The Derivation of the Proposed
Stress-Functions
in Three Dimensions

By Bennosuke TaNIMOTO*, Dr. Eng.

Synopsis. This is a detailed description of the derivation of my proposed
stress-functions in three-dimensional elasticity, which have been briefly re-
ported on the Bulletin of the Earthquake Research Institute, Tokyo Univer-
sity, 1948. The resulting equations are that certain operations are performed
on one biharmonic and one harmonic. It is noted that the fundamental
equations have successfully been applied to solving the generalized Boussi-
nesqg’s problem of elastic foundation.

1. In the development of the theory of elasticity we have been much
occupied with bodies in equilibrium under forces applied over their surfaces
only. In the case of two dimensions Airy’s stress-function has been found,
which is of some simple construction, and its many interesting attainments
have been accumulated.

This paper is devoted to the derivation of the proposed stress-functions in
three dimensions when elastic solids are in a state of equilibrium. In this
regard there have 1)been proposed the so-called Maxwell’s stress-functions
and the Morera’s, either of which seems to be widely accepted as the most
general expressions for stress-components. They are, to be sure, complete~
ly general, so long as the stress-equations only are concerned, but would not
necessarily be general for the whole system of our fundamental equations,
which consists of the stress-equations, the compatibility conditions of
strain, and thejstress-strain relations.

In fact it is obvious that our true aim is to attack the whole system in
question, and not the stress-equations alone. The unknown quantities in
question are fifteen in number, that is the six of stress-components, the
six of strain-components, and the three of displacement-components. On the
other hand the fundamental equations are also fifteen in number, that is

the three of stress-equations, the six of compatibility conditions, and the six
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1) Love, Elasticity, 4th ed., pp. 87-88.
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of stress-strain relations. With regard to the last if we take the Hooke’s
law between stress and strain as is usually done, the system of equations
reduces to three equations involving three unknowns, that is the displace-
ment-equations.

2. In a body in equilibrium under no body forces the six components of
stress satisfy three of the following equations at every point of the body:

Qf_ 0Xy L 020 _ g ...
+ 5, TG =0 (1)

which are known as the stress-equations.
As for the stress-strain relations our attention will be confined to Hooke's

law, viz.
or = %‘ {(Xe —o (Yy+ZD), oo s Cyz = 2(1+o) Yo, oo , (2)

E being Young’s modulus and ¢ Poisson’s ratio of the material.
The six components of strain have to satisfy the following equations:

aa?y %3}@;5 - gfayg, ...... .2 g)_)%xg - 589—5 ( aae;z + aae;x + aae;.v> ...... 3)
the so-called Saint-Venant’s identical relations between strains. These,
however, would only be necessary conditions for securing the compatibility
conditions of strain, viz.

o —ow  ov
el'ﬁ"'a}r B eyZ’*a‘3)+aZy ’

and will be not sufficient.

3. We shall begin by putting, with the extension of both of Maxwell’s
stress-functions and of Morera’s,

Y, = [aV +b o +ca%g+da%(a»+aaz)1/l

te(lh 1 Tmyy p (L + T8y g O </C"+/a)+hayaz(1(2+)(s)

ay* ay*
9 (Oxs , Oxs a/“ 9%
+Zax<ay+az>+]ax<az+8y> @)

Z., Xy being given by cyclical interchange of x, y, 2, and ¥, %, &; 4,
b, ¢, d, e, f, g, h, i, j being all constants, and p* standing for

o 0 0" 0
V= g + Pt + oo,

%i» X2» Xs are some functions of %, y, z. The form of the substitution
made in (4) may be the most general one, so long as symmetrical quadratic
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forms of differential coefficients are concerned. In particular if we a priori
take ¢ = — 1, and all other constants to be zero, we then have the so-called
Maxwell’s stress-functions; and if we take b = 4, i = —%,and all other
constants to be zero, we then have the so-called Morera’s stress-functions.
But these restricted substitutions are in general not sufficient for expressing
stress-components, even if they are necessary. This is a reason why I
made the substitution (4).

Next we might assume a single function y such that

w= e gl v o (G ) ) s ®)

where «, B, 7, ¢ are constants; y., s being given by cyclical interchange of
X, v, 2.

