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   Synopsis. In discussing lateral vibrations of beams it is always assumed that

 the beam vibrates in its plane of symmetry. If it is not the case, the lateral
 vibrations will usually be coupled with torsional vibrations.

    This paper deals with the natural vibrations of beams in which the shear-center

 axis is not collinear with the centroidal axis. Fundamental expressions are derived

 frem energy consideratiens which, in turn, are based upon assumed normal elastic
 deflection curves in bending and torsion. The Rayleigh-Ritz method is employed to

 determine the natural circular frequencies. Frequency equations thus obtained
 involve some dimensionless values which depend upon the various physical character.

 istics and the end conditions of the beam under consideration.

   Imtroduction. Consider the natural vibrations of the beam as showR in
Fig. 1 in which the longitudinal axis G whlch passes through the mass centers

of the elementary sections is not collinear with the longitudinal axis C about

which the beam tends to twist under the influence of an applied torsional
couple.

   This axis C, here we call it a shear-center axis(6', may be defined by
the property that it is the oBly axis along which transverse loads applied to

the beain wlll produce flexure without torsion.

   These two axes just described are not usually collinear in most prismatic

beams having nonsymmetrical sections, as well as in built-up beams whose
structurai members are not symmetrically placed.
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   The normal modes of vibration of such a beam involve simultaneous
displacements iR flexure and torsion. Accordingly, the natural frequencies of

vibration in the several normal modes differ from the frequencies computed
for vibration in pure flexure and pure torsion, respectively. (i)(2)(3)(4)(5)

   These modes of vibratien are discussed by Timoshenko(i), Clyne F.
Garlancl(7) and the others(8), but it'is assumed that the flexural rigidity of the

beam, say, in the x-y plane is very much greater than that in the y-2
plane. Thus, the x component of the motion is neglected and the total
motion is considered to be composed of the z and 0 components. This
assumption may be reasonable when the beams'are much stiffer in one plane than

in the other. But in general types of beam as used in rigid frames, bridge trusses

etc., it is considered that the above assumption may not always be reasonable.

   In the following discussion, the writer deals with beams which may be
deflected in arbitrary direct'ions.

   The author is heartily grateful to professor Kinzi Shinohara of the Kyushu

University 'for his invaluable advices and encouragements in the coHrse of this

work.

                 (1) Tke Expressions for Energies

    In the free vibrations o'f a beam of the type shown in Fig.1, the dis-
placement of any section is considered to be the resultant of the following

three components.

            2 =:- i･- (at Yi -i- a2 Y,, -F a3 Y3 + ･･･+･････) Sin Pnt, )

            0==" (9Pi Yi' "F 9L, Y2' ti- S03 Yh "'l- '''''') Sin Pnt, t ''"'""-･-"'''''`'''････････(1)

            Jv =:-, (bi Yi `' + bL･ Yl., `' -i- b3 IKi `'+ ･･+･t･) sin Pnt, 1

where z denotes the vertical component of displacement at any section; 0
denotes the angular displacement at any section; x denotes the horizontal
component of displacement at any section; Yi, Y2,･････-, Y'i, Y'2,･･h･･･, YK,

YM2, ･････- are functions of y which satisfy the end conditions for any particular

beam; and ab a2, a3,･+････, gb g2, g3,･･+･･･, bi, b,o, b3,･･････ are the ampli-

tudes of the respective functions Yot.

   As the energies of vibration we take potential energy anct kinetic energy

relating to bending and twisting of the beam, fleglecting the effects of axial

tension, compression or shear.

   Then the potential eneirgy of the beam may be expressed as the sum of
the energies stored in the beam due te the displacements z, 0, x, respectively,

or

            v==r}K,S3(Z･l]i;4;,)2dy-FicSg(Z!,2)2dy+±K.Si,(3-tr,le.)2dy, ･･･････････4･･････..,(2)

where V is the total potential energy stored in the beam, Klt being the
flexural rigidity about x axis, K2 being the flexural rigidity about z axis, C

being the torsional rigidity and l being the length of the beam.

