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Synopsis. This article gives a note on the old problem that a large plate
flanged with a circular plug is subjected to a pair of edge forces. It is
based on the principle of the minimum strain-energy of the whole system,
by allowing the discrepancy between tangential displacements at the
junction of the plate and the plug. Numerical calculation reveals a
considerable increase in the maximum circumferential tensile stress.

The analytical solution for a plate, with a circular hole and no inser-
tion in it, was given by G. Kirsch as old as in 1898Y, and the same problem
was independently treated by S. Timoshenko®. It is well known that
the maximum circumferential normal stress is three times the stress at
infinity for tension, and four times the stress at infinity for shear, and
occurs at the edge of the hole. This is the first and oldest among solutions
of the “perforated problems.”

The present article gives a note on the stress distribution around a
circular hole in a plate subjected to a pair of parallel and uniform edge
forces, the hole being inserted with a heterogenous solid plug. The problem
is said to be related with the practical construction that a plate is riveted
by a solid bolt.

The similar problem that a heterogeneous circular ring is inserted will
be related to the so-called reinforcement of a plate. This often occurs in
practice especially in aeroplane construction, where welding of material is
of no use, and the plate is subjected to a considerable magnitude of tension
and in addition to a strong vibration.

These two problems have been treated by the late K. Sezawa and
Professor G. Nishimura of Tokyo University by means of their method
of dilatation and rotation since more than twenty vears ago®. Later C.
Gurney treated independently the latter problem, viz., a plate with a
concentric circular ring, by means of Airy’s stress-function®.

These two kinds of solutions are of course in accordance with each
other provided that several misprints are corrected, since the boundary
conditions assumed are the same. These are based on the perfect continuity



136 S.NaTsuMmE and B. TANIMOTO No.6

of stresses and displacements along the circumferential boundary, which
would seem to involve a careless oversight.

In this regard the late K. Suyehiro treated the problem on the assump-
tion that there is no frictional resistance along the circumferential bound-
ary and that the discrepancy between tangential displacements along the
boundary may occur under the restriction that the plate and the circular plug
are of the same material®. It will be seen, however, that this solution is
based on a rather artificial assumption, and that from the theoretical point of
view such a boundary condition can by no means be realized, the reason being
in the violence of the principle of minimum strain-energy.

Gurney worked out many numerical examples with elaborate but
plausible—according to the authors’ viewpoint—curves, and he insisted on
the reinforcement around a hole by the insertion of a concentric ring which
is thicker than the surrounding plate. But this will call for a scrutiny as
will be seen later on.

The present device for attacking this problem lies in our intuition
that would admit of the existence of the case in which no separation at
the junction takes place, which is meant by the perfect continuity of rr, 70
and # (radial displacement) referred to plane polar coordinates. But as for
the fourth condition for » (tangential displacement), the perfect continuity
would be open to doubt. In fact, if a loose contact at the junction is
realized, the tangential displacements there may easily be discrepant, whilst
if a firm and perfect contact is secured, no sliding takes place.

It should then be assumed that the fourth condition cited is replaced
by that of minimum strain-energy

of the whole system considered.

It follows that the possible state — ~—— ! ——
of stress distribution is not T {r.0) =
unique, but is between the two :
cited conditions; that is, these two =~ ; M
give the limiting states of stress ]
distribution. :T 9 T :

Boundary conditions for the : (E. &) Plate -
present problem are here taken to o
be (Fig. 1): —_ _

1. At the junction of the plug Fig. 1.

and the plate, where » = a,
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e = (77 )y (0)ya = (70 ), ()]s = (),

(v)r=a == (1) />r=a + Vsin26,

~3

(1

in which tangential displacements there may be discrepant, and the quantity
V in the last equation will be determined from the condition of minimum
strain-energy of the whole elastic system.

2. At an indefinitely great distance from the origin of coordinates, the
plate is subjected to a pair of parallel and uniform tensile forces, say T,
in the direction of the axis of %, which is expressed by

(Hee =1, (e =0,  (B)ee =0, 2>

In the above and in what follows, quantities with no prime refer to
the plate and those with prime to the plug.
Referring to plane polar coordinates, Airy’s stress~functions suitable
for the above boundary-value problem are as follows:
1) Stress—function for the plate:

;{(7,0)¥A0¢2+Bolog7’+(Br‘~’+C+D7"“)00520. (3)
2) Stress-function for the plug:
2/ (7, 0) = A,/ + (A’ + B/r)cos2 8. (4)

Here A,, B, ---D and A,/, A/, B/ are constants to be determined from
the boundary conditions (1); the coordinates (#, §) being taken as indicated
in Fig. 1.