On substitution fg))r the above expressions (5) into (4) we obtain, after a

little rearrangement:
Ye= [ar'+ ax*p'+ o yep’ + o, x(y+2)p°
+ e Xt o XPyZ A+ 6 X (y+2) + sy 2+ cyxya(y+2)] 7, , (6)

where the constants ¢,, ¢, ---¢, stand for

¢, = (ate+fa+ ef,
¢ = (b—e—f+2¢)a + (a—2e+g)B + jr + (d-+1)3,

i

¢y = (c+2hda + hp + ay -+ (e-+f)d,

¢i= (d+i+ja+if +fr+ (a+e)d,

¢ = (bte—g)f — jy — (d+i)d, ‘ ™)
cs= (c—h)p + (b+2)r + (2d—e—~f+29+25)5,

¢ = (d—=Df + (—f+gr + (b—e+g)3,

¢y = 2(—e-+f)B -+ cr + 203,
¢o= (—i+f + (d+e—~f+my + (c—e+f+h+i+j)0.

Equations (6) may be the most general expressions for the shearing stresses
in terms of a single function ¥, so long as attention is confined to homo-
geneous symmetrical partial differential coefficients of the fourth order.

Now we shall find expressions for the three normal stresses. For this
purpose it is sufficient to refer to the fundamental stress-equations (1). For
instance the first of these equations gives, with equations (6),

Xy

% e Le,(v+2pt + e ye(y +2r° + ¢ x(p* —x* Dp* + ¢, y2(2x+y +2z)p*

2) In what follows black letters x, vy, z denote differentiations, that is for in-
0%y

stance x¥y =. an? etc.
0
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“+ ¢, yE(y +2)(p* —x* —yz) + 2¢c,xy* 2t + ¢, yz{x(p* —x*) + yz(v+2z)}
+ X! (y+2)(* —x* —yz) -+ coxye{(p® —x*) + x(y+2)}]x = 0,

or, on rearranging,
aa)ix +xle gt — e xPp? -+ oy e ey dyzpt + o x(y+z)pt

— (& +¢ )x" yz — ¢ X' (y+2) + 26, ¥ 2" — (¢; +¢5 —¢y )xya(y +2)] %

+ (y+2le, (e -ty +es dyap' — (¢ —c; )y*z 1y = 0.

This equation can be integrated with respect to x, when we assume the third
term in the left-hand member to be equal to zero. The reason of this assump-
tion might be justified, for if it were not, the resulting equation for y would
be of higher degree than that which will be presented in equation (24), and
an awkward and troublesome equation would result.

Thus we obtain the expression for X, in the form

Xy = —[cp* — X’ + (e, eq ey Dyap’ + cox(y +2)p’
— (6 +e X yz — o X (y+2) + 26,572 — (¢; +ey —cy Oxya(y+2)] 1, (8)
provided that
c, = 0, Cy+C,+cy = 0, ¢, —Cp = 0. 9)
The other two normal stresses Y,, Z, can b2 obtained by means of

cyclical interchange of x, y, =z i.e.

Yy= —[ep' — e,y 7"+ (2 +e; +c, dzxp’ + ¢ y(z-+x)p°
— (¢; +¢,)x5°2 — ¢y ¥ (Z+x) + 2¢52° x° — (¢; +¢5 —c¢y )xye(z+x)] , (10)
Zy = —[ep* — 62 P + (20 +6; +¢ )Xy’ + cozlx+y)p

— ey 65 )xyz’ — ¢s2’ (x+y) + 26X y" — (¢; +6s —¢o dxya(x+y)l x. (1)
We shall next calculate the components of strain. These are readily obtain-

ed by the substitution from equations (8), (10), (11), and (6) into equations (2).
Thus we first have

Gy = 1}3 [—(Q—0o)c; pt + {(Q40)es + 20¢, )5 p* + {—2¢, —¢; +0¢y —Cq }y2P®
4 {20¢, +0c; —Cy +0Cy }x(y+2)p* — 2oc, x*
+ {—20¢, +¢; —ocs +(1+20)c, }x° yz + (1+0)cx* (y+2)
— 26,y 7" + {(1—0)c, —ve, +¢5 —cy Jxyz(y+2)] 7. (12)

