Synopsis. This paper gives the solution of the generalized Boussinesg’s
problem for elastic foundation, in which any distribution of two kinds of
shearing forces as well as of normal pressure is given on the bounding
surface of the semi-infinite elastic soild. The procedure of solving the
problem is due to my proposed one. The solution
integral representation. Several examples at once follow from the present

solution, and their evaluation was relied on the method of numerical inte-
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gration proposed by me.

ART.

Since the time of Boussinesq, the theoretical basis for the problem of the

safety of elastic foundation has been discussed and developed by various
2y

investigators, of which the works due to Prof.
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§ 1. INTRODUCTORY

#) Professor of Civil Engineering, Faculty of Engineering, Shinshu University,

Nagano, Japan.

consists of double Fourier

9

Terazawa and Love will
especially be noteworthy. The former discussed it in detail when the loaded
area is of circular form, and the latter gave the integration of Boussinesq’s
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potentials when a uniform pressure extends over a rectangular area. But
the Boussinesq’ s potential methed, as is well known, cannot at all be com-
patible with shearing forces, which would be of considerable importance espe-
cially in the case of soft foundation. In addition, the Boussinesg’s poten-
tials are difficult to perform their integrations, and only the simplest case
cited has been treated by Love. The numerical process of their integration
is also almost impossible by ordinary methods of numerical integration, since
integrands involved have an infinite number of singular points.

The boundary-value problem here treated is that, within a rectangular
form of loaded area, any distributions of two kinds of shearing forces as
well as of normal pressure are given on the surface of the semi-~infinite
elastic solid, provided these three kinds of external forces are expressible in
terms of Fourier’s integral in two dimensions.

The procedure of the calculation is for convenience due to a new set of
functions which has been proposed by me and might be called stress—func-
tions in three dimensionss). The resulting solution is obtained in the forms
of Fourier’s integral, and the evaluation of the integrals was relied on the
method of mechanical cubatureg)lwbecause of the difficulty in its analytical
performance. As regards stresses there is no singularity in the integrands,
and to secure first two or three significant figures in the numerical result
is not so laborious. Displacements can also be integrated, despite that each
of integrands involved has one singularity at the origin of parametric coor-

dinates.

Applications of the general solution will at once follow from the general
solution, and the following cases are written out: (1} Uniform pressure (2)
Uniformly varying pressure (8) Uniformly shearing force (4) Uniformly varying
shear and (5) Quadratically varying pressure.

§ 2. BOUNDARY CONDITIONS

We take the semi-infinite elastic solid, and any distributions of three
kinds of external forces, consisting of one kind of distributed pressure and
two kinds of shearing forces, are given on the bounding plane of the solid
within some prescribed area.

We take the origin of rectangular coordinates to be a point on the bounding
surface of the semi-infinite solid, the plane z =0 to be the surface of the
body, and the positive direction of the axis of z to be that which goes into
the interior of the body. (Cf.Fig. 1.)
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The boundary conditions with which we are now to deal are then:

1 (82),00 = Fi(x, ), (1)
2) (92),0 = FiCx, ), and @)
3)  #),_o = Fy(x, ) (3)

within some prescribed area,and these three functions must vanish
outside the area.
4) All the stress-components, and also displacement-components,
vanish when x, ¥,z become indefinitely great.
Here the functions F(x,y), Fu«(x,y) and F,(x,y) are any functions
which will be expansible in terms of Fourier’ s integral in two dimensions,
and accordingly all of them vanish for every value of both x and y outside

the given domain.
Now Fourier’s integral theorem in two dimensions is in general written

fCx, )= Lj‘?:da' S:Of@', y)cos a(x — E) d&

T

:T}S:da S: dp S:S:f@’ 1) cos a(x — &) cos By — ) dE dy.

In virtue of this, the boundary conditions (1), (2)and{3)can be written

down

(F2)emo= 1 [T (T as (" |7 R cos ate — &) cos 6y — ) de dy

- }?j: do j: dp Sjw Sim Fi (&)

X (cos ax cos By cos af cos By -+ cos ax sin By cos af sin By
4 sin ax cos By sin of cos By -+ sin ax sin By sin «f sin By) dé dy. (4)

(92):=0= }—S: da&: dﬂtw Si Fy(&, ) cos a(x — &) cos f(y — 1) dé dy
=1 {"aal"asl” [ pcew
X (cos ax cos fy cos af cos fy + cos ax sin Sy cos aé sin fy
-+ sin ax cos By sin af cos fy + sin ax sin By sin of sin fr) d€ dx. (5)

—

(2) =0 = Tlgj daS: dﬁgiw S;FS(&, 1) cos a(x — &) cos f(y — ) dé dy

=T aalas|” |7 reen

"y

i
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X (cos ax cos By cos a& cos By -+ cos ax sin By cos «f sin By

+sin ax cos By sin a€ cos fy + sin ax sin By sin of sin ) dE dy. (6)

The solution to be obtained in perfect compatibility with the above bound-
ary conditions (1}3) would not necessarily be restricted to a certain partic-
ular form of domain on which external forces are applied, for no restriction
is imposed upon the domain of integration in the Fourier’s integrals (4)—6)
above. But on applications of the solution to individual boundary-value
problems our attention will for the present be confined to the rectangular

domain, owing to the simplicity of performing definite integrals extending
over the domain.

§ 3. PROPOSED STRESS-FUNCTIONS AND TYPICAL
SOLUTIONS SUITABLE FOR THE PROBLEM

The proposed procedure for the three-dimensional elasticity is ®

”zzi,l{ et ‘7)('“‘ aaz>'72}7+21p(oay 2%)"’” """ ;
= {(5%—:—{- gz_) —{d=o) ayon2 gt (85?; 678;9}) ¢ ’
=l (e T

1o o Qi,__a_ﬁ)/ ......

2 <8x8y 8y2+822 zax)"" ’

where y and ¢ satisfy respectively the equations
7y =0 and 7' =0,
s 22 e 52 o2 o2 e az PE 52
and r=rrs V=t et byez T azox T axay’

¢ being the modulus of rigidity and ¢ Poisson’s ratio for the material.
Other components of displacement and stress are given by cyclical inter-
change of x, y,z. .