Stresses are derived by the operations

o loy 19y 9% g _9(19

=y r+r2 26% 00 or®’ 70 67(7 ay>’ (8
o Loy 1%y =t i 9 (1o

W/MT ar+12 20%” 00 o’ 70 r<7’ 80) (65

Then the substitution of (3) into (5) affords

o)+

(-
<2A-—~~>4-( 2B +6}]—)Z>cos20, (7>
< |

<2A+ 28-—4 f)cosza, I

ll

C D\ .
2B— Z?wﬁ}—djsmza
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which are the expressions for the plate. The substitution of (4) into
(6) affords

7 =2 Ay +( —2B’)cos20, 1
00’ =2 A, + (12 A’7* +2B’) cos 20, (8

PG’ = (6 A7+ 2B’ )sin26,

[ ———

which are the expressions for the plug.
Expressions for displacements can in general be obtained by the opera-

tions

“ = Seﬂdy + 7.0), 1

) (9)
v=7 [ ewnds — {[endras — | 1,00 + £,
where strains are defined by
_on _u 1o 1o  ow v
e?’r‘_‘“a?y 890*—7*{‘7'8-‘0, 378‘—?8(]'}‘6—;’ 7

In an elastic solid slightly strained from the unstressed state the compo-
nents of strain are linear functions of the components of stress, and then,

assuming the plane-stress state, the stress-strain relations are
6 = o (77— 0), o = 35 (00— a77), e =205
£

Then after some amount of calculations, the expressions for displacements
become as follows:
1) Displacements in the plate:

w=1[20 - Ay —a+ ]

p

+ {—2(1+6)B;’+47§+2(1+ rr)g%cosw], f( 10

1 C D .
v:E{Z(l + ) Br—2(1— o) S 4201+ ) ;—3}511120.

2) Displacements in the plug:

w =1 (200 — o) A/7 + {~4o’ A7 =201+ 0/) Brr} cos20], |
L ;D
v/:p{2(3+g/>A/ra+2<1+a/)B/r}sinza. |
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Here E and ¢ denote respectively Young’s modulus and Poisson’s ratio
for the plate, and E’ and ¢/ those for the plug. It can be shown that the
arbitrary functions f1(0) and f.(#) in (9) vanish, when there is no rigid dis-
placement as a whole of the solid considered. This is the reason why these
terms are suppressed in equations (10) and (11).

The total strain-energy, say W, of the system is the sum of that in the
plate and that in the plug, so that we have

W= Zlf,f%: [(;; + 00%) —207700 + 21 + o) 775\ rdrdd
g §lo (7772 + 007%) — 2077 60 + 2{1 + o7) 707 ] rdrdv. 12)

Then we must have

oW
=0 a3

which implies that the total strain-energy is a minimum,
The transformation of stress systems is in general effected by the

equations
7= % (@+;y)+%@,_@)wszuﬁsmza,
95::%(ﬁ—i—ﬁ)—%(a—ﬁ)00526~@sinza
75 — — 3 (@ — 3) sin20 + ¥y cos 20.

Then (2) is written in the forms

—

(#7)pme =

IS
N
0o~y

4 =cos 246, ' (@),,zm = —27: cos 20,

— (o do
(76 = — g sin 2 6. i

On the other hand, at a great distance from the origin, equations (7)
reduce to

X

(77),m0 = 24, — 2B c0s 26,
( )r=m =24, + 2B cos 20,

(

S)

) = 2B sin 2 0.

y=co

3)

On comparing these with (14), we must have
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T —_r
24, = 3, 2B = — 2. (15)

Equations (7) and (10) take for the present the forms

ﬁ=<g+%>+<g—4%—~6g>cosza \1\

70 = (~-§—2%—6£>sin20; /
u::—’f[(l—-a)%——(l%—o)%%—{(l—%d)g—%— 4%+2(1+a)£}00820]y1 17)
ywé{w(l—}—a)§ﬂ2(1~d)g+2(1+6)£}51ﬂ20- J<

The next step to the problem is to determine the remaining constants
BOv AO/; c$ D7 A/: B/,

all of which will involve the unknown constant V in linear form. These
constants can be determined from the boundary conditions (1), which gives
rise with (16), (8), (17) and (11) to the conditional equations

T B, , T _,C D _ 45p
3T EAL g oAb =

T 5C 6D sapr2m,

2 a® a
10 T B 1 or
F[(l L (1+a)dé]_~E,2(1 oY A,

T C DY _ X0 4 a0 NB/
[a+ol+aSvza+af]=f[—wae—2a+0)8]

&= by

(a0l —20 -0 + 20+ 2]

=%7[2(3+G’)A’a2+2(1+0’)3’]—}—g.

