ON THE MECHANICAL CUBATURE

Bennosuke TANIMOTO*

(Institute of Civil Engineering, Faculty of Enginssring)

Synopsis. From interpolation formulas for the function of two argu-
ments, general expressions for the double definite integral or mechanical
cubature are derived. Various rules for the mechanical cubature can be
formulated from these expressions, and they will be useful for practical
evaluation of the double integral even when this is difficult or impossible
to evaluate., The procedure can easily be extended to the evaluation of
triple integral and so on.

§ 1. We have sometimes met with the evaluation of the definite in-
tegral
a
1= " s ax,
a
a and @ being constants. When this integral is difficult to evaluate
by means of analytical process, we have to rely on the numerical method

which is known as mechanical quadrature.
Elementary rules for the mechanical quadrature that have widely

been used are:

Trapezoidal rule, of the form: I = -;L (¥ + ),
Simpson’s rule, of the form: I = }SL (y-1 + 4y0 + 31D,
and so on.

§ 2. We also encounter with the double definite integral

a ru
=" s wara,
Ja b

where @, ¢/, b and &’ are constants, and the integrand f (x, ¥) is for the
time being supposed to have no singularities within the domain con-
sidered. Numerical mathematical method for the integral last written is
called mechanical cubature. In this regard, duplicate use of known rules
in the mechanical quadrature have sometimes been employed, almost no
further developments have been made, and no systematic process of

* Professor of Shinshu University.
1) An elementary treatment of the problem may be found for instance, in
Steffenson’s ‘Interpolation.’
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the mechanical cubature seems to have been proposed.

The present work is in deducing general expressions of the me-
chanical cubature, by beginning with Stirling interpolation formula, and
Bessel interpolation formula for the function f(x, ¥).

Furthermore, general expressions for the ‘mechanical biquadrature’
can also be written down; and .in. addition, general expressions for
multiple integral of higher order may be written down if required.

My temporary necessity to work out general deduction in the me-
chanical cubature has its origin in the evaluation of a series of double
definite integrals such as

r goe-r- 2498

1 30 (1+472) cos ax cos By sinaa sin fbe B
'{w r {2(1—0) + r2 } cos ax cos By sin aa sin fb e~ 72 Cfﬁgf etc.,
AU 0

where

o= a (%
and @, b, o, x, ¥y and z are here supposed to be constant. These integrals
presented themselves as the solution of a Boussinesq’s problem of simple
character?. It would not be so easy to evaluate these integrals by

2) The problem treated was that a semi-infinite elastic solid is pressed by a
uniform load, @, within a rectangular area 2ax2b. The procedure of solving it
has bsen proposed by me, and it is
1 08 { o . 8,0 2} 1 (f? 9
20 9% T op 57“+(1—">(ay+0z)7 ou 6y_6z>(’b’ """ :

i H (ot )7 = =05+ (o s03s)
Ko =gt \aye t522)7" ~ =Dyl * [* oy~ o)
VNS S E YO T @ e 5
Y ”6y3z+ T oyoz" +t73 6x+5‘y+oz v }X+2<6x0y 8y-+8z~ 8x6‘z>¢” """ ’
other components of displacement and stress bsing given by means of cyclical
interchange of x, y, z; and #, ¥ and ¢ satisfy the equations
78=0, pa=0 and pip=0,

U=

where
= . O @ 0
2+“ °+8z“’ "= oyout 0n0x T oxty"
The boundary condition may be expressed

s o ¢ oo d,
(Z: )emo= —7?? g 0 S cos ax cos By sin aa sin B Zﬁﬂ,

and the stress distribution results in

4 e {f o .

Z; = ~‘7§ g 0 S o (1+712)c0s ax cos By sin ax sin 8b e-“{{ggg,
4 o w

Y, =— ig_,z X 0 S o COS ax sin By sin aa sin pb e-,“/ﬂciad[%,

PR Py

sin ax cos By sin aa sin Bb e~7Yzda FE
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means of analytical method. To such cases the theory here developed
will serve effectively. In fact, it is not so laborious to secure two
effective figures of results by means of mechanical cubature.
Torsion-problem of a prism also requires similar evaluation as to the
torsion-function, an example of which will be given elsewhere®.