   Substituting expressions (1) into expression (2), the potential energy is
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wrltten as
                                           tt                               '                              ./             V==;{K2S'ai2Qi-f--CXgi2Ri+KliXbi2S}'}si42Pnt, ･････t･････t･t･t･t(2a)

where Qi, Rt and si denote the integra16 S8(-･4-d2-t-Y-2--l-)2dy, Sg(ddYyt')dy and

S:(4Zt,'")2dy respectively.

Or still more briefly

             V :.-5- fi sin2pnt, ･･--･･･････-･･･････････････････････-+-･･･`･･････-･･････-････-････････(2b)

where B denotes the quantity within the brace in equation (2a).

   The kinetic energy of the e}ement is expressed as the sum of the kinetic
energy due to the translation of the mass center and that due to the rotation
a'oout the mass center.
Thus, integrating over the length of the beam, the expression for the total

kinetic energy becomes

             T == s-,As62zd,+s-,i.sgo2d,-i-s-, Asgdrkd,, ･･･････････-･･･････-･････････.(3)

where T is the total kinetic energy at the displacement 2, 0 and x, p being

the mass density of the material of which the beam is 'made, A being the
   'cross-sectional area of the beam, 2G and drG being z component and x com-

ponent of the velocity of the mass center, 0 being the iRstantaneous angular

velocity of rotation of the section and fa being the polar moment of in-
ertia of the section with respect to the gravity axis.

    For small values of 0

             za=:z+exO, 1
             xG :t+e.o. f ''"''''''"''''''"'`''''''''''''''''''''''''''''''''''''''''"'''-"(4)

Hence, by differentiaging equation (4) with respect to time

             2a=:-,2+exO, l
             rka===fu+e20. f ''''''''''''''''"''''""'-"'''''''''''''-'''''''''''-''''-''`(5)

    Substituting values of equation (5) into equation (3) the expression for the

kinetic energy becomes

         T =:r5p A[Sg(22+2e.lro'+ ezo2)dy + :-l}-Sgo2dy

               sg 'g'             + (dr2+2ezk0+ee2)dy]. ･････-････t･-････-･･･････････････ny･････････････････(3a)

                                          t/      From equation (1), by differentiation '

      2=r (aiYi +a2Yh +a3Y3 +･･･-････････) P}2cosPnt, 1

      ll･-M-H-[liiyYiiF-,i-,SO,2.T..2i.",9,3.Y,3,"..'-,11:11111'.?)Pp',C,O.S,Pp';,l:ig'''''''''''''"''''''''''''(ia)

                                          tt                                                   t/ tSubstituting these values into equation (3a)



         T ==lyA.{[ke'" af･Ui --22!]aiak Utk] +2exlEiaigkUjfet

            +[(ek+e2'+I-A"-)(Eg;UiJ +2Xgic kUi'k')]

            ri'["t"Jb?'Ui' +22'bi bh Ut'k' ]tl-2eg -SsoibhUi'k" Pn 2cos2Pn t, ''''`''''''''''(3b)                                             l

where Ui, Uit, Uint,･･･-･･･････-denote the integrals SoiYl dy, SgYI･2dy,

SgY;･ady, ･････････ respectively and Uik, Uih,, Ui,kv, ･･････････-･･･ denote the

integrals Si,YiYfedN, SgYiY' kdy, IgYl'YZdy,･････････respectively.

Or, more briefly
             T==rScrP,7 cos`nd'Pn t, ''''''･+･････････････-･････-･･･Ji･･･････････････i･･････････････(3c)

where cv denotes pA times the quantity within the brace in equation (3b).