These equations can be solved simultaneously, and be rearranged in the

following forms:

| B T
@ 24 z

1 —1 1 € =, 18
i g .

f 1 1—a 1—0 E

ixa " 1%
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Q D 7 g2 / z‘_ !
a* a* Ara B 4
1 1 —1 —1 —1
1 2 1 0 0 =0, (19)
2 2 no’
s 1 T o n 1
(B —a") 4y |
0 0 1 1+o/ 0 TaV |
where
= £ - £ R A
S EPToturey M idaxery @0
so that, if # <1, the plug is more rigid than the surrounding plate; and
vice versa. On solving (18) and (19), we obtain
& == l - l._T_ffi 2 ;11 T
42'—40(14—0 1—,—6’”)2’ 4, T A, T 2 a1
4 140+ A —am,
[t 1 + 0/ »
C _ . . dn \T 4n —
&5——]—[ 2 n)(l %+1+0_>4+<1——n+1+a,>(a V)],
D_ 1 B . 4n \T 1 —n —
@ A[(l n)(l n+l+a’)4+2< 140 1+a’><a Vﬂ
. 1 —ry
A’a—7< 1+”+‘1‘i;_a>< > (22)
17 —4 4dn \T 3 7 —
/o 0 —_ . iy . A, U el
B ‘A[l d(l ni—l+d/)4+2<1 1+zf+1—]-0/>(a V>]’
4 4 .
=(=1nt i) (1 )

4, and 4 being determinants of the simultaneous equations (18) and (19)

respectively.

Our last step to the problem is to determine V in (22), which will be

effected by (13). Equation (12) which is for W is a quadratic
respect to stresses, and equations (22) are of linear form with

form with
respect to

V, and hence (13) will give rise to a linear equation for V. After some

amount of calculation, we thus obtain
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3“? _____ _ ’Cchi? /
V= [ om0 +26) T a3
34040 0y b Ly 3+ ot 2/27.
a0 Fehid gl 3<1+ >w1 S 20 P+ 2 }

Hence the resulting stresses become as follows:

1) Stresses in the plate (¥ > @) :

gl fofis (o Do B )KJeose)
55:%[1—§+(—1—%%~—%§K>c0520], t 24
7 = %‘r“’(—‘”r) (¢1 %)K}sinza

2) Stresses in the plug (¥ < a):
— T
bl 2 7 o’ 5o/
71 Z{f +< o -+ ¢y K)cosZﬁ},
=, T
00/ =2 f/+{¢/+ (— 20/ 0" — 9/ ) K feos20], 25
—_ T
- Bl v — — /
7/ = Z{gj 4 (— ¢/ p? — ¢ )K}st&
where, for shortness,
7
P=g

and f, f/, o, o/, &1, ¢ &7, ¢/ are represented by certain functions of o,
¢/ and n, which follow.

M) et
o=~ 30~ D (1 —n i) o= A(li )(1"”+i'41n7;7)’
o=G0-nriln) s e=T i)
w=S(rend )t wmdmnmripeip)t
?4_ oy A+ 1’ (b +2¢7)

K=
3 )
li &1 +2¢1¢2+~2~¢2“+n S+

e bR !y’ 72
3, 3(1_{_0./)5)1 +2(,b1 gb.. +2(/)2 }
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It can easily be seen that, if in (24) and (25) above we put V' = 0, the
above solution reduces to the ordinary one which is due to K. Sezawa and
Professor G. Nishimura®, The effect of -V on the stress distribution in the
plate is, so far as our numerical calculations have revealed, not desirable,
that is, it makes the maximum circumferential stress greater to a consider-
able degree. The same thing is true in the case of the ring insertion.
This will be reserved for the subsequent paper.