A. ON THE MECHANICAL CUBATURE OF STIRLING TYPE
§ 3. We take the double definite integral

a’ o
]:j‘ jb FCx 3)dx dy, e (q)

where a, a/, b and & are constants, and
alx<a, bZy<V.
TFor convenience sake, the integrand f(x, ¥) is here supposed to have
no singularities within the domain considered.
Now the central interpolation formula of Stirling type for the function
F(x, ¥) may be written in the form

n 748 1
f(x, ) = 32 CoC, ) ¢(v, 8) 4o ost+9(u, 1) ¢(v, S)Qrd (@re1) 2
P4 8= S=

where
X% =YY
U=y > v=rr s
o NP =D D) (P17 0P —1) (0°--4)-- (0P vF)
w0 2= B2 o PO=" =SS ’
X = —4:2 S : S :(1 +202; —rz>cos ax cos By sin ag sin 8 e'"’zb%«é dadﬁ’,
Yy = m{‘;? S : & :(1 +20’2‘;’ —rz)cos ax cos By sin az sin fb e—Wa[gﬁ dadp,
Xy =%‘§2 s : S :(1—~26—rz)sin ax sin By sin aa sin Bb e~z Tlg dadp,

and it would be of some interest to note that the appsarance of these expressions
is much similar to that derived from Boussinesq’s potentials.
The vertical displacement is given by
2Q

=ty

dadf
afr *
Recently, with the aid of two students at the Shinshu University, I have

w
0

S “ S :{2(1—a)+rz}cos ax cos 3y sinaasin b e-7*
worked out the general solution of Boussinesq’s problem, in which any distri-
butions of the normal pressure and the shearing forces within the rectangular
form of loaded area are assumed on the top surface of the semi-infinite elastic
solid. The solution is again made up of a considerable number of double Fourier's
integrals.

3) B. Tanimoto, ‘Difference Method for Partial Differential Equations, Part
1I,” Transactions of the Japan Society of Civil Engineers, Septembsr 1953.
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and differences are here written in brief form.
Let the intervals (a/—a) and (&’—b) of the integral (1) be both
divided into 2vh x2¢k -small divisions of equal distance, so that
a — a = 9vh, ¥ — b = k.
We then have
a = x, — vh, a’ = x, -+ vh, b=y, — vk b =y, + vk
Then the integral (1) in question transforms to

a’ b’ v v
I:S E f(x, y)dxdy = hk V { F(u, v)du dv,
a b RS R

where F(u, v) is represented by the right side of (2). Since the ¢-
functions are polynomials of odd powers so that integrations of them
between —v and v vanish, the equation last written simply becomes
7 r+8§ v 14
I=hks = 427_255 o(u, r)d%j @0, S)AV. +ereerireenieo(3)
-v

r+8=0 S§=0

We take the function 40(0 u) and on expanding this we may write

@0, v) = izv"f ()t Ay (P 1P e

where
A () =1,  A(r) =142+,
A, () =1 (D8 + ) F (4 ) —i—(u 1DW3,
A () =142 (84> + -+ ) +3(4+ - D)+ F (v =)W

+22{32<42+ +V2)+42<52+ +V2)+---+<V—1>2V2} A ..(5)
e +(V z) (v—1)%
Ay (V) 129737

$ 4. For actual evaluation of these coefficients, the following recur-
rence formula is useful:
A, (y):At (y_1>+y2At_1<y_1>. B RN ()]
On integrating both sides of (4) between —v and v, and substituting
the result into (8), we have

] lk n 7'+s An, a8
—.4’1,7“ 0 5= 0[27' IQS

A (P=1), 0 A (S=1) o5y
x5 27’-—(Zi+i w0 ‘Qz+i Hhre@
which is the required gensral expression. It is to be noted, in the right
side of this result, that, when ¢ formally takes —1 which occurs in cases
of 7=0 and s=(, we understand that
A: (F=1) oy A (8=1) oy .
! ( )t 57 <2t+> z 57 0:1, E(‘_)z QSZ Czt +i 25— tjséo._l,
for in th1s case we have ¢(0, 0)=1, and then

1 14 1 e ~y
) ( ¢ (0, 00d0 = 5 * o,

=V,
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For the convenience of practical use, some numerical values of the
coefficient A; (v) are given here (Table 1):

Table 1 Numerical values of coefficient 4, (v).