In like manner we obtain for the values of ¢, and e

Lyy == I}L‘ [—(l—ode, pt + {(A+0de; +20¢, } ¥ 7* + {—2¢, —¢; +0cs —C, }2Xp*
+ {20¢, +oc; —cy +ocy by(a+x)p® — 2oce vt
4+ {—20¢, +¢; —ocg +(1420)¢, yxy*z + (1+0)cs vy (-+x)
— 2c,2° x4 {(A—0)e; —0ac, +¢y —y pxya(z+x)]1 7, / (13)
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Gz = 7%, [—(Q—adeypt -+ {(A+0)cy +20¢, }2° p* -+ {—2¢, — ¢, +ocs —¢y pxyP?
+ {20¢, +oc; —cy + o, fE(xH4y)pt — 200, 2t
4+ {—20¢; + ¢, —0Cs +(1+20)¢, txyz" -+ (1-+6)cg 2z’ (x-+y)
—2¢x2y? + {(1—0)¢y —ac; ¢y — ¢y bxya(x+y)] 7. (14)

As for the shearing strains these are at once written down, from (6),

€yz == }l [e, 4+ x4+ cyyap® + c,x(y+2)p* + ¢ x*
b exXPyz b X () + 6 Y E -+ Coxya(y+a)] 7,

Coy = k}[ [er! + .y P+ cyzxp® -+ ¢,y (207" + ¢ !
4+ Xy 2 4 ¢ ¥ (B4X) + B X cyxya(z-+x)] 7,

Cry = /ﬁ [e.p* + .2’ P + oo xyp® + coz2(x+y)p° + ¢; 2
+ e xyz' + 2P (X4 Y) -k ¢ Xy 4 coxyE(xy)] .

4. We next have to refer to Saint-Venant’s identical relations between
strains, from which the constants c¢i,c., - ¢, Will be determined uniquely
so as to obtain a single differential equation for y. In the first place, let
us consider three of the first type of Saint-Venant’s relations (3); for in-
stance we have, with (13), (14), and the first of (15),

0%eyy | 0"ez 0 ey, . .
27wty + ¥iew — YZ
0z° oy® oy oz > z re

é [~( 1—adep®+ [(1—o)esx + (—2¢, —c; + ocy — ¢, X y+2)] x p*

+ [—2(1+o)e, + 20c,+oc; —csHocy |yap!

4+ [{—2C 1 +0dec; —20¢, —0¢, +C3 —0Cy } Y2 + {2, +€; — 0y -+, (ax-+xy)|x*
+ {1 —0)dcs —a¢; Fes—cy }x -+ {( 1 —adc, + ¢ —acy + oc, F(y+z)]xyzp

+ [{=@+ade; +oc; —cy ey fx + {—(1—a)e; — @tade; — ¢y + ¢, J(y-+r) Xy
— (1o, = Oxy* 2 (y+2) + 26, {oy*22p* —x* (v* 2 +y°2)} ] 1 (16)

and two similar equations will be obtained by means of cyclical interchange
of x, v, =z

In this connection, on considering the symmetrical character of strain-
components, we should infer that the following relations hold, i.e.

(1—0odcy = —2¢,— ¢. + ¢y — ¢y, i
—2(1L+a)Cy — 20C, — 0C; 4 Cy —TCy == 2C,+ €; — 0C4 + €y,

(I1—a)¢, — oC; + ¢y — ¢y = (1—0)c; + ¢; — ocy + ocy, (17)
Bto)e, — o¢; - ¢o— ¢ = (1—0)cy -+ @-Fode, -+ ¢y — €4y,

¢ = 0

moreover in equations (9) we have obtained

C, = O’ Cy == €y == "‘(Cu -+ C, )
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In equations (17) any one of the unknown constants which does not vanish
may be chosen arbitrarily, since the function y can be multiplied by any
constant without loss of generality, and therefore we for the present take

Cy == 1 .
Hence, on eliminating ¢, ¢, ¢;, equations (17) are rearranged to the follow-
ing three equations:

(A—0o)es+cy—0Cs+¢Cy =1, ¢,—Cs+¢y = —1, ¢,+c,—cy = —1L
On solving these we have
¢, = —1, Cy = €y = +—— = (3,
of which ¢, remains undetermined yet. In virtue of the values of ¢, and ¢,
found above we must obtain
¢, = ¢; =0.