It can easily be verified by substitution that the above system of equations
satisfy the stress-equations of the type

axx oxy ozx

+ gy 0z =0,

and the stress-strain relations of the types
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du . ow  dv__ 2(1+0)
Era L{x °<yy+zz>} 9y T EY*

A detailed description of deriving the proposed procedure above has appeared
elsewherel)

The y function is composed of harmonics and biharmonics proper. For the
former functions, the above operations for displacement and stress-compo-
nents become

L 0
w= 2pox ’
s i Ve A T
m“(bﬁ“ﬁz‘ﬂ)” PrAle .
0 2V SN
yZ— a}aEV x> H

since in this case g% == 0. In these operations p% appears as a common
factor, which is still harmonic. Then —F*; may be replaced by a new har-
monic function, ¢ say, so that the above operations may be written in the

simple ones

Thus the proposed procedures above may take the forms

uznz-l}}%ﬁ%“;ﬁ{ g% T (1—_0)< 8az>’7}/+2;z<86y aaz)¢""’

= i { (Gt 527 = A= 0ggarte + (s — o) o @
ﬁ=§§’~z+{~5§-§;72+}%£( aa+ai;+aaz>’7}/

1 a" — U.. - az 2 ......
+ '2‘(2&‘@ Fr azax>‘/’ ’

where
7 =0, P =0, and piy =0,

v being biharmonics proper. Thus it can be stated that the ¢ function
is for convenience extracted from the y function. Preference must be given
to the procedures (7) for practical calculations.

Typical solutions suitable for the present boundary-value problem (cf,
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boundary conditions 1)-3)) are
¢ = (A, cosax cosfy -+ A, cosax sinBy - A, sinax cosfy + A, sinax sinfy) e¢—7z,
¢ = (B, cosax cosPy + B, cosax sinfy -+ B, sinax cosfy -+ B, sinax sinfy) e—7z, ¥8)
x = (C; cosax cosfy + C, cosex sinfy + C, sinax cosfy -+ Cy sinax sinfy)ze—7z,
where 4, A, ---C,, Ciare constants to be determined; «, § and 7 being para-
meters provided

a4 = 9

The coodinate system here referred to is illustratced in Fig.1.
The ¢ and ¢ functions in (8) are
entirely of the same form, but they

can be independent solutions for
boundary conditions, because of the

different operations upon them,as p ) % -

is given in (7). Such instances have T -

appeared elsewhere; for example, X

in the three-dimensional dynamical z

elasticity, in which, as is well Fig.1. Coordinate system

known, two kinds of equivoluminal

waves, together with one kind of irrotational wave, may develop in the
elastic medium. Th1s basu: theory in the dynamical system has been confirm-
ed in my work 01ted as an extension of the statical system, the ¢ function
might be called harmonics of the first kind, and the ¢ function harmonics
of the second kind, or from the view-point of their derivation the former
the general harmonics, and the latter the singular harmonics.

It is added also that in general the functions

= Xo, yo, 2o, (£*+ ¥+ Po

are all biharmonics, provided wlx,y,2) is any harmonics; the third form
having bheen adopted in (8).

§ 4. EXPRESSIONS FOR STRESS-COMPONENTS

The substitution of the typical solutions (8) into the proposed procedures
(7) affords the following expressions:

2z = {Ai7* + B.fr — Byay — Co f7° — Cyay® -+ C2(1—0)afy} cos ax cos fy e~

+ {41 — B By — Byay + Cy fr* — C,2(1—0)afy — C,ay®) cos ax sin fy e~z
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4+ {As7* + Byay -+ B, By + Ciart — C2(1—adafy — C, 57"} sin ax cos By e~z
4+ {A,7* + Byay — B, fr + C2(A—adapy + Coap® 4 C, By} sin ax sin By ez

+ 72 {Pycos ax cos By + P,cos ax sin Sy -+ Pysin ax cos By
+ P,sin ax sin By} z e—77,
2=~ Aufy -+ 2 4B (F -+ 1) +Byay + Byafp— Ci{(1—o) o* + 28}y

+ C{f + Q—ad) 7t + Co (140D a',BT} COS ax cos By e~z
+[Aibr+ 5 {B (B + 1) — Buap + Buarh — CAL—oda® -+ 27}y

— Cy(A+o) afy + C AL + (1—0) Tg}a] cos ax sin By e~z
[ —Adbr+ 5 {— Biay = Buap ++ By (B + 1D} — Ci{ff + (L—odp}a

— (14 ) afy — Cy{(1—0) a® + 2@2}71 sin ax cos By e 2
+[Asbr -+ 5 { Biop — Boay + B (B + 1D} + Ci (L+0) afy

— C{f + (1—0) 1%a — C, {(1—a) @@ + 2/32}7] sin ax sin By e~z
+ By (—P,cos ax cos By -+ P, cos ax sin By — P, sin ax cos By

+ Pysinax sin fy)z e—7z,
2% = ['—As ay+ %— {= Bi(a®+1*) — B:fr — Byap} — Ci{20° + (1—0) B}y

+ Cof? + (1—0) 7%} B+ C, (1 +0) aﬁf] COS ax cos fy e~z
+[—Asar+ L ABifr — B (@ 79 + Byap} — Cila® + (1—0) 1} B

—G{2a® + (1—0) 7}y — C; (140D “;87’] cos ax sin By e~z
+ {Al ar+ ~21— {Beaf — B, (@ + 7°) — B, fry — G (1+0) afy

— Cy{20® + (1—0) B4} 1 + Co {® -+ (1—0) %} ﬁ]sin ax cos By e~z
+[Asart L {— Biap + B,y — B, (@ + 1} + G (1-+0) afy

— Cylat + (A=) 12} B — C, {202 + (1—a) B} 7 ] sin ax sin By -2

+ ay [ — P,cosax cos By — P,cos ax sin By -+ Pysin ax cos Sy

-+ P,sin ax sin fy)z e~z

3% = ( — Aa® + Byar + Boaf + Cy (e + 2079 § + G, (@ + 27

— Cy2afy]) cos ax cos By e~z

83

(10)

(11)

(12)
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+ [ — Ay — Byaf 4 Byay — Cy (@2 + 207%) B+ Cy2aby -+ C, (o + 27%)
X cosaxsin fy e~z

4+ [ — A& — Biay — Byap — Cy (@ + 278 a + Cy 2afy + Cy (& + 207 8]
X sin ax cos By e~¥?

