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  Synopsis. This is a detailed description of the derivation of my proposed

stress-functions in three-dimensional elasticity, which have been briefly re-

ported on the Bulletin of the Earthquake Research Institute, Tokyo Univer-

sity, 1948. The resulting equations are that certain operations are performed

oR one biharmonic and one harmonic. It is noted that the fundamental

equations have successfully been applied to solving the generalized Boussi-

Resq's problem of elastic foundation.

  1. In the developmene of the theory of elasticity we have been much

occupied with bodies in equilibrium under forces applied over their surfaces

only. In the case of two dimensions Airy's stress-function has been found,

which is of some simple construction, and its many interesting attainments

have been accumulated.

  This paper is devoted to the derivation of the proposed stress-functions in

three dimensions when elastic solids are in a state of equilibrium. In this

regard therehave been proposed theso-called Maxwell's stress-functions
               1)
aBd the Morera's, either of which seems to be widely accepted as the mose

general expressions for stress-components. They are, to be sure, compleee-

ly general, so long as the stress-equations only are concerned, but would not

necessarily be general for the whole system of our fundamental equations,

which consists of the stress-equations, the compatibility conditions of

strain, and thegstress-strain relations.

  In fact it is obvious that our true aim is to attack the wkole system ln

question, and not the stress-equations alone. The unknown quantities in

question are fifteen in number, that is the six of stress-components, the

six of strain-components, and the three of displacement-components. On the

other hand the fundamental equatiens are also fifteen in number, that is

the three of stress-equations, the six of compatibility conditions, and the six
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of stress-strain relations. With regard to the last if we take the Hooke's

}aw between stress and strain as is usually done, the system of equations

reduces to three equations involving three unknowns, that is the displace-

ment-equatlons.

   2. In a body in equilibrlum under no body forces the six components of

stress satisfy three of the following equations at every point of the body:

                      %'.kZt-+t.,Mrm,.-+e,-Z,1--=-o,･･････, (i)

which are known as the stress-･equations.

  As for the stress-strain relations our attention wil} be confined to Hooke's

law, viz.

      e., == tt--{.Xl, -o(]Yly {- a)}, ･･･-･･, e,. = Z･--CIE+-9) Y2, ･-････, (2)

E being Young's modulus and a Poisson's ratio of the material. '

  The six components of strain have to satisfy the following equations:

  a--g.e,y"y+0,il-,-es-g - 3-j,.'e,y-:-, ･･････, 23--),sZ,xxE2' =- zi7.(- a,Illiz -t- 0,ttx- +0,e.sry), ･-････, (3)

the so--called Saint-Venant's identical relations between strains. These,

however, would only be necessary coRditions for securiRg the compatibility

conditions of strain, viz.

                                    Ow                                         Ov                    0u
               exx -- -a-x, '''''', eyz =" b-y +'i"2, '''''',

and will be not sufficient.

  3. We shall begin by putting, with the extension of both of Maxwell's

stress-functions and of Morera's,

    Y2 == Ca72 + b 'aOil' i2 + c b''t9'X'o' tt' +db'O. (b// + LoO'la')] zi

     +e(/2yx,2+-OS.Z-,.3)+f(at/T.-X.g'+Qa-/X-.g)+go-ai"E-(z2+z3)+he22o.(x2+x3)

                            +ia'a.'(t'o7j'+0aX,3')+i"ohO.uz(TOoX.2+'6a//"), (4)

ZL,, Xl being giveR by cyclical interchange of x, N, z, and xi, z2, z3; a,

b, c, d, e, L g, h, i, y' being all constants, and v2 standing for

                       . a2 o2 oo.
                      ff" === o'x':-`' + 'ai'2 + '6' z'"-"

  zi,z2,x3 are some functions of x, y, z. The form of the substitution

made in (4) may be the most general one, so long as symmetrical quadratic
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forms of differential coefficients are concerned. In particular if we a priori

tal<e c == - 1, and all other constants to be zero, we then have the so-called

Maxwell's stress-functions; and if we tal<e b =: -l,-, i -- -S,and allother

constants to be zero we then have the so-called Morera's stress-functions.
                  '
But these restricted substitutions are in general not sufficient for expressing

stress-components, even if they are necessary. This is a reason whyI

made the substitution (4).

  Next we mlght assume a single functlon x such that

           zi == [cu f72+Pba-,-u･?x.;- +rb-yO--S--.- +6a-Ox (o-Oy + DQ-.)] z, ･････', (5)

where c¥, P, r, fi are constants; z2, z3 being given by cyclical interchange of

X, Y, 2.