By the above calculations we have seen that

¢ =0, .= 1, ¢, = unknown,
¢ = —1, C=0C= ¢ =0, I (18)
Cy == Cg == 1—-%“(—7 - C3. J

Thus our last step to the problem is to determine the value of ¢;. In virtue
of (18), equation (16) can be reduced to

ey | %€z _ 0"€yr _ o g
oz° 9y> oyoz Zeyy + ¥'€er — Y2y

= b [=(=e, 7" + (1=, (xy -+
+ {(1—0dc; —2(A+0)}yap' — (1—0)c, (yzt+zx+xy)x 7 1y, (19

and other two similar equations will be obtained by means of cyclical inter-
change from x to y and so on. These three equations must vanish for all
values of the variables x, y, z.

In the second place, let us consider three of the second typs of Saint-
Venant’s relations (3); for instance, from the fourth of (3}, we may form
the following equation in which the values of (18) are taken into account:

Cexe , ey  Den ey

dyaz T oxt  axdy  ozox
- ]% [—(1—0)e, yap* — 21+ a)x(—x+y-+z)r* 1 7, (20)

and other two similar equations will be obtained by means of cyclical inter-
change from x to y and so on.
Equations of the types (19) and (20) must vanish for all values of the vari-
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ables x, y, 2 within an elastic solid and over its surface, and therefore we
take

¢ =0,
Hence (18) become
¢, =0, cy=1, ¢y =0, Cy= —1,
21
¢y = ¢ = ¢; = 0, Cszcﬂ-:i"-g——a' J
We then have, from equations of the type (19),
yzpiy =0, zxp'z=0, xyp'y=0, (22)

and hence these equations give

pry=Xx) + Y(y) + Za),

(23)
where X, Y, Z denote arbitrary functions of x, y, z in order.
From three equations of the type (20) we have
x(—x+y+2)p'y=0, y&—y+2piy=0, z(x+ty—2)f'yz=0.
We then have, with the use of (22),
x'pty =0, yrtr=0, z2'ply =0,
or
® o o g ® o
axgp/.—‘ ? asz/v"‘ ’ angl’”" .
These give together with (23)
. A&y &z
=% =0 =0
and therefore
Xix) = Ax + A/, Y{(y)= By + B/, Zz)=Cz + C/,
where A, B, C, A7, B/, C/ are constants.
Thus we have for the present the result
pty=Ax + By + Cz + D, (24)

where, for shortness, D is written for A’+B/+C’, and, as hefore,

(LY
r- ((?x“ [ ay* { (’)‘z‘“')
The equation (24) is the fundamental differential equation which must be
satisfied by the stress-function y in three dimensions, provided that

A=B=C=D=0,



16 B. TanimmoTo No. 5

the reduction of which will be given in Article 6.

5. The six components of stress can be obtained, by substituting from the
values of ¢,, ¢, ¢,, (21), into equations (8), (10), (11), and (6), in the forms

Xy = (¥ +2° )(yztzx+xy) — (1—adyzp'} 7,
Yy, = {(2" +x*)(yz+zx+xy) — (1—o)zxp*} 1,
Z; = {(x* +y* )(ye-tzx+xy) — (1—adxyp*} 1,
Y, = {—ye(yz+ex+xy) + 1—;£XC~X+Y+Z)V”} % 25)

Zyp = {—zx(yz-+Ex-+xy) -+ Léf y(x—y+z)p* )y,

X, = {—xy(yz+zx+xy) + I—EEZ(X+de>Vﬂ} %

or, with the usual notations,

o= (g + = a0 T
Yy = {(ge + )7 A= 0 b
Zo= (g + )7 Q=0 s v ,
Vom {gbol 5 0t ytarte | “
%= {“ozox‘? T e
%= {3l S Gty a0 e
where, as usual,
V:()”? %-aay2 +—";
and 7* represents the operator
= ﬁ‘a‘ﬁa‘zgéffafa“y'

Here the function yin (25) or (26) is multiplied by a constant—2/(1—0¢), as it
will be more convenient for our discussion in virtue of simplicity. In what
follows we shall exclusively use this new substitution.