Lo 1 I 4 5 6 7
T S A Y I
1 1 1 | } | |
2 1 5 4 1 E )
3 1 14 49 36 !
4 1 30 | 273 820 576 1 o
5 1| s 1,0 | 7,605 | 21,076 | 14,400 |
6 1 | o1 | 3,003 | 44,473 | 296,206 | 773,136 | 518,400
7 ‘ 1| 140 |7.462 | 191,620 2,475,47315,291,64038,402,064@5,401,600

§ 5. As a simple example of the general expression (7), we take
v=1 and retain terms in 47%;
and shall obtain a rule, which may be called Simpson’s rule of the first
kind in the mechanical cubature.
In this case we first have
I = 4hk [(00) -+ ‘"15“ Ago X "+ rzt dyy X 31;

12 B
or on rearranging
I = 4hk é £2000) + (10) + (10) 4 (01) +(01)Fereeeerreeevereeenen(8)
This rule is illustrated in the following figures (Fig. 1).

Fig. 1 Simpson’s rule of the first kind.
(Domain of integration=2hX 2k.)

la. Lattice arrangement. 1b. Weight table.
i
01 0 1 o |

I

Zf (1) | o) | ao 1 2 1
. |

(o) 0 1 0

3
R =snp!

This rule is in accordance with that which is obtained by means of
a more elementary method, in which a quadric surface of the form
f(x, ) =a+bx+cy-+ds* + exy + 5*
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is assumed. In fact, on the assumption that the quadric surface, having
six unknown coefficients, can be determined so as to pass six points
which are marked . in the following figure (Fig. 2).

Fig. 2 Fig. 3
o
T .
k
l
2k % 2k ~1 1—
N
l 0 1 0—
[t N e f— |y —] IL 2Ih {
2h

In this way we can obtain the weight table given in Fig. 3. Then a
duplicate use of this weight table at once gives us the weight table of
Fig. 1 (right, 1b).

When the above rule (8) tends to one dimension, it will reduce to
the welllknown Simpson’s rule in one dimension. In fact, if we take
the limit g}n;l I/(&’—0b), we then have

lim o = lim Ly ‘ jb f(x, yydx dy =| f@)dr.

urrh

On the other hand, the rule (8) in this case becomes

lim L =tim 'Qlk4hk% {20000 + (10> + (10O + (O + (0D} = g {1 +400)+ (13,

ko 2 k»o
which is the one-dimensional Simpson’s rule.

§ §. If in addition to the above rule (8) we retain term in 4.,, then
(7) becomes
I =4hk316[16(00) 4110 + 10D+ O +ODI+H (A + QD+ I+ (TDT, - (9)
or briefly
hk
1= 9
This rule is illustrated in the following figure (Fig. 4).

Fig. 4 Weight table.
(Domain of integration=2/kx2k.)

{16000 + 423(10) + (11D}

1 4 1

N
—
D
>
i
©w
~
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It can easily be proved that this rule (9) may also be derived by
duplicate use of the known Simpson’s rule in mechanical guadrature.
The rule is customarily used in naval engineering in computing the
displacement due to a vessel floating on the water.

§ 7. If in addition we take terms in 4, and 4,, into account, we
obtain

I =" 168000) + 2453(10) + 5R(IL) — B0 1. v (10)

This rule is illustrated in the following figure (Fig. 5).

Fig. 5 Weight table for mechanical cubatura.
(Domain of integration= 2AXx2k.)

—1
5 24 5
5—1 24 | 68 ;24. _“:i =21
s | o 5
-1

As a simple example of the above rule (10), let us take the ele-
mentary integral

I = ‘ ) jg cosxcosydxdy;
JO 0

the result of which is at once evaluated as unity. From the integrand
f(x,y)=cos x cosy, we have lattice values as follows (Fig. 6):

Fig. 6 Lattice values of integrand f(x, y)=cos x cos y.

