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Synopsis. In discussing lateral vibrations of beams it is always assumed that
the beam vibrates in its plane of symmetry. If it is not the case, the lateral
vibrations will usually be coupled with torsional vibrations.

This paper deals with the natural vibrations of beams in which the shear-center
axis is not collinear with the centroidal axis. Fundamental expressions are derived
from energy considerations which, in turn, are based upon assumed normal elastic
deflection curves in bending and torsion. The Rayleigh-Ritz method is employed to
determine the natural circular frequencies. Frequency equations thus obtained
involve some dimensionless values which depend upon the various physical character-
istics and the end conditions of the beam under consideration.

Introduction. Consider the natural vibrations of the beam as shown in
Fig.1 in which the longitudinal axis G which passes through the mass centers
of the elementary sections is not collinear with the longitudinal axis C about
which the beam tends to twist under the influence of an applied torsional
couple.

This axis C, here we call it a shear-center axis®, may be defined by
the property that it is the only axis along which transverse loads applied to
the beam will produce flexure without torsion.

These two axes just described are not usually collinear in most prismatic
beams having nonsymmetrical sections, as well as in built-up beams whose
structural members are not symmetrically placed.

Fig.1. Type of Beams in which Centroidal Axis is not
Collinear with Shear-Center Axis.
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The normal modes of vibration of such a beam involve simultaneous
displacements in flexure and torsion. Accordingly, the natural frequencies of
vibration in the several normal modes differ from the frequencies computed
for vibration in pure flexure and pure torsion, respectively. W@ ® DG

These modes of vibration are discussed by Timoshenko®, Clyne F.
Garland® and the others®, but it'is assumed that the flexural rigidity of the
beam, say, in the x-y plane is very much greater than that in the y-z
plane. Thus, the ¥ component of the motion is neglected and the total
motion is considered to be composed of the z and ¢ components. This
assumption may be reasonable when the beams are much stiffer in one plane than
in the other. But in general types of beam as used in rigid frames, bridge trusses
etc., it is considered that the above assumption may not always be reasonable.

In the following discussion, the writer deals with beams which may he
deflected in arbitrary directions.

The author is heartily grateful to professor Kinzi Shinohara of the Kyushu
University for his invaluable advices and encouragements in the course of this
work.

(1) The Expressions for Energies

In the free vibrations of a beam of the type shown in Fig.1, the dis-
placement of any section is considered to be the resultant of the following
three components.

Z == (al Yl -+ @, Y3 -+ s Y3 S AR ) sin j)?lt,
0=(0 Y, + 0. Yy oz ¥/ veeee Y SIN Put, b o Q)
=0 Y+ b Yo" by Yy eeeee D sin put,
where z denotes the vertical component of displacement at any section; ¢
denotes the angular displacement at any section; x denotes the horizontal

component of displacement at any section; Y, Yy - , Y, Y s , Y7,
Y7, e are functions of y which satisfy the end conditions for any particular
beam; and @, a, @, - , QL Pa Py by by, by, are the ampli-

tudes of the respective functions Y.

As the energies of vibration we take potential energy and kinetic energy
relating to bending and twisting of the beam, neglecting the effects of axial
tension, compression or shear.

Then the potential energy of the beam may be expressed as the sum of
the energies stored in the beam due to the displacements z, 0, x, respectively,

or
V- 1Kx5 (02z>d +1CS (oﬁ)d %lej (ay>9dy ..................... @)

where V is the total potential energy stored in the beam, K. being the
flexural rigidity about x axis, K, being the flexural rigidity about z axis, C
being the torsional rigidity and / being the length of the beam.

Substituting expressions (1) into expression (2), the potential energy is
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written as

v =% {Kx S aQi+CY ot R+ K. 3 bﬂS,} SIN® puf, wreeeeeeeeenines (2a)

where @, R, and S: denote the integrals S:)(édz}gi)zdy, S;(%)dy and
1/d2Y;7\? ) .

So(W) dy respectively.