+ [ — A,a" + Biaf — Byay — C2afy — C, (& + 27%) o — Cy (e + 2075)5]
X sin ax sin By e~v2

— a* [P, cos ax cos By -+ P, cos ax sin 8y -+ P, sin ax cos By

4+ P,sinaxsinfylze 7z, (13)

5y = — A — Bofir — B, ap + Co (B + 2 f+ G, (F + 201D
— C, 2afy] cos ax cos By e~z

A=A+ B fr + Boaf — C (B + 210 § + Cy2afy + Cul(F + 2077 a
X cos ax sin Sy e~ 2

+ [ — Ay + BoaP — Byfiy — Cy (B + 207 a + Ca2afy + Co(F + 27 B
X sin ax cos By e~¥2

+ (= Asf* — Biaf + B, fr — Cy 2afy — Co (F° + 207") a — Cy(B* + 27°) )
X sin ax sin Sy e~z

— B[ Pycos ax cos By + P,cos ax sin By -+ Pysin ax cos By

+ P,sin ax sin By z e, (14)

= Auaf+ LB, (@@ — 8 + Bufiy — Buag} + G (L — o
4 Co{a? ++ (A — o)r* B+ Cy{B + (1 — a) 7°} aJcos ax cos By e~z
+ 0= Ay af + 4 {— By + By(a — B — Buar} — Gi{a’ + (1= 0) 7%} B
4+ Co(l =)+ Cp + (1 — o) 7} el cos ax sin By e—=
+ 0 — Asaf - {Biay + B, (& — ) + Bafr} — Gl + (1 — ) 1%
+CA -+ Cl{® + QA — o) 7%} Blsinaxcos By e~z
+CAaB+ L By — By 4 Bt — ) — ClE + A= )1
— G+ A —a)y*} 4+ C, (1 — o) r¥lsin ax sin By e~z

-+ af (P,cos ax cos By — P,cos ax sin By — P,sin ax cos fy

+ Pysin ax sin Byl z e, (15)

where and in what follows

P1 = Cgﬁ?’ -+ Cs“?’ - C’*aﬁ’

Py=—C fr + Cyaf + Cay,
y = — Cyay 4+ CoaB + C, By, |
P, = —Ciaf — Ciay — C, fr.

(16)

/
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In the expressions (10)—{15)above, ¢ denotes, as before, Poisson’ s ratio of the
elastic solid, and the constants A, A4, ---C,, Cy will become determinate,
after taking the boundary conditions (4), (5) and (6)into consideration.

It is to be noted that equations (16)can be written in the form

0 Br ra —aff

(P, Py P, P=|"Pr 0 @b 1aiec o ¢, ¢,
—ra af 0O Br

—af —ya —fy 0
and that the square matrix constructed by the letters «, £ and 7 is a

skew-symmetric one. This set of equations has to be solved simultaneously,
as will be seen later on.

§ 5. CONSTRUCTION OF SIMULTANEOUS EQUATIONS

We shall obtain simultaneous equations for twelve unknowns A4;, A,
C,, C, For instance we take the first term in equation (4), the first of the
boundary conditions; viz.

(First term in equation (4))

= :1"5: daS: dﬁgiw S:) Fy (&,79) cos ax cos By cos a cos fy dE dy. (17)

i

The corresponding term in the previous stress-components must be the
first one in (10). This affords on the top surface z=:0 the following:

(First term in equation (10))

= {15 {4+ Bupr — Biay — Cofir® — Cuar?

4+ C,2(1 — o) aPy} cos ax cos By da dp. (18)
On comparing this with the preceding equation (17), we must have
7_115-5:’ S:o F, (&) cos of cos Sy d& dy

= A 7'2 -+ B‘:;BT - B:zar -G, 187'2 - C:; 057‘2 -+ C42<1 —a) apr.
If for shortness we write

K, — lﬂ.g‘: Sim F, (&, 7) cos af cos By dé dy, (19)

)=

then the equation just written takes the form

As7 + Baf — By — Coy — Cyay + C,2. (1 — o) af :*’-?-. (20)
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This is the first equation for determining the unknowns A,, A, --- C, C,.
Similar consideration on the remaining terms in ‘'zz),—0 and those in

(32),=0 and izx),—0 will at once give the following equations (cf. (10),
(11) and (12)):

Aur = Bip— Bua+ Cufyy — C.2(1 — 0) af — C,ap =2, (21)
Ayy+ Bia +B,g + Cray — C,2(1 — o) af — C, py = L, (22)
A7+ Boat — By + C,2(1 — o) af + Coar -+ Cy fir = 18, (23)

— Aufiy + G ABI (S + 1) + Byay + Buagh — C{(L— 0 + 25} ¢
+ CAF + A=) at C A+ dafr =K (24)
AiBr 45 (Bo(B 47 — Byaf + Byarh — Co{(l — ) o+ 2% 1
—C A D G A= D a= K, (25)
— Ay by + 4 {— Biay — Buaf + B, (8 + 19} — G A + A = D) 1} a
—C(l+ D apr — C A — D& 287} 7 = K, (26)
A7+ 5 {Biaf — Biay ++ B, (F + 1)} + Co (L + o) ar
—Co{f + A= o)} a—C{Q = o) et + 2} 1 = Ko (27)
— Ayar -+ 5 {— By (@ o+ 1) — Bufr — By} — G {2 + (1 — ) B 1
+C{et+ Q=)+ Co A+ o)afy =K,  (28)
— Aay 5 {Bifr — B (@ + 1) + B} — Gy {a* + (1 — 0) 1%} B
— Cofoa + (A=) fh 7 — Gy (Lt @) afy = Ko (29)
Avar + 2 ABoaf — By (& 1) = Burk — Cu (L + o) afy
—C, 20+ (L= ) 7+ Cofe+ A= ) 7% = Ky (30)
A,ar + ——14{— Biap + By fr — B, (@® -+ D} + C. (4 + o) afiy
2
—C{r+ Q- f—C, 208+ A — ) Yy =K, (31)

where

F\ (&,9) cos af sin fy dé dy,

—co
=3

.

K, = ngiog _Fy (& n) sinag cos Py dé dy,
-]
-]

I, (&,7) sin af sin By dé dy,

e

I (&, ) cos aé cos py dE dy,
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" F.(&7)sinaécos fy dé dy, o2

Kg = 7590 Sine (&, 7) sin af sin fy dé dy,
S Iy (€,7) cos aé cos By d& dy,

—co

F; (&,m) cos af sin By dé dy,

—co

1)
Ku*%@SLS;Fa(5,7,)3111“&035,]6{5@’
S S _ I (&) sin a€ sin fy d& dy.