It may be seen easily, by substitution, that the above equations (24) and
(26) are satisfied by the stress-equations (1), Hooke’s law (2}, and Saint-Ve-
nant’s identical relations of strain (3.

In the first place, the substitution of the stress-components obtained in
(26) into the left-hand members of equations (1) gives three equations of the
type
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0X, X, | 0z

0x 0y 0z

= [x(y*+ 2°)F * — (1—o)xyzp® —xy* 7 * +

" _1_;_2 ya(x—y-+p*1 1,

= xXy + yX, +2Z,

1;” yz(x+y—2)p°

which vanishes identically. It has thus been proved that the stress-equations
(1) are satisfied by our equations (26).

In the second place, we shall calculate the strain-components in terms of
1. We obtain three equations of the type

Cyy == é '{XA - G<Yy -+ ZZ >}

I

5 P =x) = A=adyar b1 — AP (7 +x*) — (L=odxCy 27} 1

and this can be rearranged into the first of the three following equations,

and the other two are obtained by cyclical interchange from x to y and so
on.

e = Z—IﬂX{—xV‘% A—oX(y+zp*} 2, ]
Cyy == 21ﬁ vA—yV 4+ A—adX(z+x)p*} 1, 27)
ez = Zluz {—2F * + (A—o)(x+y)p* } 1. [

We next obtain for the three shearing strains the equations
y: = /ll{~—yzf7‘ﬂ+ L;—(;X(~X+Y+Z)l72}x, 1
Czx = /1 {~zxt7 Pt 1;” y(x—y+z)p* } 1 (28)
Cxy == /ll {—-xyﬁ” + 1:2-17 ZCX+y—Z)V‘“‘}x- J

In the third place, we shall examine Saint-Venant’s relations (3). First we
obtain three equations of the type
0 eyy y 0 0" ey,
0z* oy* 0y 0z
=} yal—yaP 4 A=t - y2 P2
‘ + (A—o)y(x+y)r* + 2yzF * — (1—o)x(—x-+y-+e)p’ ] 1

B A
=75 YZ [y,
and also three equations of the type

Few 0 __Oey 4 0ez 4 Oexy

dyoz ox  ox oy 9z )
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== il. x [——xyzi? P (1—o)yz (y+2) p* — xyzf * + %f x*(—x-+y+z)F*

+ xyzF * — 1—%9 v (x—y+2z)p® + xyzlf * — 1—"2_022 CX+y—2)172] %

= 1—2—0 x(—x-+y+z)pty.
7

But, as we have obtained in (24) the equation
7ty = Ax 4+ By ++ Cz + D,

we easily see that the above two types of Saint-Venant’s relations are sat-
isfied.

Thus it can be concluded that our equations (24) and (26) are satisfied by
the three kinds of original equations, that is the stress-equations (1), Hooke’s
law (2}, and Saint-Venant’s relations {3). The last, however, is not sufficient
for securing the condition of compatibility, that is the definition equations
of strain.

6. We may easily find the displacement-components in terms of y, by in-
tegrating the three equations (27) with respect to x, y,z respectively, that is

u= g (=P Qo)) 1 ]

5 (Y7 A=)zt

29)
w = 21'42{"Zﬁg+ A—=aX(x+¥)7" } 1 J

where no arbitrary function need be added, for any such function can be
included in 3. These displacements should give rise to the three shearing
strains obtained in (28). For instance e,; is derived from (29) as follows:

—owov Lm0 e vy g 10 4}A
€y = (’)\_}7 -+ gy /; { yz7 ¥ + 5 XC X -} y+z)r + 5 [ S
and this must be in accordance with the first of (28), from which we at once

obtain
7ty =0. (30)
This is the required differential equation for y, and that obtained in (24)
is by no means the case; but the constants A, B,C, D in (24) need be brought

to zero.
It will be seen easily that the displacement-equations

0
GGy fy I e o w=0 o

are satisfied by equations (29) and (30). To see this we form
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4 o 0u v

_ ) ow _ 1—20
ax  dy :

2 ol
oy = “on Virty, (32)
and hence on substitution from (32) and (29) into the left-hand members of
equations (31) we have
G 2 oy, P Tty L (ex, —y, —F
2u 2
—F—%Vg(lﬂr)(yﬂ, Z+X, X+y)piy
= ]L——_(T (y_}_z, Z+X, X+y)[74x y et R

and these vanish in virtue of (30).