  On substitution for the above expressions (5) into (4) we obtain, af£er a
                  2)
little rearrangement,

     Yle = [ci t74 + c2x2t7'L' -t- c, yzl7'L' + c,x(y--z)p2

          + c, x` --i- c6 x2 yz + c, x" (y--Fz) -F c,yL' z2 + c,xyz(y+z)] z, -････-, (6)

where the constants ci, c2,･-･cg stand for

          c, = (a+e+f)a + eP ,

          c, == (b-e-f+2g)cv + (a-2e+y)P + 1'r + (d+i)o" ,

          c, === (c-"2h)a + hP + ar -i- (e+f)ti ,

          c, = (d+i+7)a + iP +fr + (a-Fe)6,

          c, === (b+e-g)P-]'r -- (d+i)o', (7)
          c6 =" (cnth)P + (b+2i)r + (2d-e-f+2g+21')o" ,

          c, -ww (d-i)P + (-f+g)r + (b-e+y)o" ,

          c, == 2(-e+f)B + cr + 2ho" ,

          c, - (-i+]')P + (d+e-f+h)r + (c-e+f+h+i+]')ti .

  Equaeions (6) may be the most general expressions for the shearing stresses

in terms of a single function x, so long as attention is confined to homo-

geneous symmetrical paytial differential coefficients of the fourth order.

  Now we shall find expressions for the three normal stresses. For this

purpose it is sufficlent to refer to the fundamental stress-equations (1). For

instance the first of these equations gives, with equations (6),

    aisilll}c + [c, (y+z)g4 + c, yz(y+z)v2 + c, x(72 ---x2 )ff2 ..y c, yz(2.+y+.)v2

2) In what

 stance x2'x

follows black letters x, y, z denote

H a2x
       etc.-' b'i2,

differentiations, that is for in-
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     -Y cs, yz(y+z)(ff2 -x2 -yz) --F 2c, xy2z2 -f- c, yz{x(ff2 -x2 ) + yz(y+z)}

     --l- c,xL' (y-i-z)(t;7L' -x2 -yz) -- c, xyz{(v2 -x2 ) -f- x(y-i-z)}] z === O,

or, on rearranglng,

    0aX-x･1 + x[c3 v` - c, x2' cr2 + (2c, +c, +c, )yzff2' + c, x(y+z)i7'[

       - (c, +c, )xi' yz - c, x3 (y-i-z) + 2c, yLzL' - (c, +c, -c, )xyz(y+z)] z

       -i- (Y+Z)[C, ff" -l-(c2 -FC., -}-c, )yzi7L' - (c, -c, )yL' zL' ] z ..., O.

  This equation can be integrated with respect to x, when we assume the third

term in the left-hand mernbey to be equal to zero. The reason of this assump-

tion might be justified, for if it were not, the resulting equation for z would

be of higher degree than that which will be presented in equation(24), and

an awkward and troublesome equation would result.

  Thus we obtain the expression for IYL, in the form

   -ncc "=: '-[C3 l74 - C3 x2 ;72 'Y (2C4 ml-C7 +Ce)}rzV2 + Csx(y-i-z)t72

       - (cT +c, )x" yz - c,x3 (y--yz) -t- 2c, y2zL' - (c, -t-c, -c, )xyz(yff-z)] x, (8)

provided that

               c, == O, c,+c,+c,,, ur O, c, ----c, == O. (9)

  The other two normal stresses Y), lz can be obtained by means of

cyclical interchange of x, y, z; i. e.

Yly == -[c3 ff'" - c, y2 f72 + (2c, --Fc, +c, )zxl72 -F c, y(z-yx)p'2

     - (c, +c, )xy2z - c, y3 (z+x) + 2c, z2 x2 - (c, +c, -c, )xyz(z+×)] z, (10)

Z. = -[c, f74 - c,z2 cr2 + (2c, --Fc, -t-c,)xy{72 -t- c,z(x-vy)s72

     - (c, -t-c, )xyz2 - c,z3 (x--l-y) + 2c, x2 yY' - (c, +c, -c, )xyz(x+y)] z. (11)

 We shall next calculate the components of strain. These are readily obtain-

ed by the substitution from equations (8), (le), (11), and (6) into equations (2).

Thus we first have

   exx == S- [-(1-ff)c3 g" l- {(l--a)c3 + 2oc6 }×2 ff2 + {-2c, --c, +ac, -c, }yzcr2

              + {2ac4 +ac7 -c6 +acg }x(y -yz)ff2 - 2oc, x4

              + {-2acs. ÷c7 -ffcs +(l+2a)cg}x2 yz + (1+a)c, x3 (y+z)

              - 2c, y2 zL' + {(l.-o)c, -oc, +c, ---c, }xyz(y+z)] z. (i2)

  In like manner we obtaln for the values of eyy and ez2

   eyy == Lil} [-(i-o)c3 ff` + {(1+a)c3 +2oc6 }y2 rf -t- {-2c, -c, -f--oc, -c, }zx72

              + {2aC4 +acT -cs --Fac, }y(z+x)72 - 2ac, y"