    Here we apply the Rayieigh-Ritz method to evaiuate the natural frequen-

cies of vibration. Equating the maximum values of the potential and kinetic

energies, as obtained from equations (2b) and {3c), respectively, and solving

for the frequency
              p;', ===E. ･･･+････+･･･････+･････････････････････-････････････-･･････････.･.-.･･+･･..<6)

                 cY
    Therefore, the values of Pn2 obtained from equation (6) depend upon the

assumed elastic curves of the beam iB motion. If the assumed elastic curve
is no`t the exact one, the lowest computed value of natural frequency wM be

higher than the true fundamental frequency of the beam. Or, to state it a
little differently, if several elastic curves are assumed in succession, the one

yielding the lowest value of frequency is nearest correct.

    In order to obtain the closest approximation possible, the coefficients
ai, a2, ･･･,gi, g2, '''and bi, b2, ･･･must be so chosen that the fundamental frequency

computed from equatioB <6) be a minimum. This value of Pg, rnay be £ound
by equating to zero the partial derivative of Blcu with respect to each of the

coefficients ai, a2,･････････, gi, g2, ･･･････i･and bi, b2,･･･respectively. Thus the

following simttItaneous equations will be obtained.

            Z'Pi-r-pgi 3'i",' :== o･ "i/

                                  il
            ao-P.･ell -p?i Z//E --=- o･ 111

                                  !
            ----------------------l-----t---- l
                                  I
                   z act .-ny            oB            b'ip'; '-- P'! b,wwl ww O･ Y･････････-･i..･･･......･･･.......･････....･･......(7)

            tbe's,-p?tZ-g:,t==e･ i

                                  I
            --t-------------l-l-------l-i-+-- i
                                  l
            3--S-;--p?e ibO:,'i -･ o･ l



No.7 ANote on the Coupled Free Bending and Torsional 25
                           Vibrations of Beams

             g--p,--s･ - p:･, t-6,ny, ., o,

             ･---･--'･-:H'"'"'""' j

   Tliese equations are seen to be homogeneous and linear in the coefficients

ai, a2,･･-'･･ gi, g2, -･･･-･ and bi, b2, ･･････, and are equal in number to the

number of coefficients. By setting the determinant of these equations equal

to zero, eliminating the coefficients, and expanding, the frequency equation

may be obtained. The frequency equation yields the values of the naeural
frequencles in the several normal modes.

      (2) The Freq"ency Equatioll for Three Normal wrodes.

    In applying the same methed as used in £his ana}ysis to the determi-
                                                             (1)
nation o'f the natural frequencies of a vibrating string, Timoshenl<o shows

us that when only one term is used to express the assumed elastic curve,
the computed value for the fundamental frequency differs from the exact
vaiue by e. 66 per cent. In another example ･･････ ehe case of a vibrating wedge

'of constant width, with the thick end built in and the other end free ･･････
          (1)
Timoshenl<o also demonstrates that the error in the computed value of the

fundameneal frequency is about 3 per cent when only one term is used to
express the elastic curve. Therefore i# is seen that the method glves very
satisfactory results, even when only one term is used. Moreover, it should
be recognized that when a larger number of germs is used, the extra labour

of computation may not be worth the increased accuracy which uxill be
gained. Thus we express the instantaneous displacement of the beam by the

components
            z = al Yl sin Pnt, )

             e= giYi' sin Pnt, ll･ ･･････････････････････････････････････-････････-･･････t････････(lb)

                            !/
            x=bi Yi" sin Pnt. fl'

     From equation (2b)

            P:=:.ILva,2Qi--yCgi2.Riff-･Klebi2Si, ･･････+･･････････････-･････････････+･････+･+････(s)

and from equation (3c)

            a==pA[di2Ui+2escaigiUll,+ (ex2+e22+LAG-) gi2Uir

                --P bi2Ui" -l- 2eznbi Ui ,i tt] ･･････････････････････････････････････････････････+･i･(9)

Taking partial derivatives with respect to ai, gi and bi, respectively, and

denoting

            rp-={;i'L', r== <ZliS ¢-C.(--i-f, g=: l.Z- l'i", ･･･････････+･･･････-････････････････(iO)

the following expressions are obtained.