Or still more briefly

174 :—_-% ‘@ Sin2pnt, ..................................................................... (Zb)

where § denotes the quantity within the brace in equation (2a).

The kinetic energy of the element is expressed as the sum of the kinetic
energy due to the translation of the mass center and that due to the rotation
avout the mass center.

Thus, integrating over the length of the beam, the expression for the total
kinetic energy becomes

1.0 1, (L, 1 .0
T =4 Ajozgdy+§p[(;sog "dy+1p Agoxza Ay, evereere e, )

where T is the total kinetic energy at the displacement z, ¢ and x, p being
the mass density of the material of which the beam is made, A being the
cross-sectional area of the beam, ¢ and #%s being z component and x com-
ponent of the velocity of the mass center, g being the instantaneous angular
velocity of rotation of the section and I; being the polar moment of in-
ertia of the section with respect to the gravity axis.

For small values of ¢

Z(;=‘Z+€x0, \l

..................................................................... 4)
xe=x-+el, J-

Hence, by differentiating equation (4) with respect to time
Zg=2 +ex0',
o=tbed | .
i =X-+e:l.

Substituting values of equation (5) into equation (3) the expression for the
kinetic energy becomes

._..1 ! 52 1.9, 5010202 QI l,'z
T _EPA[SOQ 205201 €267)dy-+ ASO" dy

+S(l)<;'(2+2ezjg G-+e2d 2)@} ................................................... (3a)
From equation (1), by differentiation
= (@)Y +ayYs FagYy Aeeeeeneeee ) pnCOS. Put,
f= (0. Y{ 0Ty u V! Areeereeesnns Y PuCOS Put, b e, (1a)
F= (Y b Yo b Y7 Aeeeeinnnne ) pncos pit. f

Substituting these values into equation (3a)
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T =%p A{[Z a:U; —2Zaiar Ui J +2eZaioirUir

+Ceireit I U 12t |

+[~’\:b12‘Uz" +2Xbi b Usrie ]—FZez Xo:ibrUir e }p;z 2COS P, ereereeenes (3b)
where Ui, Ui, U, ooeveeenee denote the integrals SOlYf dy, SéY}zdy,
Sé Y 2dy, e respectively and Ui, Ui, Uirgr, —ovovvne denote the
integrals SIOYiY/edy, S;Yz' Yidy, S:)Yf Yidy, ooeoer respectively.
Or, more briefly

T = % QP2 COS it -+rvererseemessee s, (3¢)

where a denotes pA times the quantity within the brace in equation (3b).

Here we apply the Rayleigh-Ritz method to evaluate the natural frequen-
cies of vibration. Equating the maximum values of the potential and kinetic
energies, as obtained from equations (2b) and (3c¢), respectively, and solving
for the frequency

Therefore, the values of p.* obtained from equation (6) depend upon the
assumed elastic curves of the beam in motion. If the assumed elastic curve
is not the exact one, the lowest computed value of natural frequency will be
higher than the true fundamental frequency of the beam. Or, to state it a
little differently, if several elastic curves are assumed in succession, the one
yielding the lowest value of frequency is nearest correct.

In order to obtain the closest approximation possible, the coefficients
@y, @sy -, 01, ®s, -and by, by, ---must be so chosen that the fundamental frequency
computed from equation (6) be a minimum. This value of p% may be found
by equating to zero the partial derivative of f/a with respect to each of the
coefficients a,, @, -~ , Q1 g, e and by, b,, ---respectively. Thus the
following simultaneous equations will be obtained.

ﬁﬂ 2 O _«0, A

da, P Ga T
B poa g
oa, ¥ 5a ’ ‘
3B 2 fa |
S i =0,
0, Dn 9o, L ................................................... (7)
ap 2 da |
= — Pn [3— = 0, I
op b 0y j
................................. |
% _gon o
|
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These equations are seen to he homogeneous and linear in the coefficients
@y, g, O, @y, et and by, by, - , and are equal in number to the
number of coefficients. By setting the determinant of these equations equal
to zero, eliminating the coefficients, and expanding, the frequency equation
may be obtained. The frequency equation yields the values of the natural
frequencies in the several normal modes.