Numerical examples will be given, in which we take ¢/ = ¢ =0.25
throughout. Three of numerical examples will be for n = u/p/ = 1.0,
1/1.5, 1/2.0. )

Example 1. We take

o=, 0/ =g =025, soA that £ = FE,
In this case equations (24) and;'(25) reduce to:

1) Stresses in the plate (r>>a, or o= 1):

??:T[O.5+{0.5+( 0p156+9—’??%>}60820} ‘ )
-7(054 (~05-0Bcos2), £
76 = T{—O.S—l—( QEQ’@—FOPZSLJ‘)}QHZO. . J

2) Stresses in the plug (r > e, or p=< 1):

7 = T[O.S + {0.5 + (0. 078)}cos 20], \

7 — T[O.S + {~ 0.5 - (0. 469 p* — 0. 078)}cos 20],

,75/:.-T{-O.S+(O.234p2—0.078)}sin20. J

In the above solution, the terms in parentheses ( ) express the effect
of the discrepancy between tangential displacements. If these terms are
suppressed, then the solution reduces to the one for an even plate with no
hole and no plug insertion, and the cited effect at the ‘junction entirely
disappears.

Fig. 5 shows the circumferential stress 40 at the junction, in which
the maximum stress is increased by 23% compared with that of the ordinary
solution. &
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Fig. 6 shows the change in 6 along radius vectors for several angles
from the direction of edge forces, in which we see rapid convergences to
the values of the ordinary solution.

Example 2. We take
W/ =15y o0/ =0=0.25, so that E/ =105E.
In this case equations (24) and (25) reduce to:

1) Stresses in the plate (r =@, or p= 1):

7 = T[ 0. 0071 {0 5.1 (0 233 00£74> + ( op949+w72>}00820], f
=T [O' 5— 0.‘0(371 0-"174 (O O79>}Cos 2 0}, K>

70 — T{ 0.5 +<0‘115 Op174>+< 0£25+0p079>}8in20.

2) Stresses in the plug (r<a, or p< 1):

770 = T[0.571 + {0.559 -+ 0.030)} cos 20,

1

G =T [0. 571 + {~ 0.559 + (0. 1704° — 0. 030)} cos 2 0],

76’

Il

T{- 0.559 - (0. 0850* — 0. o3o>} sin 2.

Example 3. We take
=20y, ¢/ =0=0.25, sothat E/ =20FE.
In this case equations (24) and (25) reduce to: _
1) Stresses in the plate (r=a, or p= 1):

7= 1[0.5+ 0. p115 {o, 54 (0 ;’70 95177 )+ (- 9506—2 + QJW)}cos 20},

7 = T[0.5 01-15+{ 05+O~?7Z+( 9—107)}coszo]

7= T{-05 +<0 185 _0. 277)+(~—0'031 9?14@)} sin 2.0.

ot o *

2) Stresses in the plug (r<<ea, or p<1):

7 = T[o. 615 + {0. 593 +- (0. 044>} cos 2 0}, ]
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70! — T[o. 615 -+ {e 0.593 - (0. 240 p* — 0. o44>} cos2 o], |
70! = T {— 0.593 + (0.120 p* — 0. 044)} sin 2. J

The last terms in parentheses ( ) on the right-hand side in these equa-
tions express also the effect of the discrepancy between tangential displace-
ments at the junction of the plate and the plug. If these terms be suppressed,
all the above solutions reduce to the ordinary ones due to K. Sezawa and
G. Nishimura. Figs. 5, 6 and 7 were drawn for illustration by the above
solutions, Examples 1—3.

From the standpoint of the total strain-energy of the elastic system,
the situation of the three kinds of solution is figuratively illustrated in
Fig. 2.

B

)

3

QL

§ .
£ |, Suyehiro’s solution (78=0, » '+ ) ) )
8 ‘/ d ( viko) Ordinary solution by K. Sezawa and
@ G. Nishimura (v '=7v)

% Ar/

= /

C- Our present solution, strain-energy
being minimum (v'#v )
(0)

76 at the junction
Fig. 2. Figurative illustration for the situation of the three solutions