    21SI===2K}tQiai, bOpaP-, !2CRigi, tsBb･E-2KhSibi, g-l-l=:2pAU,(a,+exrg,),



    oO-S-,pt-2pAUi Cexrai+ezg"bi+ (e.2-Fe.2+k--g--)mp,),

    Go-t6I ::,2RAUi (ezk"{ i-l-ipbi).

    Substituting these terms into equation (7) and rearranging into determi-

nant £orm

i2(KIQi-pAUiPn2) ai -2pAUiexrP"2gi O
/

l. ---2pAUiexrPn2ai 2(CI?i-pAUi(ex2+ea2+-Il-G･-)pn2n)gi -2pAUieaepn2bi ii.1.(Oit)

i O -2pAUieaePn2gi 2(KleSi-pAUidiPn2)bi
Dividing the first column by 2pAUiai, the second column by 2pAUigi and
the third colurnn by 2pAUibi, the determinant is reduced to the form

 tt'fiLQu'i'Iptpn2 pmexrpn2 o l
           pCARtii,'--"(ex2+e22+f')vp.2 -e.gp.2 ,""'O･''''''''''''''''''''''''(11a)
 ---exrPn2

   o -e.cp.2 ,",KletSl -{bp.2 1

                           !
    Now the quantity [pKA]tgeu--i-]2 expresses the natural frequency of flexural

vibration for a uniform beam. This quantity is therefore the natural frequen-

cy of the beam under consideration for the particular case in which ex and
ea are zeros. Then the natural frequency for this particular case may be
denoted by Pe and the relationship

                e K}vQi
               PO-:="iA'UI 'M''''`'''''''''''''-''''''+･･････-･･･i･･････-･････-･････････+････(12)

may be substituted into equation (11a) and each term in the determin.ant
divided by P,2.

    After this operation is performed and the determinant is expanded,
simplified and rearranged, the following cubic equation is obtained.

[ex2r2¢ + ez2s2 - (ex2-l-e22+ I.･4-g) rpip](/tti)3+CE- l-RQ-il ¢- fl}3-41 ex2r2-ez2'g2

+(,x2+ea2+t-.e-)(¢+k'Sdi,)ny](Sitti)2-(£tt'i'iip+t('K't'"i'Q"'le'i'sS'-S'

+ (ex2+ez2+ig) filSd-io ](/t'i) +gt-･{t519s - o･ ･････････････････････-･･･････････････････････(i3)

    Furthermore we introduce the following additional dimensionless quantl-

ties

    2=E- -RQ--t'iil!;-?, Ex==t fat2A, ex =:: tt:-.A, rc =l} JiEioSl. ･-･'''･''･'''''''''''''''''''''''''''''(i4)

    After all the frequency equation is
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   [1+ex (1--- li'1) +Ea (1-- S- -,27)] (2p{,'-,2-)3-- C1+1-{-rc --Ex (1+ic-Z;Pl ,c )

     +e,(i+rc-ii-2ii)](tt)2 + (a+rc)R --}- (i -i-s.+e.)rc](Pp-'g,2)- irc = o, ･･･+･･････-"s)

and its three roots will be readily obtained as follows.

Let Ai :=[1+ex(1-/2)+e2(1-Sl7i)], . ..

            A2F:- (1+R+rc -rex (1+t;-r-rp2 rc)+ez (1+rc--t/i )] ,

            A3 =='[(1+rc)ZkF (l-FEx+Ez)rc 1',

            A, ==-, -Zrc,

            P ="gALs(- A22+3AiA3),

                 1                    (2A,3---9A,A,A,+27A,2A,).            q ==               54A,3

Case (i): when q2 +p3>O.

            ;tet==u+v----3AA21, 2p-:i==ua1+vto2--glAIk, Sg/lg==uto2+ve)1---3AA21,

            where u=ntY=q' +Vq2+p3, V=er-q-Vq2+fi}ii,.