(2) The Frequency Equation for Three Normal Modes,

In applying the same methed as used in this analysis to the determi-

nation of the natural frequencies of a vibrating string, Timoshenﬁ()) shows
us that when only one term is used to express the assumed elastic curve,
the computed value for the fundamental frequency differs from the exact
value by 0.66 per cent. In another example ----- the case of a vibrating wedge
of constantlwidth, with the thick end built in and the other end free -----

Timoshenké)also demonstrates that the error in the computed value of the
fundamental frequency is about 3 per cent when only one term is used to
express the elastic curve. Therefore it is seen that the method gives very
satisfactory results, even when only one term is used. Moreover, it should
be recognized that when a larger number of terms is used, the extra labour
of computation may not be worth the increased accuracy which will be
gained. Thus we express the instantaneous displacement of the beam by the
components

z=a,Y, sin put,
0=¢, Y’ sin pat, ; .............................................................. (1b)
|

x=bY," sin put. /
From equation (2b)
B= K, 2Q, A+ Co2R A= KD BS,  woovereeeereemsm e (8)
and from equation (3¢)

a=pA[ 02U, + 2estp0 Uy + <ex2+e22+§4@-> RN

‘}‘blel”+zeZ§01b1Ul'1”:! ...................................................... )

Taking partial derivatives with respect to a,, ¢, and b,, respectively, and
denoting

U Uy U e Uy
7]‘—(]17 7 (]1 3’ - []1 ’ é"’“ Ul » (10)

the following expressions are obtained.

0 d 0 a
-a—ﬁ—l:'ZKxQ]ax, —a%—”‘—‘ZCRM, £::2K281b1, 5%’:2!714[]1[01’*‘31‘7’(/)1],
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gcl":“'z,OAU! [ex741+ez5b,+ <€x2+622+£g“)77§011,
@1 A

da & !

wr=2p AU, (eée,+¢b .

(lbl

Substituting these terms into equation (7) and rearranging into determi-
nant form

% ZEKle—pAU‘pnz] ay "“szUieprnz({)l 0

J —
# ~20AU ey pr*a, 2[CR,—pAU, (es*+ez* + 4 )pn 20, —2pAUe£pnb, ,—_,(01’1)

| 0 —20AU, e i, 2 K.S1—p AU ¢ pu®Iby

Dividing the first column by 2pAU,a;, the second column by 2pAU,¢, and
the third column by 2pAU,b,, the determinant is reduced to the form

KQ,

2 R 2
oAU, P ox ex) pn . 0 . -
= L a2 i 2 2 B a
8:c7’j)n ‘014(]1 (ez +ez° -+ Y] )77pz Kefﬁ 1
— 2 ¥4 L‘__ ¥y 2
0 ezEPn pAU1 @D i

Now the quantity [fz%] expresses the natural frequency of flexural
1

vibration for a uniform beam. This quantity is therefore the natural frequen-
cy of the beam under consideration for the particular case in which ex and
¢ are zeros. Then the natural frequency for this particular case may be
denoted by p, and the relationship

KaQu
= A, (22)

may be substituted into equation (1la) and each term in the determinant
divided by p,2.

After this operation is performed and the determinant is expanded,
simplified and rearranged, the following cubic equation is obtained.

(e + exter — (extret 1) g )(2) 4 [ SR g KoS1 e 20

b/ T LEQ, Q1
\ 2
et i) (i) JGo )~ (e o
+ <2x2+822+IG> [[gigll ] (p;:) +€§2§j§21 == (L e {13)

Furthermore we introduce the following additional dimensionless quanti-
ties

P CR,A s fz_ff_l . efA . K5,
KxQJG?? I’ = I ¢ K:Q,

After all the frequency equation is

....................................... (14)
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[1+sx (1~~) +ez( <'/57;>] (1)’0‘ ) [1+1+I€+Sx <1+,;J§,;>

+8z<1+ﬁ~‘£/7—7)]<%(i—) [(1—’;—@7 + (1+Ez+€z>h}<p” >~ =, e (15)
and its three roots will be readily obtained as follows.
Let Al—_—[ —i—ﬂ(l-»—«)—}-&(l——-%)]

Ay — [ Lok bwbes (10— 7;] £) e (1+m-%)],

:[ (1*{'/\?) Z*}“ (1“["5:('}'52)16 ,

Aq, == "“/ZIC
§:4~2< A2 ”*'SA A3>
q 54A 3<2A2 ""9A A9A3+27A12A4>

Case (i): when ¢* +p° > 0.