7. Singular potential. The general potential stated above is not sufficient

for any boundary conditions, for the equation p*y =0 has only four degrees
of freedom. Now we take the relation

w = 2&{_;;7 P (A—o)(y+2r ) 1,

which is one of (29). If we consider this equation to be a differential equation
with respect to the function y, and # some known function, then this equa-
tion will have a particular integral, which is the required solution. # may
take various forms of functions for respective boundary-value problems,
and is always restricted within the domain of biharmonic functions. In this
connection we may put

“= 21/, {—=xF?*+ Q—oXy-+2r'} 1, l
v = Zlﬂ {—yF 4 (A—=0o)(z+xp" } 7 + 07, (33)
w = zlﬁ {—2F * + (A—odX(x+y)pr*} 7 + w’, [

in which ¢/ and w’ are some functions of x,y, and z, which are not included
in 7.

It can be verified easily that, introducing a function, ¢ say, the displace-
ment-equations (31) are satisfied by

1 d¢ 1 d¢
/= P/ = e o (A=
u 0, v 2 02° w 23y (34)
provided that ¢ satisfies the harmonic equation
Frg =0 (35)

the constant 1/2x being multiplied for convenience.
The cyclical interchanges of letters in(34) may also be solutions of the dis-
placement-equations (31); that is we obtain the two sets of functions
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3 /
Sy o L OO /e /. 09 36
“ 2p 02 v 0, w 2p0x° (30)

/= 109 fe - 109 /= 37
= oy V=50 W0 37

¢ satisfying (35) as before.
The sum of (34), (36), and (37) are also a solution of the displacement-squa-
tions (31); that is

wWe (g e V= =g 68

where, as before,

Typical solutions of (39) are
¢ =(C,cosax cosfy + C,cosax sinfy + C;sinax cosfy + C, sinax sinfy) ez,
(40)
a, B, r being parameters, provided o 4+ = 7.
Stress-components derived from (38), provided Hooke’s law (2) is referred to,
become

= (LT Py e
X = (axay azax> ¢ Ye=

2

(O - Lo Tm Py,

1
2
;007 T WA @ ”8
Y= Gy ~oxay) @ % = 3 (oyae 02 Tow " amay) P (! ! 1
2 .
2

Z, = («ag — 6f>(/)’ X, = Az

0° 0% 0 0
Gzox  9yoz) ! (Grox — 32 T o5 ~ay5a) &

This system of functions consisting of (38), (39), and (41) may be called
‘singular potential’ in three-dimensional elasticity by reason of the substitu-
tion made in (33). In contrast with this, the preceding function y may
reasonably be called ‘general potential’; and the aggregate of the general
potential and the singular potential constitutes the proposed three-dimen-
sional stress-functions.

8. We shall see that the substitution (33) enables us to find particular solu-
tions of the displacement-equations (31) in the forms of product of functions,
and that they will be the same as those derived from (38) in the preceding
Aritle, §7.

Substituting {33) into the displacement-equations

(5’ 0 > + (1—=20) p* (u, v, w) = 0,

ox’ 0y 0z
we obtain
A/ 4
20y 2wy o, ]
ox \oy 0z
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a (ov’ | ow’ _ 2,
75 (5 <__ + 7?) + (1—20) p* v’/ =0, [ (42)
o (v’ | ow’ /e
2z 5y +555) + A2 =0,
If we assume )
v =F (3,2) Xi(x), w =F,(y,2)« X;(x), 43)
then the above three equations become
oF, X{ | oF, _ ,
337 X7 + e 0, (44)
. 1"1 ol’1 0P Xy ey 1X{’_~
2(1—a) " 7y + (1—20 ) 7 3y oz X, + (1-20)F, X _,0, (45)
a* Fn 9" I X, —