              + {pm2ocs +c7 -acs +(1+2a)c, }xy2z ÷ (1+a)c, y3 (z+x)
                                                       '              - 2c, z2 x2 + <(1-a)c, -ac, +c, -c, }xyz(z+x)] z, (13)
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eza === E"
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   As for

      tZyz " 'Li [ci f74 + c2x2 v2 + c,i yzl72 -f- c, x(y-{-z)ff2 + cf, x`

            j              -t- c, x2 yz -l- c, x3 (y-Fz) -F c, y2zL' --f- c, xyz(y-i-z)] z,

      ezx = Ll･ :-- IIci cr4 + c2 yL' f72 -- c3 zxf;':" --l- c4 y(z+x)t72 ÷ c:,,y'i

            ft
              --y c,xy2z + c,y3 (z--Fx) + c,z2 xL' -f- c,xyz(z--Fx)] z,

      esy = '} [ci ff`+ c2z2 ffL' + c,xyff2+ c,z(x+y)g2 g- c,.,z4

              + cGxyzL' --i- c,z3 (x--Yy) --F c, x2 y2 + cc,xyz(x--i-y)1] z.

 4. We next have to refer to SaintsVenant's identical

strains, from which the constants c].,c2,･･-c,, will be

so as to obtain a single differential equation for z. In the first

us consider three of the first type of Saint-Venant's relations (3)

stance we have, with (l3), (l4), and the first of (15),

   05-tt,y- + 6Sye2,2- t6･lit//-// == z2 eyy -" y2eaz - yz eyz

  == ]-E}･ -- (-(1 -a)c3 if6+ [( 1 -a)c3x+ (-2c, -c, + ac, - c, )(y-･Fz)] x ff`

   + [- 2( 1 +a)ci + 2ac4 +ac7 -cs +ocg ]yzv`

   + [{-2( 1 +a)c2 -2ffc, -ac, -ft cs -ocg }yz + {2c4 +c? -acs

   + t{( 1 --a)cs -acT +cs -c, }x + {( 1 -a)c,., ･

   + [{-(3+a)c7, -Y ac7 -cs +c, }x + {-(1-a)c, - (2-l-a)c7 - cs + cg }

   - ( 1 +a)(cs -c, )xy2 z2 (y+z) + 2c6 {ay2zL' ff2 -x2 (y4 +z4 +yL'

and two sirnilar equations will be obtained by means of cyclical

of x, y, z.

  In this connection, on considering the symmetrical character

components, we should infer that the following relations hold, i.

          (1-a)c3 == -2c4-c7 -F ac6-cg,

          -2(1-ya)c2 - 2ac, - ac7 + co -ac[} :=: 2c,i -l- cT - ifcs -i- ce ,

          (1-a)c, - ac7 + c$ - Cs) =T- (i-o)c:, + CT - octs + ac!} ,

          (3-f-a)cr, pt ac; -'lm c$ pt c" ="=' (1nv(i)Cr, rF (2-t-tr)CT u'i- Cs - Cc"

          c, ==-r O;

moreover in equations (9) we have obtained

                    Cl =='` O, Cs ==;' C7 ::':L' -(CL, -l-- C,i ).

[-(1-o)c, l7` + {(1+cr)c,i --}-2(ic, }･z'"' ffL' --F {-2c., -c,･ +(fc, -c, }xyl72

   --F {2ac4 --Foc7 -c6 -i-ac, }z(x+y)yL' - 2ffc,, z'i

   -i- {-2oc: -I-c7 -ffC6 --t-(l-t-2a)c,}xyzL' -t- (1+a)c,z3(x-t-y)

   -2c, x2 y2 -r {(1-(f)c,. -ac, +c, -c, }xyz(x÷y)] z. (14)

the shearing strains these are at once written down, 'from (6),

(15)

13

  relations between

determined uniquely

         place, let

         ' for in-
         '

           -}-C, }(Zx-l-xy)]xL' ff2

-F ci･ -acs "･- ac, }(y+z)I]xyzrr`:

                  (Y-t-z)]x3yz

              z2)})z; (16)

                 interchange

                   of strain-

                   e.

                  }

                       (l7)



  In equations (i7> any one of the unknown constants which does not vanish

may be chosen arbitrarily, since the function z can be multiplied by any

constant without loss of geiierality, and therefore we for the present take

                             c,, :== 1.

  Hence, on eliminating c,,, c,,, c,, equations <l7) are rearranged to the follow-

ing three equations:

     (1-a)c3+c4-ocs+cg :-- 1, c4-cs+cg := --1, c4+cs-cg == -1.

  On solving these we have

                                            2                     c4 =:= -1, cs == cg == t=-ff-c3,

of which c3 remains undetermined yet. In virtue of the values of c,i and c4

found above we must obtain

                             C5 L' CT == O.