—.500,000
\ 0 0 0
| .500,000{ .707,107; .500,000 0 — ..)00,000%

1.000,006, .707,107 0

.500,000)

Here we have to take
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T
h=Fk = VE
We thus obtain
1-_—(33>2'1 {68><o.5oo,ooo+24><1.414,2144-5><1.100,000—0}
i) 15

=0.999,860,
the error entailed being

£ - %18&9*_1 = —0.000,140 = —0.014 %.

§ 8. In the second place, we take
y=2 and retain terms up to 4°;

-4

and shall obtain a more accurate rule for the mechanical cubature.
From the general expression (7), we then can obtain, after rearrange-

ment,

I=16kk. {1,228§3<oo>+4,1602(1o)+4,7682<11)+7122(20)

56,700

1+9,04853(21) — 6433(30) +34557(22) — 80S3(31) +132(4o)}. —(11)

This rule may be expressed in the schematic from as follows (Fig. 7).

Fig. 7 Weight table in case of v=2, n=4.
(Demain of integration = 4Ax4k.)

13

343 2,048 712 2,048 343

, —80 2,048 | 4,768 | 4,160 | 4,768 | 2,048 —80

l 13 ] —64 712 4,160 | 1,228 | 4,160 712 —64

13

1 -80 2,048 | 4,768 | 4,160 | 4,768 | 2,048 , —&0

w
P
W
%)
[
48]

2,048 712 2,048

—380 —64 —80

_ 56,700
= 16hk
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§9.

as before,

As a simple numerical example of the above rule (11), we take,

r= 1|’

v o

EA
5' “ cosxcosydx dy.
1]

Then we have to take h=k=n/8, and the corresponding lattice values
become as follows (Fig. 8).

Fig. 8 Lattice values of integrand f(x, y)=cos x cosy.

-.500,000

-.353,553 -.270,558-.146,446
| :
0 0 0 0 0
.353,553!.382,683!,353,553|.270,598|. 146,446 0 -.146,446
| |
l.5(:0,000[.653,282 .707,107|.653,282.500,000{. 270,598 0 -.270,598 --SO0,000E
.853,554(.923,880/.853,554/.653,282|. 353,553 0 -.553,553
i
1.0600,000;, 923,880 .70G7,107|.382,683
| i
.8b3,554.653,282,. 353,553
.500,000

Then we have the result
~(rY 1. T

I“(2>56,700L
+-T712X1.414,214+ 2,048 X2.613,126+343X1.000,000—64 X 0.765,368
—80><1.414,216+13on=1.ooo,ooo,

1,228 X0.500,000-+4,160X1.847,760+4,768 X1.707,106

which shows a perfect accordance with the true value.
An alternative form of the present rule, which is written in the
form of respective differences, will give the numerical result

I= («%)SX [0.500\,000—0.101,493 +0.006,952 ~0.000,175 #O.()OO;OOlJ

=1.0007001)
in which we clearly see the convergence of respective differences. From
the standpoint of practical calculation, the discrepancy between the
above two results would be of no importance, since the significant
figures here employed are six in number throughout the calculation.
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§ 10. In what follows, attention will be confined to the case
1
Y OImE e see e teeree e aa e et eeciace s et 11
; (1)
From theoretical standpoint, it is widely accepted to be desirable that
the arguments # and v in the interpolation formula should be as small
as possible, and that they do not exceed unity. The least value of v

in this case is 1/2, so that the integration may take the form
13 I .

)

I, = SL Szh F (e + & Yo +1) dEdp. ovreereereneeene-(19)

This integration affords the result extending over one division whose
area is hk, and the sum of such elementary integrations will afford the
required result of the integration in question.

§ 11. The general expression (7) is then written
I " ot A"r 28 ke 1 At (7’ 1_) 1 8= 1 At (Sf 1) 1

hk:7+?0 Fo 27’ ]“‘{“ (= o 9F+1 297—"t~1 (=) 95— 9t + 12‘79~‘7t -(18)
If we write
p-1 A @- 1
G o= B () g gws
then the equation just written takes the simple form
;I — ;1 7; C C >,A7"28 ,,,,,
hk r4§=0 8=0 s L?j_,- !..2,‘5:

For first values of p, the coefficients Cp’s are computed in the following.
We first can write down