Equations (20—31)are twelve in number, and so they are for the determi-
nation of twelve unknowns 4,, 4,, - C,, C,. (Cf. also equations (36).) K, K, -+
K, may be taken as known quantities, since these will become determinate
when Fy(x,y), F,(x,y)and F,(x,y)are given, by processing double inte-
grations indicated in (19) and (32).

When attention is restricted to a rectangular domain, whose sides are 2a
and 2b, the double integrations in (31) and (32) are to be written

T aeay =" | dean,

the rectangular coordinates being taken as illustrated in Fig. 1.

§ 6. SOLUTIONS OF SIMULTANEOUS EQUATIONS

We shall solve the simultaneous equations (20)—(31), in consequence of which
the twelve unknowns Ay, A, - C, C, will be determined. These equations
may be written in schematic form as is written in (36). To solve these equa-
tions, it will be convenient to divide them into twelve sets of simultaneous
equations by taking advantage of their linearity, and to solve these sets
individually. The first set is equations consisting of

Kl#ov KszK:;:"'::Klz:O, (33)
and the second one of
Ki=0, %0, K=K=-=EK,=0, (34)

and in this way the last or twelfth set is equations consisting of
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K1=K2=~--= [{11“—‘—‘0, Km#&

In accordance with this procedure, let us introduce notations with sub-
seript such as

_—~ e~

22y, 22, - 22y, elc.;

then the complete solution of the present boundary-value problem consti-
tutes the aggregate of these individual solutions; that is to say, the stress
and displacement-components in question are given by the sums

22 = 22, -}-222,}....,}_22\]2’ ...... , @2@14‘@2’}‘”'"}*@12, } (35)
W=ty Uyt U, e .

In the first place, we take the case (33) in which K; =0 and K, = K, =
= K, = 0. To solve this set of equations our attention is directed to the
eleven equations in (36) except for the first. This system of equations has
twelve unknowns, so that one of them may be free from their determination.
This freedom is denoted by letter £,. After a simple transformation of
these eleven equations we have the equations given in (37). That is, we arrive
at the three equations

Pn= , P3=O, P‘;-—"‘JO,

Pis having been defined in (16). This system of equations can be solved
without difficulty, and thus we obtain the following solution (38) for the
simultaneous equations (36), in which the subscript 1 is added to all letters in
accordance with the first set of equations. In this connection, there will
occur the three similar cases

P1=P3=P4=O, Plng:P4:O, Pl“—:Pg“—"Pg”—:‘O,

which, together with the preceding case, will require to solve the equa-
tions (16) simultaneously, as noted before. We now have

Ay={—28 +3a B +11°F + 3?8 —2af
— 0 (67 + 14 a®F° + 6 a® F)}2y,
Ay = Ha"Fy+ 3ty —Ta®fly —2afy
—o(da B+ 20y —6a°fr —2af D},
Ay = { —2c® By — Ta® B3y + 3t By + 5a* 57y
—0( =20y —6a° By +2a' By + 4a*fTp)}0,
Ay={28 +14ap + 14 S + 275
— 0 QA+ 12058 + 124 85 + 202 )} 2, ! (38)
Bi=(0—06)QRa L+ 6a8*—6a°s —2a) 2, é




Reference | 4, A, A, A, B, B, By B C C: G c, o
- K,
2z coscos i y 0 0 O 0 I —a 0 0 —B8r —ay 2(1—o)af —
: - . K,
cossin | 0 y 0 O —B 0 0 —a Sr 0 ~2(1—0)af —ay =
]
. o K
sincos | 0 0 ¢ O a 0 0 B ar —2(1~a)af 0 -8 >
L K,
sinsin | 0 0 0 0 « —f 0 2(1—odafp ay By 0 -
|

| 2 coscos | 0 =8y 0 0 é—(ﬁg-i-rz) 0 %—a;‘ -21~a/9 —{(1—cda>+25%}r 0 {B+(1—a)jta (1+a)afy K,
cossin| g0 0 0 | 0 %(,324-72) —-—;—aﬁ %ar 0 —((1—a)a?+28%)y ~(1+adafy  {B+(—o)rtla] Ko
sincos | 00 0 =f |—tar ~Lag Lepr 0 —(prQ-orle  —Qtodasr —{A-odt2Bl 0 K

. 1 1 pe s o . N
sin sin | 0 0 fr 0 |gaf —gar 0 F(FHDL Aroagy —{B+A=-te 0 —{(A-aa+28Y| Ks
zz coscos | 0 0 —ar 0 é—(az—i-,‘?) —-é—ﬁf 0 —%aﬂ —{2a*+(1-6)3%}r {a*+(1—0)p?}1p 0 (A4odafy K,
cossin | 0 0 O —aré«ﬁf —=(a?+r?)  af 0 |—{a*+0~o)p}8 —{2a0*+(1—06)fYy —(+odafy 0 K
sin cos | ay 0 0 O 0 %aﬁ —%(61’2‘}—‘[2) —=Pr 0 —(1+adafy —{2a2+(1-06)8%}y {a*+(1—a)r®}p Ki

1 1, 0,0 R 5 o
sin sin | Oar 0 0 |—%5a8 O ‘Q‘IST *-72—(0'"5‘7“) (1+odafy 0 —{?+A—-or*p —{20°+(1—-0)f )y Ki

=5

9°ON

T 11eg ‘we]qoig s,bsoulssnog pozijeIidusg oyl uQ

68



Any Aay Aay Auy| 5Bu -l—Bel v}*Bal =By Cy Coy Cy Ca
2 2 2 2

0 1 —~28 0 0 —2a | Br 0 —2(1—)af —ar

0 0 200 0 0 28 ay —2(1—a)af 0 —Br

0 0 0 2a —253 0 2(1—o)ap ay Br 0

0 0 a’ 0 ar —ap ' (o117 0 {a*—o(a*—[D}a oo Sy
poo 0 By —ap ar 0 {2y —(oafy {(Fr-orta
0 0 —ay af at 0 | —{a*—a(a?—fH}a —oafy (6a® =72y 0