  By the above calculations we have seen that

              ccl .-,,,- Orl, cc,j =" cl l. c, .. o, c3 == tmknown,l (ls)

              cs == cg :IIiill[I,-c,. I

  Thus our last step to the pyoblem is to determine the value of c3. In virtue

of (18), equation (16) can be reduced to

   0inesTy + 0SNez,z - tt/F-ig-zg == z2eyy + pt?e,. - yzey.

         "= 'i'l}'- [-(1-o)c3ff6+(1-o)c,(x+y+z)xfi"

          + {(1-o)c3 - 2(1-if a)}yz7` - (1-o)c, (yz+zx+xy)x"' ff2 ] z, (19)

and other two similar equatEons wiJl be obtained by means of cycljcal inter-

change from x to y and so on. These three equations must vanish for all

values of the variables x, y, z.

  In the second place, let us consider three of the second type of Saint-

Venant's relations (3); for instance, from the fourth of (3), we may form

the following equation in which the values of (18> are taken into account:

     2i-s-e,-x2+assy,,2-g･･1-･//z;･-g-,y-//tty

             1          ==n' E [-(1-o)c3 >rzg"- 2(1+ff)x(-x--l-y-l-z).i7`] x, <20)

and other two similar equations will be obtained by means of cyclical inter-

change from x to y and so on.

  Equations of the types (19) and (20) mttst vanish for all valtzes of the vari-
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ables x, y, z within an elastic solid ancl over its $urface, and therefore we

take

                               C3 "" O.

Hence (18) becorne

                cl =O, cL,=l, c3=･:- O, c4 =- -1, >
                Cs == c6 -- c7 -- O, c, = c, L- 13d J (21)

  We then have, from equations of the type (19),

               yz f'z= O, zxp"z == O, xyF`z=O, (22)
and hence these equations give

                        ff`z == X(x)+Y(y)+az), (23)

where X, Y, Z denote arbitrary functions of x, y, z in order.

  Frorr} £hree equations of ehe type (20) we have

     x(-x+y+z)rf z = O, y (x-y+z)ff`z =: O, z(x+y-z)F`z =: O.

  We then have, with the use of <22),

              x2 v'z xx O, y2 7"z= e, z2 ff`x -- O,

or

              acrr/"･, v4z =o, o///-2 v4z == o, btt2, v`z =o.

  These give together with (23)

              d2 X                          d2Y                                      d:Z              du2 =" O, dy2 == O, 'dz2 "= O,

and therefore

         X(x) ==: Ax +Ai, Y<N) ==: By + B!, Z(z) =: Cz + Ci,

where A, B, C, Ai, B', Ci aye constants.

  Thus we have for the present the result

                      ff"z -- Ax -}- By -- Cz -F D, (24)

where, for shortness, D is wrltten for Ai+B'+C!, and, as before,

                       ff" ""' (aOl,, -f' o/'2, -f- 30z2,,)L'.

  The equation c24) is the fundamental differential equation which must be

satisfied by the stress-function z in three dimensions, provided that

                      /1 -- B == C -- D=- O,
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the reduction of which wil! be given in Article 6.

  5. The six components of stress can be obtained, by '

values of ci,cth ･･･ c3, <21), into equations (8), (10), (ll), and (6),

          XL, ==: {(y2 --zt' )(yz+zx+xy) - (!-a)yzg2} z,

          U == {(z2 -px2)(yz-yzx+xy) - (l-a)zxff2} z,

          a == {(x2 +y2)(yz+zx+xy) - (1-a)xyff2} z,
          Y2 ;== {-yz(yz+zx+xy) + i5"x(-x+y-Fz)cr2}z,

                                 1-a          q =: {-zx(yz+rzx+xy) +                                     y(x-y+z)v2 } z,
                                   2
                                 1-if          XY == {-xy(yz+zx+xy) -Y                                     z(x+y-z)i7E } z,
                                   2

er, with the usual notations,

          x, =- {(o/2., -y b.tt"i.)cr2- (i-ff) b./a2'i-tt fif}z,

           Y) === {(/",l,- + b/"',,-)72- (1-a) tt-2t/ft-.T il2} z,

          z. =:=: {(tit//･E,,- + -fi(tr/7-,,-)er L' - (i-a) 3-.--a-a2-y ff2}z,

           y, -= {--i--rb･la･ cr 2+ iEa-aOl (-..-tL- + 60i- + -oO2)ff2}z,

           zle ,.. {-ot.3.gi.fi 2+ iiilab,// (t9. - oa,- + t-6-2)ffL)}z,

          x) == {-s,-//t".,fL' -･}- iEabO-, (bG-.- + /'-i - bO,--)fi2}z･

where, as usual,

                     . 02 0L, 6･2
                    V" ": b'iiir, + bN)' + o!.lyrx ,

and 7 L' represents the operator

                      .02                                        O:i                                 aL,                     7" = ay az H- bz ax + tt'va'bY '

  Here the £unction z in (25) or (26) is multiplied by a

will be more convenient for our discussion in virtue of ' '

follows we shall exclusively tise this new substitution.