Co = 1,
_ A (0) 1
Cl i 22)
C. - 49_@ 1AM
2 5 9 3 ¥
S A@ 1 AM@ 1 A2 1
Co= ™ g = 5 g T Ty g
c =A@ 1 A1 A 1 AB) 1
* g 9 7 9 5 9 8 9
oAW1 AWML AMI_AMD1 AMD T
5 11 9% g o8 7 9 5 9 3 92

Then we have, on rearranging,

_ _ 1 17 _ 867
G=1 G=q &= 95 6= s
_ 27,859 . 1,995,803
Co= =150 & = Ts3,702
Now the above equation is written
I C.C C.C C,C,

k= CoCodgy + 12 \0 (dyg + do2) + hwjo (dyo + dop) |2 ‘2 4y
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C;C, C.C C,C

+ EG%{?) (dso + do) + 4 ';3 (4o + 40) + 1575 i - (dgo + dog)
C,C C.C, C,C

+ rglﬁ‘f (dgs + A%) + 4 14 4y + ‘10 !?) (Amo + dy 10)
C1C1

+ rg ,,].,2_ (Asg 4 Ans> + !6 14 (Am + A4l)+

Then the substitution of Cp’s into the above equation gives us

hIk = dyy + 4(420 4 dy) — - 1760 Cdy + o) + ée oy
96?76_686 (dso + dog) — 13"57240 (dys + 4y)) — %(dm + dos)
£>,§)26Z 590 (Joe + 4ee) + 57 12;379 600 s
m;ﬁ% (drg o+ 4o 10) — Eﬁ%gé%:éﬁé (dgz + dsg)
5"572 ziz 800( b T dgg) e e (14)

§ 12. As a simple result from (14), we take differences up to the
second order into account and neglect higher differences. We then can
write down

! 1
hk = Aoy 24 (dfzo + de) + O(Aq),

or

I
94 = 2 doy + (4o + d) + O(4Y. s (15)

This equation can be expressed in the schmatic form (Fig. 9):

Fig. 9 Weight table for mechanical cubature <V: flz>

(Domain of integration=~nhk.)

1

| I
1 20 1 = 24,5 + O4Y

1

It will appear that the rule just written is recommended for ordinary use.
A criterion for the error of this rule can be obtained as follows. The
above rule, Fig. 9, or equation (15), is written
I
p = (00 + o (WD + BDF + 5

where

288 <h4D40 + & Dm)f+ Ty
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7+S
Dysf = Py 9];3 at (00) lattice-point.
On the other hand the true integral (12) gives the expansion
& h '
1y =S j LT+ & o+ 1) dS d

wl;‘

- jq j {f (%0 Yo) + (D, + 77°Doo)f+ (5 Doy + 669 Dyy + 72 Do)

+ } dé dy

r ~
=hkL(oo)+ (h°Dno+k"Don)f+ ‘Do +EDodf+ *h E:Dyof - Jl

1, 920<h
On subtracting we have

E=I—I,= (WD B Do) — o DD o f - }

{
hkyg 76() 76

=hk-{0.002,951~~ X (BD o+ Doy )f ~ 0.001, 736+ X Bk Dyof -+ }

which will afford a criterion for the evaluation of error. In comparison
with this, the rule (8), which is a Simpson’s rule, has as its error "
I

B = = Iy= Wk {0.011,805 X (W Dy + K D) S+ ,
so that we might see the superiority of the rule given in Fig. 9.

§ 13. Furthermore, if in equation (14) differences of the fourth
order are taken into account, we may obtain

I i
5,760 77 =5,760 4oy + 240 (dzo + dos) — 17 (dyo + 45 + 10 43y + O (4.
This equation can be expressed in the schematic form (Fig. 10):

Fig. 16 Weight table for mechanical cubature (v=1/2).
(Domain of integration==hk.)

—17
10 288 10 ;
[ I
‘ g —17 f = 5,760 hb -+ O(49)

] —17 288 4,636 288

16 288 16|

—17
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§ 14. Sometimes lattice values are connected one another with a
certain differential equation. In such a case higher differences in
equation (14) can be lowered by taking advantage of the differential
equation considered. The device has been originated by Mr. Nishimura,
assistant professor of Nagoya University, in case of the solving of
partial differential equations.