0 0 —af —ay 0 a® oafly ~{a?—o(a®= D} 0 (oe* =y

0o 0 0 0 0 0 —ay B 0 B

0 0 0 0 0 0 ~af —ay —Br 0

0 0 0 —a -8 -7 0 (I1—-a)ay —(1=a)8r —~(1=0)(a®—§%)
0 0 0 0 0 0 —~8r 0 af ay

)

Py

Py

Py

06

OLOWINYV ], 9ynsouuag

9°'ON
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By=QQ—0)(—2a78r—10a°8r —6a388y) £y,

By =(1—0)6aBy + 10at By + 2a2p77) 2y,

By=0—0o){da*BF +4apt —4atf —4a’f2)0,
Ci=QCaBr + 2357,

Co=(WF—-2a8 —ap) 2,

Co=(—&f—2a"F+a*fD 2,
Co=("Fr+3afiy 4+ a*fr) 02,
Pi=—(@Br+2a"87+3aBr+2a5y + af’y) 2,

where &, is a constant and a®+p*=y® as before.
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The second set of equations (34) has also its solution, which is obtained

in the forms

Ap=—Au 2y, Ap=A,8y Ap=—A4,0, A,.=24,1%, I
By, = — By, 2, = By &y, By=—B,0, B,=B, 39)

Co=—Cy 2, Cup=C, 8 Cpo=—Cy, C,=C0C,%0. j
In this way Table 1 is obtained, in which the additional subscript 1 is

for simplicity suppressed; i.e.,
A=A, A=Ay, Cy=Cy, C,=0C,.
This table gives the solution of the simultaneous equations (20)(30) or (36).
Table 1. Solution of simultaneous equations (36).
Reference i | Ay Asi Asi Asi| By By Bz B4 Cu Coy C3 Cy [
cos cos 1] A A A Ay B, B, By By C C, C C,
. cos sin 21—A: A —Ay Ay—-Bs B, —B, B;j—C, C, —C, Cy
“ sin cos 3|-A —A, A Af~B, —B, B, BJ-C, —C, C G,
sin sin 41 Ay —Ay —Ay, A By —By —By, By C; —C; —C; C,
cOs cos 51 A, As Ay A) B, B; Bj By C C; Cy C,
- cos sin 6| A —A A, —Aj B, —B, B, —Bj C, ~C, C, -C;
¥ sin cos 7\-4,—A, A AJ~B, ~B, B, B{—C, —C, C G
sin  sin 8 |—-A4, Ay A, -A|-B, By B, —-B|-C, C; C. —-C
{

cOs cos 9 A A Ay Ay B, B, B; By C Cy C C,
. cos sin 10 |—A4, A —A A3'_Bg B, —B, By—C. C; —C; C,
= sin cos | 11| A, A, —A, —A) B, B, =B, —BJ C; C, =C; —C,
sin sin 12 -4, Ay A —-A~B, By By, —-Bl-C, C;y Cy —C
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The above table implies that the first line corresponding to the omission of
cos ax cos 8y inzz and to the case i=1 gives the solution (38), the second one
the solution (39), and so on.

§ 7. GENERAL SOLUTION OF THE PROBLEM

From the foregoing calculations we can get the general solution of the
present boundary-value problem. First we take the case(33), in which K, 0.
The solution (38)is substituted into(20), from which £, becomes determinate,
and then from the last epuation of (38), P,; also becomes determinate. We
thus obtain

Py = ;}5 » S: Fy (8. 7) cos a& cos By dé dy, — K, (41)

and the corresponding part of the complete stress—components is given by
the equations

22; = :SOK‘ (1 + yz) cos ax cos By e~z da dp, )
vz = S:So K, pzcos ax sin By e~v2 da dB,

z%, = Sw So K az sinax cos By e~V da dp,

— o oo 2 2 (42)
X%y =S So K, L%—(l + 20 5_2 — rz>c05 ax cos By ev2da dB,

(1 S 20‘ S — rz) COs ax cos By e~vz da dp,

Xy, = — r SO Kl—fg(l — 2¢ — 7z) sin ax sin By e~77 da dp.

The displacement can be found to be given by the equations

1 (= (= @ . vz
u1=2ﬁgo SOKl P—(l——Za——yz)smcvxcosﬁye Yz do df,

1

v=y S: S: K, -r‘f— (1 — 20 — y2) cos ax sin By e~7* da dfs, (43)

Wy = — 212 S: S: K, %{2 (1 — o) -+ yz} cos ax cos By e~vz dadB,
where, as before, p is the modulus of rigidity, ¢ Poisson’s ratio, and
7? = a® 4 & The above results (41—{43) constitute the first part of the solution
for our problem. (Cf. (35).)



No.6 On the Generalized Boussinesq’s Problem. Part I 93

The second part of the complete solution is given by the equations

XKy = S: S: K, ‘;; (1 + 20 gj — rz) cos ax sin fy e—vz dua dp, o
Yy, = S: S: K, ‘[;7(1 + 20 % — Tz) cos ax sin Py e~z da df,
Xy, = So S:KZ 4 (1 — 20 —y2)sinaxcos By e Yz dadp
where
K, = %g: S: Fy (€, 7) cos af sin By de dy. (45)

The corresponding displacement may be shown to be given be the equations

— L “ “@ — — i 1 Y2 v B )
oy == Z#SO So K, Tz(l 20 — rz) sin ax sin By e™2 da dp, L
Uy = — 1 Sm Sw K, £ (1 —20 — y2) cos ax cos By e~ da df
2 2pdojo T R ’ (46)
Wy = ~2]/}S:S:K }1—{2 (1 — o) + yz) cos ax sin By =72 da dp. J

The above results (44)—46) constitute the second part of the complete solu-
tion, which is due to the case where K, &0, and all the remaining Ks vanish.

The third part of the complete solution is given by the equations

22, = S: Sm K, (1 4 rz) sinax cos By e~ vz da df,

2=,
W_g
|

Jok

oo

K, Bz sin ax sin By e~vz da dB,

(=1

S K,z cos ax cos By e~7* da d,

<

(47)

oo

X%y = S

o Ko S o 1+20-'B——-rz>s1naxcosﬁye vz dor dp,

0

=3

o 1 + 20 < F —_ rz) sin ax cos 8y e~v¢ da dp,

11

=l
=]

. " K, ‘B(l — 20 — y2) cos ax sin By e~ da dp,
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where
K, — LS“ |7 R sinag cos praz ay, 48)

The corresponding displacement may be shown to be given by the equations

Uy = 1 Sw rfi} %(1 — 20 — 72) cos ax cos By e~¥¢ du df,

T 2plolo
Lo~ B o ai e Sin B a—Y2 dor
Vs —5;750 go K, TT(l — 20 — yz) sin ax sin By e—% da dp, J (49)
1 (g, 1 . .
W, = — Zﬁgo 50 K, 7 {2(1 — o) + 7z} sinax cos By e "2 du dp.