  It may be seen easily, by substitution, that the above

(26)aresatisfied by the stress-equations (1), Hooke's law (2),

nant's identical relations of strain (3>.

  Inthe firstplace, the substitution o'E the

<26) into the lef£-hand members of equations (1) gives three

type

No. 5

substituting from the

        in the forms

b

(25)

(26)

     constant-2/(1-a), as it

         simplicity. In what

           equations (24) and

              and Saint--Ve-

stress--components ebtained in

            equations of the
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     {lf,ligl!.r + ai.iiiiJrv + 36Z.]v =- xxk + yx) + zzbe

       == [x(y2 + z2 )7 L' - (1-o)xyzff2 -xy2 7 L' + ISa yz(x+y-z)y2

                               -xz" li,' 2 -y l=2-`' yz(x-y-{-z)v2 ll z,

which vanishes identically. It has thus been proved that the stress--equations

(1) are satisfied by our equations (26).

  In the second place, we shall calculate the strain-components in terms of

 z. We obtain three equations of the type

 exx =" k {xLv - o(y) + zz )>

    = :g} {v 2 (p2 -x2 ) - (1-o) yzvL' } z - il {7 2 (vL' +x2 ) - (1-a)x(y+z)72 } z;

aRd this can be rearranged into the first of the three following equations,

and the other two are obtained by cyclical interchange from x to y and so

on.

                                          '            exx == 2//,2x{-x7L'+(1-a)(y+z)v2}z, l

            Zli:11'ii.y yS,2",1ir.a,),(.z",xl,r'l: i (27)

                   1
We nexe obtain for the three shearing strains the equations

            ey, ==: ilt-{-yzrr2+1Eax(-x+y-Fz)pL'}z, i

            e.. =r- i-,:- {-zxyL' --i- iE" y(x-y-t-z)crz'}z, ? (2s)

            e,,y = ･/i--{-xy72 -･t- i---i;l-a z(x+y-z)g:}z･ J

  In the third place, we shall examiile Saint-Venant's relations <3). First we

obtain three equations of the type

    0-5-//r,y-+0/Xe-sz--//;?E ,

        == 21',/, yz II-yz72+ (1-(J)z(z-{-x)i7'[ - yz fi':

          i                    -F (1-a)y(x-I- y)p2 -f- 2yz7 2 - (l. -a)x(-x+y-t-z){72 ] z

          1-(7 4
        -pt" rmiiirpww, }'zff z,

 aRd also three equations of the type

    2,6.;.Si}-aO....ea,e,y,z+G,e,z,x+6tt)



      == --1:-- x C-xyz72 + (1-o)yz (y+z) 72 - xyzy2 + IEg x2 (-x+y+z) ff2

          + xyz7 Li pm IEa y2 (x-y+z)72 + xyz72- IEa z2 (x+y-z)rf] x

       1-a     == 2L, X(-X+Y+Z)ff4z.

  But, as we have obtained in <24) the equation

                    ff"z = Ax -i-- By + Cz + D,

                                                                 '
we easily see that the above two types of Saint-Venant's relations are sat-

                                       'isfied.

  Thus it can be coBcluded that our equations (24) and (26) are satisfied by

the three kinds of original equations, that is the stress-equations (1), Nooke's

law (2),and Saint-Venant's relations (3). The last, however, is not sufficient

for securing the condition of compatibility, that is the definition equations

of strain.

  6. We may easily find the displacement-components in terms of z, by in-

tegrating the three equations (27) with respect to x, y,z respectively, that is

                                                 }                 U == i, {-x7 2 + (1-a)(y+z)72 } z,

                 v =- 21p{-yff L'+(1-g)(z+x)cr2}z, } (2g)

                 tv "= 211.E{-zr2+(1-o)(x+y)72}z, j

               '
where no arbitrary function need be added, for any such function can be

included in z. These displacements should give rise to the three shearing

strains obtained in (28). For instance eyz is derived from (29) as follows:

   e,. == /r-yW + i ･z =- ./.1.T i-y.7 L･ + lt2..rma .(-.÷y+.)ffz･ + lif..umt 74}z,

and this must be in accordance with the first of (28), from which we at once

obtain

                               ff4z -: O. (30)
 This is the required differential equation for z, and that obtained in (24)

is by no means the case; but the constants A,B,C, D in (24) need be brought

to zero.

  It will be seen easily that the displacement-equations

              (2--/t)(b{,･,--, b{:2y-, 30-.-)A -f- Ft ff2(u, v, zv) :-o (3o

are satisfied by equations <29) and (30). To see this we form
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                 A-g.unU.um+g.S+3tt .= I.s. p2.g 72,tz (32)

and hence on substitution from (32) and <29) into the left-hand members of

equations (31) we have

   (2-l- Lt) 1--2L2, a (x, y, z)e7 2 p7L' x -f- .l.. t7L' (-x, -y, -z)E7 2z

                   +-Sv2(1-a)(y+z, z+×, x+y)72z

              1-ff            = 2 (Y-'FZ, z+x, )(-f-y)ffr`x, ......,

and these vanish in virtue of (30).