In the following we assume that lattice values are related with the
differential equation

V'z]ﬂ 4 ¢ = Q. (C being constant.) (16)
In the subsequent calculation, frequent references may be made to
‘Relations between Differences and Derivatives——Derivatives in terms of
Differences, and vice versa®.

§ 15. From (14), we take

i 1
= Ano + 24 (Ago -+ Aog) 5, 760 (Zlm -+ AOL) B 576
567 (4 06) — 1 (g + doy) +O0L®). oo (17D
T 967,680 L +4 188,940 Ve 24 . 1

This equation, as it stands, extends over seven lattices in both direc-
tions of x and y. But the extension can be reduced to 3 X 3-lattice
distribution by taking advantage of the differential equation (16). We
now have, with h=Fk,

(duo + o) = 1 (Dyo + Do) f + (Dbo + Do) f + O (B,

(Aso + Aos) =k (Dso + Dos)f + O Chs):

(42 + 45) = h° (Dsy + Do) f + O (B®),
but we have, with the differential equation (16),

(Dyo + Do) f = p*f — 2Do f = —2D:. f,

(Dgo + Do) f=pf — 8D p*f =0,

(Dyg + Do) f =Dy p*f = 0.
Then the differences just written become respectively

(Afo + 404)— —92h! -D“"f+ O(h'gl (Auo + Aos) = (Am + Am) = OChS);
and furthermore

B Do f = dgy — (Ap + 4y + O (B = Aoy + O (B9,

so that we have
A-!O + A(M = 9 Azg -+ (6] (hs).
Thus (17) becomes

£
1,440 17

This equation can be expressed in the schematic from (Fig. 11):

=1,440 Aoo -+ 60 (Azo + Aoz) + 11 422 +0 Chs} (18)

4) These tables will be published elsewhere.
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Fig. 11 Weight table for mechanical cubature, provided p*f+c=¢.
(Domain of integration="hk.)

11 38 } 11

! I
38 1,244‘ 58 = 1,440 55 + O (¥
1 38 ! 11

If the whole domain of integration consists of 2x2-divisions, we
aggregate weights of the four adjacent schemes, each of which is due
to Fig. 11. We then obtain the following scheme (Fig. 12):

Fig. 12 Weight table for mechanical cubature, provided p2f+c=0.
(Domain of integration=4Ak.)

11 49 49 11

49 1,331} 1,331 49

I
= 1,440 zp + O (8)
49 1,331 | 1,331 | 49

11 49 49 11

It is noted that a seeming restriction that kA=Fk is imposed on the
process of the above reduction, but this is in reality not the case, the
reason of which will be clear from the above reduction.

§ 16. When in equation (14) differences up to the tenth order are
taken into account, the lattice distribution will be of 5X5-extent with
reference to the differential equation (16), and a calculation similar to
§15 will afford the following result (Fig. 13):

Fig. 13 Weight table for mechanical cubature, provided p¥+c=g¢.
(Domain of integration=/#hk.)

21,728 —14-4,032: —1,126,272  —144,032 21,728

~144,032; 1,611,008 21,903,1€8 1,611,008  —144,032

—1,126,272 21,903,168I 376,000:128% 21,908,168 —1,126,272

T
~144~,0321 1,611,008 21,603,168 1,611,008 —144,032

21,728‘ —144,032) —1,126,272 —144,032 21,728

I
= 464,486,400 7 + O (A1)
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B. ON THE MECHANICAL CUBATURE OF MODIFIED BESSEL TYPE

§ 17. We shall derive anotner general expression for the mechanical
cubature of the defihite integral

ar ru

I = L } ftx ) A dy oo (19)

by using the interpolation formula of modified Bessel type, where
alx=d, bXyLV;
and shall obtain some of useful rules for the mechanical cubature.

§ 18. The interpolation formula is written in the form

r+8

(%, )= fl 2 lp(u 7) o(v, 3) Az, o +0(u, v) 0(v, 8) A(°7+1)ns
7+8=0 8=0

i b
+o(2, #) o(v, 3>21/zr<zs+1)+‘7(u, 7) o0, )dizrrnzeen » (20D
where
T x 1 _ Y% 1
o= = 5 v =y 9

(0, v)= [2”( )( ) ( MQI%—I“), e (91)

0.0= gug3 ? (7= )= ) (7))

and differences, which are written in brief form, may be converted to
linear combination of lattice values multiplied by weights.

