci €y C3 (€4 sh 7

a, by ¢, d, —2Ach2Z dy d, d; d, Ach

As to the latters of equations (26) and (27), it is preferable, instead of the
forms as they stand, to write

0w
("a—pi - ZUI)p__;—A - O, ('——apz - w”)p:g = 0, (29)

Referring to the derivatives (23), equations (29) afford
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(dh d-_;_, d3, d4) = (bl, b-}_, ba, b4> Cthl,
(a4y b4, Cy d4) = *(Clg, bQ: Co, dz) cth 4

(30)

Thus all the coefficients a,, @, -, dy can be determined by equations (24),
(28) and (30). First, substituting equations (30) into equations (24), we have

(@, a0 a a, o« - %th i a % )
b _z a
v by by by i th 2 0 1 0
= 44 [44 [24 <31)
€, Cy €3 €4 a; + 5 vy C3 1 cth i
\dl d, dy dU \ -% 0 %cth] 0 )

Equations (28), consisting of eight equations, must be satisfied simultaneously
by a set of certain values of a;, a,, -, d,. We see at once that the second,
fourth, sixth and eighth in equations (28) are identically satisfied, while the
remaining four equations, with the substitution of equations (31), afford

@ — ayth i = —if(z— 2tha— Ath?2),
[44

a; —c3thil= —Zx(thx— cth ),
[24

al'*l" agth,?: - ZX(I b thzl),

@+ csth 1= —%(Z—Xthl—i—xcth,l).

The first and the third of these equations afford the values of coefficients
and ¢;, while the second and the fourth afford those of @; and ¢;. Thus we

obtain

i

@ -%(z——thx—uhm),

a3 — — —, (32)

>R

€5 = Z- (2 — cth 2 — 2cth?2).

It is to be noted that in this case the same value of @; has resulted from the dif-

ferent sets of equations, and this would sometimes provide a practical — but
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important — means for checking that the whole system treated is a possible

one on the standpoint of mechanics, and that the preceding calculations are
correct,

The remaining coefficients @,, a,, etc. can at once be determined by sub-
stitituting equations (32) into equations (31). In this way the coefficient matrix
in equation (19) has completely been determined. Hence the deflection w; for
the domain — b < y <3 becomes

w =2 (chp, pshp, shp, pchpl
n=1

— A+4thi-+ Athta, —th 4 —1, 1 chr
% « —th3i, 0, 1, 0 rshe sin ﬁﬂ_ﬁf; (33)
4 1, —1, A—cthi—icth?2 cthil| she a
-1, 0, cth 4, 0 rchx

and accordingly, by transposing the coefficient matrix, the deflection w; for
the domain 5 <y << b becomes

oo

wn = Y j(chp, pshp, shp, pchp]

n=1

— A+ tha+ ath?2a, —tha, 1, —1 ch«
XL—Y —tha, 0, —1, 0 rshe sin@; (34)
4 -1, 1, A—ctha—2acth®a, cthi|| shs a
1, 0, ctha, - 0 schek
where, as before,
2Pa* 1 | unt nzb nwy nwy
=D -% sm—a——, )‘_—27’ £ = '’ P—"a*. (35)

We see that the solution obtained in equations (33) and (34) is in ac-
cordance with that obtained by the ordinary method of analysis, and that
time and labour is much reduced by the present method. Numerical evaluation

of the solution may also be effected efficiently from the above forms of
solution.

As a simple extension of the above solution, we take a two-spanned con-
tinuous plate subjected to a concentrated load P. Reference is again made to
Fig.10, in which the axis of Ox is supposed to be the supporting line, all the
other conditions being assumed to be the same as those of the single-spanned
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plate above. Let concentrated loads Pg(£)dé be distributed along the axis of
Ox, g(€) being a distribution function. The deflection wi in the domain 0 <
y < 3b due to the distributed load is obtained by putting « = 0 in eguation (34),
and by integrating the result from 0 to ¢; that is

, Pa? &y 1¢° . awé
wh = 55524 ﬁgfoq@sm?-d: -(chp, pshp, shp, pchp]l
nrx
% col(— -4 thi+ ath®a —thz —1, 1)sin—;”~—, (36)

where, for saving space, the parentheses col ( ) denote a column vector.