  7. Singular potentiaL The general potential stated above is not sufficient

for aRy boundary conditions, fer the equation il`z = O has only four degrees

of freedom. Now we take the relation

                 U "" 2//,{-xP'2+ (1-o)(y+z)ff2}z,

which is one of (29). If we consider this equation to be a differential equation

with respectto the function x, andu some known function, then this equa-

tion will have a particular integral, which is the required solution. u may

take various forms of functions for respective boundary-value problems,

and is always restricted within the domain of biharmonic functions. In this

connecbon we may put

            :.-=- z,1,ti--:i:[l!Ij[.Y."'F.Z)),fil3 ,X l,- ,,, 1 (,,)

            w == 2//{-z[72+(1-a)(x+y)t72}z-Fw', J

in which viand wiare some ftmctions of x,y, and 2, which are not included

in x･

  It can be verified easily that, introducinga functien, ¢say, the displace-

 ment･-equations (31) are satisfied by

                  u! -= o, vi-=iObt{i', wi=- --i!., g-9y-S, (34)

provided that ¢ satisfies the harmonic equation

                               v2¢== O; (35)
the constant i12ft being multiplied for convenience.

  The cyclical interchanges o'f letters in (34) may alse be selutiens of the dis-

placement-equations (31); that is we obtain the two sets of functions



            u' -= -i 6t-di-2, vf == o, zv'= 2i 3-¢.--, (36)

            uf =- SzS-$, v! -- -ipt 2,-ip., w! -= o, (37)

¢ satisfying (35) as before.

  The sum of <34), (36), and (37) are also a solution of the dispiacement--equa-

tions (31); that is ･
   uf- 2tti,(aay - bO2) ¢, vf -:: if･! (zil./ - 6o.-)ip, wi -:; s.pt. (ba... -- ba.tt.) ip, (3s)

where, as before,

                               ff! gL,- O. (39)
  Typical solutions of (39) are

 cb =(C,cosaucosBy + C2cosax sinPy + C3 sincrx cosPy + C, sincrx sinPy) e-Yz,

                                                               (40)

cr, P, r being parameters, provided cr2+f9L' == rL'.

  Stress-components derived from (38), previded Hooke's law (2) is referred to,

become

   'it'E,g./i/l,,}.i.ii,o/1/./i,.g.i$:E':'/l･i,`//11.?11.{.J/11i,i.:.r.",',Lll.':,f,/Si'g',.l¢,:l,,,,

      z2 -= (,,,,-i-ir-,-,,O-e,-,)¢, u == -$ (a-SOb-hr-ba.32-+,3,-?･2---,,6'5.)¢･ S

  This system of functions consisting of (38), (39), and (41) may be called

`singular potential' in three-dimensional elasticity by reason of the substitu-

tion made in (33). In contrast with this, the preceding function z may

reasonably be callecl `general potential'; and the aggregate of the general

potential and the singular potential constitutes the proposed three--dimen-

sional stresslfunctions.

  8. We shall see that the substitution (33) enables us to find particular solu-

tions of the displacement-equations (31) in the forms of product of functions,

and that they will be the same as those derived from (38) in the preceding

Aritle, g7.

  Substituting (33) into the displacement-equations

                 (tt6-i･ic-, tts,, oO.･)A+ (1-2o) t72(u, v,w) =:: o,

we obtain

              ,0. (g.si+ 0,,f-I.) .., o, }



               '
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              3rmi.i'Eo.'l'/syf･;Si/zli:gz:li[i:!,r-o6.i (42)

  If we assume

          v! == F, (y, z) ･ X,(x), wi=F, (y, 2) ･ X, (x), (43)

then the above three equations become

                        t-i4,'-Xxi,+t',-S-"'-=O, (44)

       2a-a) a-g-s･ill-,i･ + a-2o) t-il-.f- r･,,!- + 3-S･tb-} Sli?- + (i-2a)i7, Sl･l( -= o, (4s)

       2(i-a) i-S-t--..-'-- + (i-2o) t-,-2･[s"r,L,?- + 5L/lli"'b' le :'ili; + (ipm2a)4･-i-¥/L-- = O･ (46)

  Equation (44) holds only when

                          XL, == aXi+ b,

and further we may, without any loss of generality, take

                        a ::: 1, b == O,

since the latter of (43) might have been assumed to be of the form

                   zvi= 4(y, 2){ aX2 (x) -F b}･

  We eherefore have

                          X, == X,; (47)
and on substituting this into (45) and (46) we obtain

    {2a-a) aSyF..i + (i --2o)0o-2S･k+ st-$2: }+ (i-2o)a -il- i- l- - o, (4s)