§ 19. Now let the intervals (¢ —a) and (’—~b) of the integration
(19) be both divided into 2% small divisions of equal distance. We then
have

1 1
a:xo—(n-—»»z»)h, a’=x0+<n+-§)h, ]
1
b y0—~<n—~-~1-)k, b’:yo+(n+2)k.

On transforming the variables ¥ and y to another set of variables u
and v, we can write the integral (19) in the form

1l

n

I = ja ‘gb, F(x,y)dxdy = hkj j F(u,v)dud, e (99)

where F(u,v) is represented by the right side of (20). Since we in
general have )
(23 2 gn
2y — 2u+1 02u+1 ) —
j_n 0% db = oyt 7 J. ag = q,
and since the o-function defined in (21) is polynomials of odd powers,
the above integral (22) simply reduces to
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o (u, 7) du gn o (v, $)dv. oo (23)
The function p (6,v) is expanded in the form

[2v p(0, v)= é (=)t B, ()02 . (M:O’ 1, 9, e 1Y), oo (24)
where - , ‘
B,(v)=1,
Bi(»)= [1 F BB (2 — 1) J

B ()= | 85 b =D o BB T k(2= 1))
4 (20 —8)2 (2v —1)* 3,

By(»)= (3 5T+ (V= 1+ BTG o (20— 1))

11y
2)
oo (2= )Ny = DN — 10?437 (BT
(Y= DATHY o (20— 1D 4 (20 —8)?
(2,,_..1)2>+...... +(2y._5)2 (Qy_3)2 (2;;_1)2}

2

B, (V>=21; 23258 (9¥ —1)%

For the actual evaluation of coefficients B, (v)’s, it is to be noted that
the following recurrence formula holds:

B =B (v= 1+ Z B 1) e (25)

Now on integrating both members of (24) between the limits —#

and n, we have
121, {n v Bt (V)
B — Y e e QW= 28
5 ), dl= 2 () o :

Then on taking v=7 and v=s, and substituting the results into (23), we

obtain

E Ay B (7) B, Bi(s)

3 s‘\ ¢ - 2r—at ¢ 25— 2£+1

I= hkm 0 o= |27 125 .2 “‘ (=) r—ot+1"" H? (=)'3 —2t-+1 ’
...(26)

which is the required general expression.
From (26) we can get the simplest rule, which is of the form

hk

This is sometimes employed in civil engineering in computing cut or
bank extending over a broad area.



Table 2. Numerical values of coefficient B (v) (2<y).

2 3 4 5 6 7
1 16 9
4 16
] .
, 55 | 29 225 |
© 4 | 16 64 i
) | 1o 12,616 11,025 |
= 1 16 64 256 |
8,778 172,810 1,057,221 883,025
16 64 256 1,024
28,743 1,234,948 | 21,967,231 | 128,816,766 | 108,056,025
16 64 256 1,024 4,096
N ’ -
77,077 6,002,515 | 230,673,443 | 3,841,278,805 21,878,089,479/18,261,468,225
16 64 " 256 1,024 | 4,09 16,384
t
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§ 21. The least value of » in the general expression (26) must be
nz%, so that the integral (19) takes the form

M 2 J0 + %
= f f FCx, ) dx d,

4 ?/0
and the general expression (26) is written
m TS Awn
= bk S S G Gy e (98
2 5 O (as (28

where

B@) 1
op—9f-1 9%-%His
Some of first values of Cp are written down as follows:

»
Cp S 2 (’_)t
t=0

By(0) 1
CO_-—le o
c =B 1 Bw1
3 P 1 97
cB@1 B@ 1 B 1
2 5 25 3 2’3 1 2 ’
e B® 1 B 1 B 1 B 1
3 7 27 5 2:) 3 23 1 2 5

or, on rearranging,

1 1 11 191
Co—*g“, C = ~19° Cﬁwé‘b’ C3~_1_6§’
Thus equation (28) becomes
I 1
hk = 4 A — (A“'O '+‘ Aon) + 2 880 (410 + A(M.) + 576
191
241 920 CAoo + Aor) ?4 560 (414,, -+ A";.) 4 . (29)

§ 22. From equation (29), we can successively obtain the follow-
ing (Fig. 14).
Fig. 14 Weight table for mechanical cubature.
(Domain of integration=/hk.)