The above results (47)—{49)constitute the third part of the complete solu-
tion, which is due to the case where K,=+=0 and all the remaining K/s
vanish.

The fourth part of the complete solution is given by the equations

22, = S: S: K, (1 + yz)sinaxsin By e~v2 da dp,

Yz, = — S: S: K, Bz sin ax cos By e~v2 da d,
2%, = — g: S: Kaz cos ax sin By e—72 da dp,
—_ == g o B . i ~ (50)
xx4=SO So 4?;(1 + 20 e fZ) sin ax sin By e—7# da dg,
VY= S: Sz K4%(1 + 20 g— — rz> sin ax sin By e~z da dp,
Xy, = — S: S: Kﬂ;@(l — 20 — y2) cos ax cos By e~V* da dB,
where
K, = j Sfm S: F, (& 7) sin of sin 8y dé d. (51)

The corresponding displacement may be shown to be given by the equations

=t e 1 —_— o i -z
U, = 2-/;50 S 0 K4 2(] 20 TZ) COS aX Sin ﬂy e~z do dﬁ,
1 (=(° ﬁ . 2
Uy = 2—/250 SO K‘.., _Z<1 — 20 — 7’2) SNl ax COS ‘By e~z do d‘[)’, (52)

1 (e 1 . .
w, = — T/zSoSoK47_‘{2<1~U>+TZ} sin ax sin By e~7% da df.

The above results (50)—(52)constitute the fourth part of the complete solution,
which is due to the case where K,==0, and all the remaining K;’s vanish.
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The fifth part of ,the complete solution is given by the equations

N

OS K, Bz cos ax sin fy e~72 da df,

ll

o 1 ——z) cos ax cos By e~z da dp,

ll

JoK
Lo

K, ﬁz sin ax sin By e~ da dp,

==
=l
=
= |

o (53)
— OSOK fB 20‘ ——a‘-’z)COSaxSinﬁyg—yzdad‘B’
yya SO So K, 243 1 -+ ow— g?’ z) cos ax sin By e~v* da dB,
Xy, = SOS: — 2o if___ﬁ? >sinaxcos,8y e~z da d,
where
K, =~%S:S1FZ (&, 1) cos af cos By dE di. (54)

The corresponding displacement may be shown to be given by the equations

8
I
J

1 S r K; %f’) (20 + 72) sin ax sin Sy e~ da dB,

2pdo
1 1 & -
v, = ZuS S K, ?{2 — ~2—<20“ “+ 72)}005 ax cos By e~z da dB, t[ (55)
w, = g:g S ﬂ(l——Zcf—l—yz)cosaxsmﬂye —z do df. )

The above results (63)—(55) constitute the fifth part of the complete solution,
which is due to the case where K; =0, and all the remaining K;’s vanish.

The sixth part of the complete solution is given by the equations

22, = ~Sm5 K Bz cos ax cos By e2 da dp,

V2, = SOSOK(l——— )cosaxsmﬁye ¥z doe dB,
2%, = S 5 6-_231naxcosﬁye vz do dp,
(56)
X%, = go S K, ‘B Za é- — azz) cos ax cos Sy e~72 da dp,
Pye = S:S 1+a—- %z) cos ax cos By e~v* da df,
xy6 S So a (1 —2¢ ‘§~ —_ @T— z> sin ax sin 8y e~7* da dg,
0

where
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K, — ._Z_S; tw F, (&, ) cos af sin By d& dy. (57)
The corresponding displacement may be shown to be given by the equations

Ug = LS: S: K, b (20 -+ 72) sin ax cos By e—7? da dp,

2 7
SR e AR P o -
Vg = ZySo SO K, ; {2 7 (2o + rz)}cos ax sin By e~v2 da d, (58)
1 (e
Ws =2ﬁgo So K, 5" (1 — 20 + yz) cos ax cos By e~ da dﬂ,

The above results (56)—58) constitute the sixth part of the complete solution,
which is due to the case where K ;==0, and all the remaining K7s vanish.

The seventh part of the complete solution is given by the equations

22, = SN Sm . Bz sin ax sin By e—v2 da df,

oJo
—~ (== A s

yz7._SogoK7(1 Tz)smaxcosﬁye vz de dB,

o =t < wK 6—(‘—8 i -

2%, 5050 i z cos ax sin By e~ da dB, (59)

<
-

X%, = r, Sw[ﬂ —‘B?(Za ‘87—— azz> sin ax sin By e~z da dp,

=T g@ g_z___@i i : _.yzd d
SK7 <1—{~GT2 2Tz>smaxsm[3ye o dB,

Xy, = ——g: Sm K, -;-Y-(l — Za-f; ~é;z> cos ax cos By e~z da dp,

where
K, — ;1_-2_&; S: F, (&, ) sin af cos py d& do. (60)
The corresponding displacement may be shown to be given by the equations
Lk in gy e~z dard
Uy =t = : “2(20 + y2) cos ax sin By e c dp,
2pdoJo 7

1 (=f{= 1 2 : vz
v, = —“Z?So gOKT 7{2 —_ 71-32—(20 + rz)} sin ax cos By e~z da df, (61)

w, = — ZL/JS‘: Szfﬁ %(1 — 20 + yz) sin ax sin By e~v2 da dp.