On the other hand, when a concentrated load P is applied at point A (£, 7)
the deflection w: in the domain —3b < y <y is given by equation (33), which
for y =0 takes the value

Pa* &1 | n=é
(un)yso—%nzdﬁsm?[ch % &shek, she, rchel

% col(— A+ tha+ Ath?2, —th2a, —1, 1)sin”—zf. 37)

Since the deflection along the axis of Ox must vanish, we have

(W) y=0 + (w1) y=0 = 0,
from which
(1 —th2— Ath? ).)S (&) sin s
0 a

nré
a

= sin

Cche, sshe, shr, xchelcol(— A+ tha- 2th?a, —tha —1, 1).
To determine the function ¢(§) we put
q(§) = 2] crsin iy

n=1 a

and then

e . & a n
S q(€) sin i3 dé = CnS smzﬁﬁdé . a.
Q a 0 a 2

By substitution ¢, is found to be

2 | nré 1

Cn = —8in S — : ¢
n= - p X—thi—ﬂth‘*’XEChk’ eshr, she, rchx]

xcol (—2+thai+ ath2z —tha —1, 1),
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in virtue of which wi becomes

wiy = 2E ST o h o, sh h o]
i = 55520 (chp, pshp, shp, pchp

n=1

X col(— 24 th A+ Ath? 2, —tha —1, 1)sinﬁ;-ff‘. (38)
Thus the wanted deflection w in the domain 0 < y <y is given by the sum
w = [wi of eq. (38)]1+ [w: of eq. (33)7. (39)

Similar consideration will enable us to obtain deflections for the remaining
domains —3b < y <0 and » < y < 3b. Furthermore, the three-spanned continuous
plate may be treated similarly.

The second example is the case of circular plate subjected to an eccentric
concentrated load, whose outer edge is clamped
or simply supported (Fig.11). The differential
equation for deflection w, instead of equation (15),
is

0% a 9% \*
o= (ot 55 ) 0O
and solutions suitable for the present example
are . §1—>‘1
10 = Ro(r, 0) + Rulr, p) cos § o §
+ ”i; Ry (x, p) cos nd, (40) ket @ g
where Fig. 11.

Ro (i, p) = Ao (k) -+ Bo(x) p* + Co () log p + Dy () p* log p,
Ri(r,p) = Ai(e)p + Bi(s)p* + Cy () p~1 + D, (&) plog p, (41)
Rk, p) = An () ot -+ By () ot Cy (&) o—% 4 D, (&) p—7t+2;

k, p representing the dimensionless quantities

v
K= —, p’—fz.

Let w be denoted by deflection for the domain « < p < 1, and then deflection
w' for the domain 0 < p < & is given by interchanging p and « in equation (40)
in virtue of the reciprocal theorem. Hence
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w' = Ry(p,£) + Ry(p,1) cos 0 + D | Ru(p, ) cos nf. (42)

=2

Comparing equation (40) with equation (42), we must have

Ay () /22 A () a) @' An(x) " a)
BO(’C) bl bz 1 Bl (’E) bl, bzl £ Bn(’f) bl” b:z” “ (
= s = y = s 43)
CO (IC) C1 Co w* C1 (IC) Cll C-_)_’ &2 C;z (IC) Cl” CQ” 12
Dy (x) d, d, k Dy () d," dy Dy (x) d," d,'
where a;, @, -, dy” do not depend on «. It is noted here that terms which

become infinite as p tends to zero are excluded, since there is no hole at the
center of the plate. Thus equations (40) and (42) take the forms

a, a, a, a,
b1 bg 1 bll bzl K
w= {1, ¢ logp, o*log p] +Cp, 0% o1 plogpel cos g
c, Cy || £ ¢ ¢ ||
d, d, d, d,
al” azf/
oo bl” b2l/ /\:”
+ZEP"» prr2, pn, P—n+2] cos 14, (44)
=2 ¢ e | enre
dlll d2//
1 I3
' a; b1 Cy d1 IC2 (Il' bll Cll dl/ If3
w' = (1, %] + o, 0] cos 8
ay by ¢, di|| loge a’ by ¢ d)f g1
x*logx & logw
K1
o a" b ¢ d" g+
+ 30, 0747 cos 1d. (45)

n=2 dg” b2" Cg” dg” Kk
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The continuity conditions along the circle p = ¢ are

= () (29~

(%%(;)Fx o (a::; >p=x = %@ + i cos n&‘)

=1

(46)

in which the right~hand side of the last equation is the expression that the
concentrated load P is written in terms of Fourier cosine series along the cir-
cle. We shall treat the continuity conditions (46), and after that boundary
conditions along the outer edge (o = 1) will be considered.

We now have the successive derivatives

1) 1 (e, e e e 1 0 0 0)

*‘a[lp“ ‘02 0 262 + €y [ 2@4 pz o 1 0
52 {(er e & ¢, = ’

P log o 0 2, +3e, —es 2¢,{| logp p~1 p=2 p—3
93 2 .