Equation (44) holds only when
X,=aX, + D,

and further we may, without any loss of generality, take

a=1, b=0,

since the latter of (43) might have been assumed to be of the form

w' = F(y,20{aX,(x)+ b}

We therefore have

X=X, 47
and on substituting this into (45) and (46) we obtain
{2(1»—0) B a2l h g Sﬁz} +(1—20) F X —0, 48)
{2(1 o)a F? + (120 )aa;“"“ gy’;;} + (1—20) F, *;{( —0. 49)
These equations hold only when
%{é[ = const.; (50)

1

and, for our present purpose, we may confine cur attention only to the case

when

Equations (48) and (49) then reduce to

2(1—0) 9»-5 4+ (1—20 ) gyF

(51)

—(1—2¢)a*F, =0, (62)
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21— a)Qf;» (1—20) a__& + 2;; — (1—20) a* Fy = 0. (53)
Now we assume
o . COS ;. . sin
Fo= 9% py-2, (o), Fy= 30 5y Z,(2), (54)
and then equations (562) and (53) become, dividing out g?§ 8y,
(1—20)Z" 4= B2, — {((1=20) a® + 2(1—a)B*} Z, = 0, (55)
2(1—0)20 = PZ] — (1—26)(a* + ) Z, = 0. (56)

To solve these simultaneous equations, we first differentiate (55) with
respect to z, and substitute the result into (56), we obtain

F2(1—0)Z! £ {2(1—0) & + (32008 } 21 — (& + )2, = 0;
and furthermore on differentiating this and substituting the result into (55),
we have
2(1—0)ZF — {(3—4a) a® + 4(1—06 ) } ZV
+ (@ -+ B YA —20) & + 2(A—a)F } 21 = 0. (87)

On making the substitution Z == ¢¥2, we obtain the indicial equation
[ — (@ + 8120 —0v* — {(1—20)a* 4 2(1—0)F* } ] = 0,
from which we have

y== 1+ F, i\/Z%IEZ) a® + [3?

1) If we take
Z, = Ag™Vear+p 2 (58)

equations (65) and (56) afford

7,:_ i Aﬁe»" vwz—*;g‘:: Z

21—VZY — (1—26)(a 5212, + Apy/ad ¥ Fe Vs 2 =0,

from which we obtain

— IB v ’\/w +B z, {59
1/a + ﬁ )
ii) If we take
B e/ | 1— 20
Zy=B exp(—yy 20 0t b ez). (60)

equations (55) and (56) afford

=2 B by on (Ve 5 g
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or,on integrating,

B 122, T x
Zi=% Ias ot + exp (—,/,1=2¢ .2 )

This system of solutions (60) and (61) does not satisfy the first of (42), and
therefore is not solution of (42).

In this way we may arrive at the results

(61)

u =0, o = 15 w’ = B gy
po0y’ ©n oz’
X: =0, v, =2°7 4’ z. =250, (62)
— 0* ¢, 2 0% ¢y a0 (ﬁ,
B 47 )éyaz Ze=F 9z0x’ L=r dxdy’
(7 =a+ )

where ¢, is represented by
¢ = (C cosax cosfy+C{ cosax sinfy-+C{sinax cosfy+C!sinax sinfy) e~z (63)

9. The particular solutions found in (63) in the preceding Article, § 8, will
be coincident with those derived from the singular potential (38)in §7. As
particular solutions for ¢ in (34), we take the functions given in (40), and
then with (34)

FA— O s
v/ = ~2f» (Cicos ax cosfy-+Cyeosax sinfy+ Cisinax cosfy+Cisinax sinfyde-v2,
"
w’ = ~2‘Q~ (—Ccosax sinfy-+Cyosax cosfy—C,sinax sinfy-+C,sinax cosgyde—rz.
"

On the other hand equations (62) give, on referring to (63),

u’ =0,
V== — ‘B-ﬁ(C,’cosax sinfy—Cy cosax cosfy-+Cy sinax sinSy—C/sinax cosfyde-rz,

/3 T(C’cosax cosBy+Cicosax sinfy+C{sinax cosfy + C/sinax sinfy)e-=.
The two systems of functions above are identical with each other, if we
put
C = —287C{, Co=2pr C/, C,=— 28 C/, C,=28y Cy.