The above results (59)(61) constitute the seventh part of the complete
solution, which is due to the case where K,=£0, and all the remaining K/'s

vanish.
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The eighth part of the complete solution is given by the equations
22, = — S: S: K, 8z sin ax cos By e~ da d,
2y = S: S: K, (1 — ﬂ—z) sin ax sin By e~v2 da df,
z’iszrrK ﬁzcos ax cos By e~ V2 da dp,
0Jo 7
— - (62)
XXy = ——SOS -_<2¢r — ot z> sin ax cos By e~"* da dp,
— — =3 28 —_ﬁ— vz
YYs go So (1 + d 272) sin ax cos By e~ da dg,
—_ co [0 o 2 .
xy5=~SOSO 8?(1~—26—7—5~ﬁ7z>c03axsmﬁye-ﬂdadﬁ,
where
K. — % Sjw Sfm F, (&, 7) sin o sin fy d& dy. (63)

The corresponding displacement may be shown to be given by the equations

1(=(* p ap ~
Ug = _@Sogng ?5(2a+rz) cos ax cos By e~* dadp,
l oo [Poo 1 ﬂZ . . vz
Vg = .—ZZSOSOK& F {2~%~2—(26+rz)}s1n ax sin By e~v% da df, (64)

1 had @ — » 2
Zﬂg 5 *(1 20 -+ 72) sin ax cos By e~z de dp.

The above results (62)—64) constitute the eighth part of the complete
solution, which is due to the case where K; &= 0, and all the remaining Ki's
vanish.

The ninth part of the complete solution is given by the equations

zzg_—gmg K,y az sin ax cos By e~ da df,

. __z sin ax sin By e~v2 dex dp,

O

0J0

Jox
r 1—= z) cos ax cos By e~z da dp,
Is

2o 8 -
0K (1+ ————2~Tz)smaxcos,8ye ¥z da dB,

0

e
2%y = S
Xy = g
=0 10Ky 2”"”‘5Z>Slnaxcos‘3yeyzdadﬁ,
5oL

K, = 1 —26% ;_ - 7z) cos ax sin By e~z de dp,

0J0

where
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K, = 1 Sj K F, (&,7) cos af cos By dé dy. (66}
The corresponding displacement may be shown to be given by the equations

Uy = — 1 Sm Sw K 1 {2 —;LS(ZU + rz)}cos ax cos By e~ v: dadp,

Sidodo T
Vg == — 2'17‘ Sm Sm K, 9(’2 (20 + yz) sin ax sin py e~z da dp, (67)
$J0Jo 7
1 (=(= @ . _
Wy = ﬂngogoK972(1~Za+,z)smaxcos,@ye 12 doe dfs.

The above results (65)—67) constitute the ninth part of the complete solution,
which is due to the case where K,2=0, and all the remaining K/s vanish.

The tenth part of the complete solution is given by the equations

—

22y = (: KZKIO az sin ax sin By e ~v¢ da dj3, 1
V2 = — Sm g: KIO%@Z sin ax cos By =% da d,

K (1 _a z) cos ax sin By e~z da dB,

=l ’ (68)
> e 2a At . . _
X% 1o =S0 50 K107(1 + GF——Z—TZ> sin ax sin 8y e—vz da dp,
Yo = S: S: Kxo’% <2‘7£¥T; - 1322> sin ax sin By e~ "2 da dp,
o oo (Yoo a?. a?
XYy = — S 0 SO Kwé (1 — 20"77?""7Z> cos ax cos By e~ da df,
where
Ky = 71?2*5:’ (™ £ e cosasin py dé dy. (69)

The corresponding displacement may be shown to be given by the equations

Uyg = — 21/35: S: KIO%{Z —i{; Qo + rz)} cos ax sin By e~ da dj, J
V1o = Sm (MK 9—“—‘?(20 + 7rz) sin ax cos By e=v2 da df {

10 Zato o 1075 7 ) (70)
w ~»—*1~(°°§wK L1 — 26 + 72) sin ax sin B e=vzda dp [

0= o g Je e 7 y .

The above results (68)~(70) constitute the tenth part of the complete solution,
which is due to the case where K;,==0, and all the remaining Ki’s vanish.

The eleventh part of the complete solution is given by the equations
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—

22y = — r S K, az cos ax cos By e=72 da d,

—

¥z, =

S Kumzcosaxsmﬁye Y2 do dfs,

2% =g:gm 11 1———2) sin ax cos fy e~v2 da dp,

O

XXy = SOS Kuza(l + g Qj——~z>cos ax cos By e~z da dp, e
Yy = S:S Ku"" 20_*/3 Z)COSaxCOS By e~vzda dp,
@11=‘S:§:K 20’:‘”‘7Z> sin ax sin fy e-v2 da dg,
where
10= (= £ N i -
K, = Eé‘g_.x, Lm Fy (&, 7) sin af cos fn dé dy. (72)

The corresponding displacement may be shown to be given by the equations

1

Uyy = — ZZQS: SZK“ 1{2 —~;~( (20 - rz)} sin ax cos By =2 da df,

Vig ﬁ_zlﬂrg Ky ﬁ(Za + yz) cosax sin By e~ da dp,

(73)
1 (oo «
o= Ztgo SO K1172(1 — 26 + y2) cos ax cos By e~7% da df. J

The above results (71)—(73) constitute the eleventh part of the complete
solution, which is due to the case where K, =0, and all the remaining Ki's
vanish.

The twelfth part of the complete sclution is given by the equations

22y = ——S 5 . K, az cos ax sin By e~ da dB,

——

Y&y = K .0;@2 cos ax cos Sy e~ da dp,

2Ky = K, (1 — ) sinax sin By e~v2 da df,
r (74)
m%(l +o 3; — g_rz) cos ax sin By e~v= da dp,

5’3’12:“

XY = —

J
5
i = — |7k
S”S” pﬂ(zowﬂ—/a 2) cos ax sin fy e~ da dp,
Jo

me)f(l —25% Tr —“—7;z> sin ax cos By e~ da df,

wherz

K= s S:, § " F, (&) sinaé sin py dé dy. (75)
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The corresponding displacement may be shown to be given by the equations

1 (= (= 1 a® ) . B vz
Ugs = —E—#SOSOK12-T—{2~F(26 +fz)}31naxsm;3ye Y2 da df, ]
__ L{=(=g.ab | \
gy = —@SOSOKH?(ZJ+7z)cosaxcosﬂye 2 de d, { (76)

1 e a .
Wy = 2—#50 SO K, 7@(1 — 20 + yz) cos ax sin 8y e~7* da dp.
The above results(74)—{76)constitute the twelfth part of the complete solution,
which is due to the case where K;, s 0, and all the remaining Ki’s vanish.
As was stated in (35), the complete solution of the present boundary-value
problem is given by the aggregate of the twelve constituent solutions obtained

in equations (41)—76).