    {2(i-a) i.g..2.".Fi'.,,:. + (i-2a) OS,F,2 +3--l-)tJZ-l-tt}-i- a-2o) F,･ rx?l--(-･ -= o. (4g)

  These equations hold only when

                         -Xx--it=const.; (so)

and, for our present purpose, we may confine our attention only to the case

when
                                              tt                        -xXl, = -cr2, (.>o) (sl)

  Equations (48) and (49) then reduce to

           2a --a) -6i?--i-,,･i･- + (1-2o) t-i?-t-F- t-,-- + -aaS{IZ - (1-2a) a2 F,- O, (52)
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          2(i-a) tti/-.F-,,,-;r- -･i- (i-2a) {e-e･t･"･iZ'-e + g-lr･tb---i-- - (i-2a) cr2a -r. o.

  Now we assume

              i7, -= g?. fi Byez, (z), a. -- g8g py･z, (z),

and then equations (52) and (53) become, dividing out g?･fi By,

          (l-2if)Zf ± fiZl, - {(l-2tr)cr2 --i- 2(1-a)tt)2}Z, =- O,

          2(1-a)ZtS 4 PZr - (1-2a)(crE -y fi2) Z, == O.

 To solve these simultaneous equations, we first differentiate (55)

respect to z, and substitute the result into (56), we obtain

     i 2(1-a)Zf' ± {2(i-(f) cr:' + (3-2a)P2' }Zi - (aL' +P2)PZ,, == O;

and furthermore on differentiating this and substituting the result into

we have

     2(1-tf)Zrv - {(3-4t;) cv2 --t- 4(i-ff)p2 }Zf

                  + (crL --FBL' ){(1-2a) evL' + 2(1-ff)B2 }Zi = O.

 On making the substitutioR Z== eva, we obtain the indicial equation

         [vL' - (crL' +P2)ll [.2(1-o)v2 - {(1-2o)(uL' -}- 2(1-o)132 }-ll :: O,

from which we have

           v =- ±i/nvL' + ie:', ±Viittpm2. gtt (y2+ p2.

   i) If we take

                  Zi =:: AeT' NlsuL+p2 z,

equations (55) and <56) afford

                        Z,'m= ±Ape"VctL'+B2 2,

      2(i-a)Ze, - (1-2a)(cr2 -i- iS2 )Z, ± Ai31/c-tV+ Bi' ereVcaL'-,-s2 2 .. o,

from which we obtain

                  Z, = -+A ... B. .... .,.em "s/li'E¥'fi2 z.

                   - ;/ cy L' + f92

   ii) If we tal<e

                 Zi =-: B exp(-V,liTrl,li. gli'ltE'lll'k'E' ..),

equations (55> and (56) afford

      zg -- ± S-- {2-i(･ i-,,･ ,,-2---//･>･- aL' + p2 ) exp (---V2i,--lll'il) cr2 + p2 ･z)

No. 5

(53)

(54)

(55)

(56)

with

(55),

<57)

(58)

(59)

(60>
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or,oll lntegratlng,

            z2-TS･--Vli'l'ii"'''/II"'a'}-tt"pmp'2･exp(-vZll-IE-22--.g-Y--'ltY'+--'uap-2･z) (6i)

  This system of so}utions(60)and(61)does not satisfy the first of (42), and

therefore is not solution of (42).

  In this way we may arrive at the resu!ts '

      uf ==.r o, vi =- -t/ii- a,di,', w' -- e.:-0,¢2

      X} =- O, YY -2r2 0e":y.e,s, Z2 == 2p2to"tt.,.i, (62)

      y, - (p2 +r2) 3--ts･-,,, z. == p2 31 g}, x) =-- r2 g- l･X--,

                                   (r2 = cr2 + B2)

where cbi is represented by

¢, == (C,' cos crx cosi3y+ C,' cos crx sinl9 y-i- C,' $in crx cosB y+ C,' sin evx sinl3y) e-Tz. (63)

  9. The particular solutions found in (63) in the preceding Article, g8, will

be coincident with those derived from the singular potential(38)in67. As

particular soiutions for g5 in (34), we take the functions given in (40), and

then with (34>

 u/ =r- O,

 v! == -2// (C!coS crX COSP Y-Y C2COSevX SinPJy -i- C3sinax cosPy+C,sincvx sinBy)e-7i,

 zoi == ---2ez (---Cicoscrx sinBy+C2cosex cosPy---C3sincrx sinPpt+C,sinex cospy)e-yz.

  On the other hand eqttations (62) give, on referring to (63),

 ul = O,

v/ .,= - P.r. .L'
(C,f cosavx sinl3J, ---CS cos cux cosi3y+ C,' sin crx sini9 y-C;sincr c cosg3>,)e-vz,

      It
w, .. -.. fi.-2rT.(CI cos crx cosPy+ C,'cos crx sinPy -f- C,' sin crx cosPy + C,'sinax sinPy)em 7g.