Thus we have seen the coincidence of the two systems of functions, and

hence may conclude that, so long as the product form of functions is con-
cerned, the singular potential (38) has the complete generality.

10. The aggregate of the general potential and the singular potential
constitutes the proposed stress-functions in three dimensions. That is, with
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the aggregation of (29) and (38), we write down

“= ZJ;M{ (1;6 "t <1M(T>< ) 7 } ok 21/4 <(78y - 032') O ’ (64)

where, as before, n is the 1‘1g1d1ty and o Poisson’s ratio, and

o B el B B
ox® uy 0z’ dyoz | dzox | 9xoy

the remaining displacement-components v and w being given by cyclical in-
terchange of letters. y and ¢ satisfy respectively the equations

iy =0, g = 0. (65)
The stress-components derived from the above displacement-components
become
Ko = {(Da} + 382')17)~ (= )oyaz } <8x9y azax (‘/)’ """ ’ \I
Ye = {’"a;az et 1; aox< ay + o) P} (66)
BT T

the remaining stress-components being given by cyclical interchange of let-
ters.

It will sometimes be convenient to extract harmonic functions, ¢/ say,
from the y-function. In this case p*¢/=0. Then F*¢/, which is always
common in all expressions in (64) and (66) and is harmonic as well, can be
replaced by a new harmonic, ¢ say. Thus we have

1 d 1/a J
- 2{(2;/: qu{ (’}x? +(1~—a)<ay .((z)l_ }z i 2'/?(?775’“‘7‘(5)%

0° \ ¢ L. E 0*
o= Gl {(oy o) A g P Gy~ o) &)
Y,= 29 4 {_9 gy lme (- 940 40 )Vs}7/

0ydz oyoz 2 ox dx ' dy @ 0z
1l 8 N,
2 <z’)xay ay* T T azax > & ’

in which ¢, ¢, and 3/ satisfy respectively the equations
pig =0, rig =0, rty =0, (68)

%’ being ‘proper’ biharmonics.

The above system of equations consisting of (67) and (68) has been effectively
employed in solving the generalized Boussinesq’s problem of elastic founda-
tion, which is compatible with any distribution of shearing forces, as well
as with of normal pressure. Complete description of this work will appear
in the Transactions of the Japan Society of Civil Engineers in the near
future.
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Epilogue. The present work, so far as the fundamental equations (67) and
(68) are concerned, has been done since 1948, together with the solving of a
certain simple Boussinesq’s problem. At that time the late Dr. H. M.
Westergaard, then professor of Civil Engineering in Harvard University,
Mass., gave me a letter in reply of my manuscript on the work through
Dr. H. C. Kelly, then Acting Chief at Scientific & Technical Division,
GHQ. In that letter he stated:

“.....The paper contains statements of general procedures which I as-
sume are applied in the larger work. ... I have reason to assume the
particular -procedures would work out well in applications.

“] shall appreciate if you will convey to Professor Tanimoto my best
wishes for continued success in his work and my thanks for having caused
his paper to be sent to me.”

Also, Professor H. Neuber, Dresden, gave me a reply in which he stated:

“.....Allerdings glaube ich, dass sich der von Ihnen benutzte Ansatz fiir
den Ubergang auf beliebige krummlinige Koordinaten nicht so gut eignet
wie der von mir im Jahre 1934 in der ZAMM versffentlichte Dreifunk-
tionenansatz......”

In fact, I must say that I have not yet worked out the transformation
to curvilinear coordinates, except for that to cylindrical coordinates only,
its applicability to technological boundary-value problems being set about
as a trial.

In conclusion, it is added that a rather brief description of the general-
ized Boussinesq’s problem cited has appeared in the Proceedings of the Ja-
pan Academy, November, 1955, and that a succeeding boundary-value
problem has just been solved, which is that a thick plate is subjected to three

pairs of external forces on its bounding planes.