§ 8. SUMMARY OF THE GENRAL SOLUTION

The foregoing solutions (41—(76) can be rearranged in compact forms,
though rather inconvenient for individual applications which will appear in
a subsequent article. For instance, the component zz can be written

22 = 22, -+ 22, + 22, + 22,) -+ (22s -+ 22 + 22, + 22,) + (22, + 2210 + 2201 + 5223
= g: (1 4 72) (K, cos ax cos By + K,cosax sin 8y + K,sin ax cos 8y
) -+ K, sin ax sin fy) e~ da df

Sm Bz (K;cos ax sin 8y — Kycos ax cos By + K, sin ax sin fy
— Kgsin ax cos 8y) e~v2 da dp

0

+1,
5: S: az (Kysin ax cos By + Kjosin ax sin 8y — Ky cos ax cos By

— K5c08 ax sin By) e=v= da dp,

+

which, with the values of K;'’s, is rearranged in the form

22— [Taal as(” |7 [+ B cosats — & cosply — )

v

+ Bz Fy (€, ) cose(x — &) sinf(y — 1)
4 az Fy (&,7) sinaCx — £) cos fCy — ;7)] e-rdsdy.  (77)

The remaining stress-components can similarly be rearranged in the forms

vz =% ("aa(7as(" | (525 6 cosats — &) singty — 7

+ (1 — ﬁi_z) F, (&, ) cosa(x — &) cos f(y — )
L 3';_53 Fy (&, ) sina(x — &) sin fCy — r;)] emdédy,  (78)
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% %g:dag(:dﬁgjm Siw[az Fi(&,p)sina(x — &) cos By — 1)

+ ff.T@z F, (§,7) sina(x — &) sin gy — 1)
+ (1 =22)F, & cosate— & cos ply — ) e dedy,  (79)
wr= 5 (aa|Tap(” {7 [5‘7;(1 + 205 — 12) P\ (&, ) cosa(z — £ cos gy —
+£ (zzf@i — @22) F, (&,7) cos a(x — &) sin f(y — 7

2“(1 +obr = 2) e sinals — O cos iy — ) e ds dy,  (80)

3’3’ =%2§0 a’aSO dﬁg_wgim[%@ + Zoﬁé—— rz) Fy (&, 9) cosa(x — &) cos f(y—n)
+ %§<1 + d$;-~—g-;z> F, (&) cosa(x — &) sinfly — 7D
-+ -;%(209; — ,@'22) F, (&, p)sina(x — &) cos By — 77)] e-vzdédy, (81)
@:%—S:dag‘: dﬁS:Sim[~“—7—ﬁ<1 — 20 —12) Fy (€, 7) sina(x — &) sin 8y — 1)
+%<1 - 2”55'“‘%) F, (&) sinaCx — &) cos By — 7)
+ Jg (l — Za%g—-gf; z) Fy (¢, cosa(x — &) sin f(y — .,/)] e-vde dy.  (82)

Also the displacement-components can be rearranged in the forms

wm g |ndal s (7[5 —20 —12 R sinatr — ) cosily — )
‘8(20' 4 12) Fy (6, 7) sina(x — £) sin By — 7)
%{2 - »—(20 + rz)} F, (€,7) cosa(x — &) cos f(y — v)] Twdédy,  (83)
V=

S S dﬁﬁ_wﬂl[-@aﬂ — 20 — 72) Fy (&,7) cosa(x — E)sin By — )
_} {2 =B 26 + 1)} F. &, ) cosax — &) cos gy — 1)

— —‘?(20 + 12) Fy (6, %) sina(x — &) sin f(y — 77)] e~ dédny, (84)

w :Z&l{zg: daS dﬁg_w S:[~_~ {21 — o) + 72} Fy (&, ) cos al x—£) cos f(y — 1)
-fi (1 — 20 + 72) F, (€, 7) cosa(x — &) sin (3 — 1)
~ —;%(1 — 20 + 72) F; (§,9) sina(x — &) cos f(y — 77)] e dEdy.  (85)

In these equations ¢ denotes Poisson’s ratio, and g modulus of rigidity,
which are connected with Young’s modulus, E say, by the relation
p=E/2(0 +0), and y*=a*+ B Fi(x,y), F.(x,y) and F,(x,y) are given
functions, representing the three kinds of external forces applied on the
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bounding plane of the semi-infinite solid. (Cf. equations (4)—6).)

It can be seen at once that, on the bounding plane z=0 of the semi-
infinite solid, the three components zz, y’; and zx, which are given in equa-
tions (77), (78) and (79) respectively, reduce to equations (4), (5) and (6), or to
the assumed boundary conditions (1), (2) and (3). In addition all the stress-
and displacement-components will vanish for large values of %,y and z; as
for z, this is at once seen in virtue of the factor e—7%, both y and z being
positive, while, as for x and y, this is also valid because of the proper
characteristics of Fourier’s integral.

It has been verified also that the solutions(77)—(85)satisfy the three stress-
equations

oxx | oxy , dax _
o Tay Tar =0

and the six stress-strain relations

,5_’{’::},{?_ OVTIL-iS G ow o 15
or  EUYY 0<y’)+zz)}’ 9}+az PRaE )

Thus the equations (77)—{85}above are the required solution of the generalized
Boussinesq’s problem, in which any distributions of the three kinds of
external forces are given on the bounding plane of the semi-infinite elastic
solid.

Now since the complete solution has been obtained in compact forms as
in (77)—(85), the following remarks should be noted. That is to say, it would
be rather preferable that the original assumption in the typical solutions
(8) may be replaced by the alternative forms

¢ = {A;cosa(x — &) cosf(y — ») + Ascosa(x — &) sin By — 1)

+ Assina(x — &) cosf(y — 1) + A sina(x — €) sinB(y — p)} 777,
¢ = {B,cosa(x — &) cos f(y — ) + Bycosa(x — &) sinf(y —7)

+ Bysina(x — £) cos f(y — 7)) + Bysina(x — &) sin B(y — 5D} e~77,
¥ = {Cicosalx — &) cos f(y — n) + Cycosal(x — &) sinf(y — 1)

+ Cysina(x — &) cos By — 1) + Cysinalx — &) sin fly — p)} ze 72

Several examples of the general solution (77)—(85) will appear in the succeeding
issue of this Journal, together with their numerical evaluation. It is added

8
that an abridged version of the present work has appeared elsewhere .
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