2 2 2
21—==u+v 3‘22 §~2—~ Uw; -+ Vw, ——é%fi, %%:: Uwy+vw; —
0

where um:’,‘/,_qﬁ;_«/m 1’:%/—'(1“‘«/912—}-1)3.

Case (ii) : when g*+ p%=0.

A
347

- 3, A 2 EY
%szyw 34, §=~‘ == =g

Case (iii) : when ¢*+p* <0,

De o s eos(®Y — A2
b2 ~f’c‘)s<3> 34,

N s “_4.2;? _ A
Dot 2,\/~[)C0S<3 3) 3A
[)3 . 475 A,
b 2./ "% = COS( 5 ) 34

where cos u=751;?, when 0<u<n.

(3) The Frequency Equations for Special Cases

(i) When the beam has one plane of symmetry.

For instance, when the cross section of the beam is symmetrical about
x-axis (Fig.2), put e.=0 in equation (15). Then the frequency equation is

[1 +5x<1’“1;;)]<5§>3—~[1 A+ At et -ba— 7;7_2/:)]<%§>2

_;-[(1 )+ (1+5x),;]<§_;(:z),,,z,c=0. ....................................... (16)
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(ii) In case (i), when K; is very much greater than K.
Dividing equation (16) by « and putting s==co

[1+ex(1——_)}<p” >L (1424ex )(1’" ) B P P an

()
This equation is the same one as has been obtained by Garland
(iii) When the shear-center axis is collinear with the centroidal axis (Fig. 3).
Putting ex=e=0 in equation (15)

(%) ~<1+sz-,;,><1;z;>“4-[<1+,;)z+/.:]<§_’;> Sy Y, (OO (18)

Fig. 2. Fig. 3.

U

(4) Discussions about the Frequencies

It is noted that the three roots of equation (18) are 1.0, 1 and & respectively,
or

1 1 1

pto= (5008 b= (TR pempr—(JE5 )

This is explained by the fact that in the actual beam, if the shear—
center axis is collinear with the centroidal axis, two of the normal modes of
vibration are those of pure flexure, and the other one is that of pure torsion.
Thus, it will be inferred that the frequencies of a beam in which the effects of
eccentricity are not neglected differ from those in pure flexure or in pure
torsion. That is to say, the natural frequencies of beams in which the shear-
center axis is not collinear with the centroidal axis depend upon the distance
of these two axes, This will be shown in a numerical example as follows.
Omitting the process of calculations, only the results are presented graphy-
cally in Fig, 4.

() Summary

The natural frequencies of the beam in which the shear-center axis is
not collinear with the centroidal axis are shown to differ from those in pure
flexural or pure torsional vibrations, and the normal mode of vibration of
this beam consists of simultaneous vibrations in flexure and torsion. Thus,
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it is seen that computations of the natural frequencies of such a beam, in
which the effects of the eccentricity are neglected, are apt to lead eroneous
results,

When the type of beam, end conditions and load distribution are known,
the values of natural frequency of the beam can be obtained from the fre-
quency equation (15). Higher degree of accuracy will be attained by using a
sufficient number of terms in the expressions (1), but, as mentioned pre-
viously, for most practical problems satisfactory values of frequency may be
obtained by using only one or two terms. The absolute amplitudes are of
course arbitrary since they depend upon the initial displacement of the beam,
but the amplitude ratios will be found by substituting the values of natural
frequency obtained from the frequency equation into equation (11).
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