       Pt
  The two systems of func£ions above are identical with each other, if we

put

     C,=: ---t2i9rC,(, C2 =2i9r C,', C, := -2PT Car, C,=2Pr C3'.

 Thus we have seen the coincidence of the two systems of functions, and

hence may conclude that, so long as the product form of functions is con-

cerned, the singular potential (38) has the complete generality.

  ro. The aggregate of the general potential and the singular potentlal

constitutes the proposecl stress-functlons in three dimensions. That is, with



  u =- 2i?1,,gg- + S},,(-,0.- rr?+ (i-ff)( ,a, ff- sQ-2) ff2}zf+ i-2} (ba,- - /--. ) ip, ････

  x. == 0o}/-e,-+ (( ea;, + aa/rl,,,)ff L' -- (i-a) ogL'3. g2}x'-F (oe-li-l- - o.anLiN) di, i･･

                                                                 ･(67>
  y, '== /tt'aip-, + (-b3-'inff L' + lr2-if- oO[-i (- 8i- + oOl + bij2 )72)z!

                             -t- S･(ae2ay- ae;,,- + bO-,lr1,:･ - b.0o2.) e, ･･････

in which ip, ip, and x! satis'fy respectively the equations

              p2 ip === O, g2'¢=･ O, e`x' == O, (68)
z' being `proper' biharmonics.

 The above system of equations consisting of (67) and (68) has been effectively

employed in solving the generalized Boussinesq's problem of elastic founda-

tion, which is compatible with any distribution of shearing forces, as well

as with of normal pressure. Cemplete description of this work wM appear

in the Transactions of the JapaR Society of Civil Engineers in the near

future.

the aggregation of <29) and (38), we write down

     u =: 2//,(--63-hr-,I7r L) + (i-ff)(b.Gy+6a2> ffL'lz -t- i, (oai - bO.-) ¢, ･････t, (64)

where, as before, ,rt is the rigidity and ff Poisson's ratio, and

             F2 === bQ:.i, + t/･ii-,,, + -ofiSi7･, V2== aya-"i-'k + oS"3'Ti + sfitt"'hay,

the remaining displacement-components v aRd w being given by cyclical in-

terchange of letters. z and di satisfy respectively the equations

                          cr`z=:-, O, ffL' dixO. (65)

  The stress-cemponents derived from the above displacemenFcomponents

become

  x. =- ((,e",- -ft 8･:',,-)72-(i-a) ,2L5-y2･}z+ <,e-i-l-pt ,S･,Y- ,,-) ¢, ･･････, )

  y. -: {-oy6:5, ff v･+iff-a- ett- (-oOi +b6y- +oa.-･) gL')z t (66)

                      + -2! (bt-o[-eo--y - e/";,- + sO,/7,,- - fi9o2.) di, ･･･J.･, i

the remaining stress･-eomp,onents being given by cyclical interchange of let-

ters.

  It will sometimes be cenvenient to extract harmonic functiofis, ipi say,

from the x-function. In this case E2¢i=O. Then I7L¢i, which is always
common in all expressions in C64) and (66) and is harmonic as well, can be

replaced by a new harrnonic, ip say. Thus we have

         fi
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 Epilogue. The present work, so far as the 'fundamental equations (67) and

(68) are concerned, has been done since 1948, .tpgether with the so]ving of a

certain Simple Boussinesq's problem. At that tirne the late Dr. H. M.

Westergaard, then professor of Civil Engineering in Harvard University,

Mass:, gave mea letter in reply of my manuscript on the work through

Dr. H. C. Kelly, then Actin.cr Chief at Scientific & Technical Division,

GHQ. In that letter he stated:

   "......The pa･per coneains statements of general procedures which I as-

 sume are applied in the larger work. ...... I have reason to assurne the

 particular procedures would work out well in application$.

   "I shall appreciate if you will convey to Professor Tanimoto my best

  wishes for continued success in his work and my thanks for having caused

  his paper to be sent to me."

   Also, Professor H. Neuber, Dresden, gave rnea reply in which he stated:

   "......Allerdings glaube ich, dass sich der vonIhnenbenutzte Ansatz fur

 den Ubergang auf beliebige l<rummlinige Koordinaten nicht so gut eignet

  wie der von mir irn Jahre 1934 in der ZAMM ver6ffentlichte Dreifunk-

  tionenansatz......"

   In fact, Imust say that I have not yet worked outthe transformation

to curvilinear coordinates, except for that to cylindrical coordinates only,

its applicability to technological boundary-value problems being set about

as a trial.

   In conclusion, it is added #hat a rather brief description of the general-

ized Boussinesq's problem cited has appeared in the Proceedings of the Ja-

pan Academy, November, 1955, and that a succeeding boundary-valtte
problem has just been solved,which is that a thick plate is subjected to three

pairs of external forces on its bounding planes.