That the maximum tensile stress does increase compared with the
ordinary solution will be due to the fact that the tangential displacement

p Y ,\/Iammum tensile stress=1,00T 7Mammum tensile stress=1, 23T

=

/(”)r“a e
/\/ v )r=a = ’ R
. T i

Fig. 3. Ordinary solution Fig. 4. Our present solution
(E/ =E, ¢/ =0 =0.25) (E/=E, ¢/ =0=0.25)
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Y
1.23T .
[ 1.00T ~ Due to our solution, —
strain -energy being stable
i e
Due to ordinary solution,
_— strain - energy being unstable =
e 0 B ——
T T
e bt R
——— n=1 —
Plate
- (E,o0) —_—
PR 0 0 X —
-0.23T
v
e R
————e g Ség - Due to our solution, —
.7 strain -energy being stable .
Due to ordinary solution,
- 0 strain-energy being unstable —
——— T T —™
R n=1/1.5
(E / B
—— s
Plate
I ; (E,o ——
[— vl )
110,097 .
0 0.02T X
Y
% Z{II: -Due to our solution,
JIO—. . strain-energy being stable _
—AGonimere—" ——T
I 0 >
T «Due to ordinary solution, T
N strain -energy
P, being unstable = —»
PR, n=1/2 —_—
Plate
-— (E, 0) e
e " B
- o o4 ]0.16T %

0.06T

Fig. 5. Circumferential normal stress 70 at the junction of the
plate and the plug (o6’ =0 = 0.25)

No.6
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» 2p
— . X0=0 —
Plug(E, o)< 237 _
- 0.13T: n=1
- 0.87 —
) P 23T 2p .
{ 0.25T o
- 1 30> T
T o
P 2 6=30" = —
2p Plate (E, ¢")
3N\ L 0.75T
— 3e =60 "
— 1.00T —
Y 6=90°
.4——«——- T ’I‘ R
— Xo=p —
- >>>>\\0 24T ~
T 3 T
D 0= 30°
" i
— R — 6= 60" —
~— 0.99T: —_—
v
6= 90"

Fig. 6. Change in a0 along radius vectors for several angles from
the direction of edge forces (¢/ =o¢ = 0.25)
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Y
e 2/) L

- —0.08T

3p

e Zp‘

— -0.02T
Y
O 3p J—
) /. 75T
[ ° 6= 30 —
~——T T ——
—_— -0.02T —
e Plate (E,0) —
? .
—— 1.00T ——
— o Viex

3p 8=10
Fig. 7. Change in 7 along radius vectors for several angles from
the direction of edge forces (o/ = ¢ =0.25)
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at the junction of the plate is greater than that of the ordinary solution,
as shown in Figs. 3 and 4. In fact, it may naturally be inferred that the
occurrence of the difference, V, between tangential displacements at the
junction in Fig. 4 results in greater maximum tensile stress than that in
Fig. 3, where no difference between tangential displacements occurs.

Emphasis should be laid on the meaning of the term “boundary condi-
tions.” In such a boundary-value problem as the present one, we say
boundary conditions at infinity 7 = oc, and at the junction » =a. The
former may, to be sure, be called boundary conditions, while the latter should
not be termed boundary conditions in the true meaning of word. That is to
say, in the former case our intuition decisively admits of the only one state of
given external forces. Contrarily, in the latter case we may assume many
possible, but at times plausible, conditions. Qur present solution may be
justified, when a certain amount of initial radial compression exists at the
junction of the plate and the plug, so that no radial tension may occur
there after strain. If there is no such initial compression, then a separation
at the junction may easily occur after strain in the case of monocoque
construction. But, if a firm contact at the junction is secured by means of
welding or the like, then no separation will occur in spite of the tensile
stress.

The possible behaviour of the elastic system at the neighbourhood of
the junction is in reality that the discrepancy between radial displacements
also occurs; that is to say, along some part of the circumference at the
junction, the radial normal stress (77 or 777) will be a tension, while
along other part of it, this will be a compression, In the case of monocoque
construction, which is one of prevailing practices, the occurrence of such
behaviour is to be expected.

In this respect, the present work would not represent the true and
possible state of the elastic system considered. But, it can point out at
least the unreasonableness of the ordinary solution in a certain case, and
the true maximum tensile stress will be greater than 1.23 T (Fig.4) owing
to the occurrence of the separation at the junction of the plate and the
plug. We have reason to assume, however, that the effect of the separa-
tion between radial displacements would be less than that between tangential
displacements. For Fig. 7 above indicates an insignificant change in the
radial normal stresses compared with those of the ordinary solution, and

moreover a Coker and Filon’s treatment also suggests the same thing®.
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