%ra Pt loge \O 0 205 2e \ otlogp plogp logp p‘l)
1 1 0 ) ey [ e3 641 ( o 1 J 0
d

op o e;te 3¢ —e e o p? p 1
a2 (e e e es) = ’
507 p! 0 66, 2 el p7!  p2 p73 pd
33

57 (ologo] | O 66 —6e; —ef{plogp logp p7t p7?
1 ( pn

ai pu+2
0
52 |Cer e 5 )

bT‘;E p—“ll
aB
\W ‘()_”’*’2)
[ € €, [ . €4
ne, n + 2)e, — 316y —{(n— 2)e,
n{n — 1)e (n+ 1)(n+ 2)e, nin+ e (n— 1)}n — 2)e,
Ln(n—l)(nw.?)e1 nn+n+2)e —nn+n+2)es —n(n—1)n—2)e,
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pﬂ przul ‘0"‘2 pn——3
pn+2 pn+1 pn pn—l
>< b
p—n p—n—l p—-n—Z p—n-—3
p—n+2 p—n+1 p——ﬂ p—n—-l
where ¢ represents one of @, b, ---,d”, and the products of matrices should be

taken to consist of diagonal elements alone.

Referring to the successive derivatives above, the continuity conditions
(46) afford, with equations (44) and (45), the following:

a, a, a @) (@ @& a' a' a" a)’ ay” a,”"

bl b2 @y —a bz bll bg’ dgl bg’ b1 " b2 l 42// b2 "

c c: 0 ) ! ’:O ar e c”: 0 L. @)

a o' ¢ — = —
. C2 1 G 5 1 2 2 (r-+1)
[24
@ ' ’ — 2 " "
dl d2 0 dl d2 Z O d1 d2 n(n_l) O
Pa?

where for brevity a =

8xD’

Equations (47) are the continuity conditions, apart from the boundary
conditions along the outer edge g = 1. In respective matrices three constants still
remain undetermined, and they will become determinate when the outer
boundary conditions are taken into consideration.

We take the outer edge to be of clamped support, which is expressed by
the equations

(@) p=1 =0, (gi: =0 (48)
Equations (48) give
a +b;=0, 2b; +¢ +di =0;
a’ +b' +c¢ =0, ai' + 3b' —¢i' +di' = 0; (49)

di” + bi’l + Ci” + di,, — 0, nai” + (n + Z)bl.ll_ nCi” — (n . 2)dl/l — O

3

where # = 1, 2, ---. Substituting equations (47) into equations (49), the coefficient
matrices become determinate.

Thus the wanted deflections w (for £ < p < 1) and w’ (for 0 < p < &) become
respectively
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i3 —1
R -4 =31 1
w= a1, o log p, 0*log p) o Lt ale, P o7 plog el
K
1 0 —2
1 1
n—1 #n
[ 1 1 13
— e — K
+ Dalpn, prt?, p=n, pmntzy| B #tl cos nf, (50)
n=2 0 _ 1 g2
n(n-+1)
1
n(n - l) /
1 K
3} —301 & -1 1 0 -2 &
w' = aEL P2] + “[P: P3j cos @
3y —3 10 loge I —3 -3 0 £t
s*logk & log
,c)l
1 1 0 R
- n—1 n nm — 1) || «+2
+ D alpr, 0rt?) cos nd,  (51)
n=2 1 . 1 0 p—n
n n+1 n(n+1)
g nt2

where as before

o Pa? & 7
= K = —, = e,
8xD a p a

The usual forms of expression for equtions (50) and (51) are not so complicated,
and they take the forms
P&

w_SnD

Ll + e)log o + 11+ (1 — 9]

_ b
8zD

4 Pa2 3 n[ ( 1 IC?) LA (1 & ) n4-2
el - B DY o
8nD”:2K n—1 n/ n n-+1 e

(1 — &%) p — 3(2 — &%) p* + 4071 + 2plog plcos §
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— .__._h_ —11 - —71+Z] cos nd < o<1
n(n+l)P +n(n-1)p (e<p )
Pa?
w = ——((* + p%) logr + 3(1 + (1 — )]
8xD
Pa?
- oLl — e — 32 — p®)e® + 3p%—1 4 2r log el cos 8
8D
Pa? & 1 p2> (1 0 )
H — Y — on+2
+8nDn}gzp[ (n—~1 e + n n—i—l'
0
—_—— — a2
n(n+1)x + n(n_l)fc ]cosnﬁ 0< p<k).

We see that the above result is the same as that obtained by the ordinary
5

procedure.

If, instead of equations (48), we take

) 0 [62w+ (16w+16’2uJ) _0
(@) o=1 =0, 20t T\ oo T oo l’:f ’
we then have the case in which the outer edge of the circular plate is simply
supported’ v being Poisson’s ratio of the plate. The rest of this case is here

omitted.

In conclusion, it is added that the present report is confined to the cases
whose solutions are known otherwise. But several additional examples, which
are more complicated and seem their solutions not to have been given owing
to the complexity, have been worked out, and they will appear some other
day.
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