Case (ii) : when q2+p3 ==O.

                                           '            Silill22=:' 2 iil/ ii':"e - gA'ln2,, iili;'--'illi;2E=:-ii}/:rmLq-･

Case (ii2) : when q2+p3 < e.

            9i;:I==,2.,/tt'-cos(gU--)--3AA],,

            .Ppeg:-:=22./:-b"cos(-3"-+2-3Z)-gA-A2,,

            $:i--- 2,.･t' - p cos (l; -i- -{l'k) - 3AA2, ･

where cos u=t-q:--=,..:w. , when O<u<T.

            pv-                p

           (3) The Frequeney Equations for Special Cases

(i) When the beam has one plane of symmetry.

   For instance, when the cross section of the beam is symmetrical about
x-axis (Fig.2), put ez:=tO in equation (15). Then tlte frequency equation is

            [1+ex(1'--79)]tt,,2)3---Cl+1+rc+e.a+rcndr-q2,`)](t2;,fi)2

            --i-C(1+rc)2--(1-I-ex)tg](ge,;)-2rc ntO. ･････････････-･･･････-･･･････-･････････(16)



(ii) In case (i), when K2 is very much greater than Kte.
   Dividing equation (16) by rc and putting ti----･co

            [1-l-ex(1-7-,'72 ))t31)L'-a+R-l-ex) (Pp-',-'i) +Jl==-,e. ･･････････+･-･･･････-･･････(17)

                                                      (7)
This equation is the same one as has been obtained by Garland.

(iii) When the shear-center axis is collinear with the ceRtroidal axis (Fig.3).

     Putting ex==,c-xt=tO in equation (15)

            (;.{/1"i.)3-(1+ft--i-rc)(lp)',t.]-)2' -{-C(1+rc)R-i-fi;](SLIg) -2-J ==:O. ･･''''"''''''''''J(18)

           Fig. 2. Fig. 3.

                                                oG

G

          2
                                                2'

               (4) Diseasssgoms about tke Fyequencies

   It is noted that the three roots of equation (18) are 1.0, 2 and rc respectively,

  or
   pitt-pG==:(ge.t--i-,);',p2----po2i"==:(b-,C-.--Rib-,)l',p,-ntp,rce'-(p{-li-¢-Sti,)'S-･

   This is explained by the fact that in the actual beam, if the shear-
center axis is collinear with the centroidal axis, two of the normal modes of

vibration are those of pure flexure, and the other one is that of pure torsion.

Thus, it will'.be inferred that the frequeBcies of a beam in which the effects of

eccengricity are not neglected differ from those in pure flexure or in pure

torsioR. That is to say, the natural frequencies of beams in which the shear-

center axis is not collinear with the centroidal axis depend upon the distance

of these two axe$. This will be shown in a numerical example as fo}lows.
Omitting the process of calculations, only the results are presented graphy-

cally in Fig, 4.

                           (5) Smammary

   The natural frequencies of the beam in which the shear-center axis is
not collinear with the centroidal axis are shown to differ from those in pure

flexural or pure torsional vibrations, and the normal mode of vibration of
this beam consists of simuleaneous vibrations in flexure and torsion. Thus,
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it is seen that computations oE £he natural frequencies of such a beam, in
which the effects of the eccengricity are neglected, are apt to lead eroneous

results.

    When the type of beam, end conditions and load distribution are known,

the values of natural frequency of the beam can be obtained from the fre-

quency equation (15). Kigher degree of accuracy will be attained by using a
sufficient number of terms in the expressions (1>, but, as mentioned pre-

viously, for most practical problems satisfactory values of frequency may be

obtained by using only one or two terms. The absolute amplitudes are of
course arbitrary since they depend ttpen the initial displacement of the beam,

but the amplitttde ratios will be found by bubstituting the values of natural

frequency obtained from the freqttency equation into equation (11).
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