14a. O(d%)-typa. 14b O ') typcx
1 1 -1 -1
1 1 ) -1 14 14 -1
= T+ O 5 -1 14 14 -1
4 - B .
e

= th + Oy
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14c. O(d%)-type.

11 11 ‘
5 —08 —98 5
1 11 —98 889 889 —98 11 l
t 11 —98 889 889 —98 11 I
5 —98 - 98 5
14d. O(d48)-type.
11 11 T
— —191 —191

I )
= 2,880 ;; + O49
—77 | 1,956 | 1,956 | —77

—77 882 —10,336,—10,336| 882 =77

I

t —101 | 1,956 |—10,336} 76,894 | 76,804 |—10,336 1,956 | —191
|
|

5
—1e1 | 1,956 —-10,3361 76,894 | 76,894 |—10,336] 1,956 { —101

—77{ 882 —10,336%—10,336 882 | —77
l —77 1,950‘ 1,056 | —77
i ) .
—1911 ~101
i
£

§ 23. If we consider the integral of the form
1= s paxa,
S0 0
in which the integrand f(x,y) is supposed to be of rapid convergence,
then the evaluation of this integral may be performed by repeated ap-
plication of the above rules.

For instance, “14b’ is adopted, and then the aggregate rule for the
integration becomes (Fig. 15):
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Fig. 15 Aggregate rule for mechanical cubature of O(44-type.
(Domain of integration=o0 xc0.)

Yy
48 | -
48 | 48 | ---
48 | 48 | 48 | ---
52 | 50 1 50 | 50 o ---
L = )
12 25 124 | 24 | 24 | - L >
L I
=48 .. +O(41
=1 | =2 | -2 =2 | =2 hk 4%

In this diagram, lattice weights in the upper half are not written, and
these are at once written down from their symmetrical distribution
with respect to the diagonal

§ 24. A simple application of one of rules obtained above will be
given to the evaluation of the integral

L S j Fla, B; x, ¥, 2) dadB, - neeeeeeeen(30)
40 0 Jo
where
1-+7r2 e s . N
fla, B; %9, 2 0b)= ap  COSax cos By sin aa sin 86 ¢~7%, -+ (31)
provided
a* + B = i

This is a stress-component in the solution of a Boussinesq’s problem, in
which a uniform load, its intensity per unit of area being @, is applied
over a rectangular area 2¢X2b, which is shown in Fig. 16.

Fig. 16 Configuration of Boussinesq’s problem.

o

e

e

0

Z2a
y/
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We suppose that
a=5b=1;
:and shall find the value of Z; /@ at a coordinate point where x=10, y=0,
z=1. Then the integrand (81) reduces to

1
f(a, 3;0,0, 1D = ja—%r sinasinf e,

The following lattice values of the integrand will then be obtained
(Fig. 17).

Fig. 17 Lattice values .of the .integrand f (a, .B)= %;EZ sinasinf e-7.
*(Pi’,tch ho=h% = —”—)
u 4
8
1o 0
A
0 0 0
1 1] o 0
0 0 0 0 0
om0 |3 -2 -1/
| ) 0 9 | 6| 2] o
568 | 272 | 78 | o |—15 -9 | —3 | o
1000 732 | 300 | 96 | 0 |-18| 11| —4 | © 2
732 | s68 | 272 | 78 | o |—15| —9 | =3 | o

In this diagram also, lattice values in the upper half are not written;
but these at once follow from symmetry, since ‘we have
f(a, B) = f(B, a.
Thus by multiplying corresponding values in Figs. 15 and 17, and
adding the results, we have o '
Z: 4 hk 134.9256
Q= Taag TR0 =~y =
This value is in accordance with that from the alternative solution,
whose mathematical reduction was due ‘to Love?, .its numerical calcula-

tion being due to the late Jiro Kimura.

—0.699 = —0.70.

§ 725.  To save labours in .calculation, we may take

5) A. E. H. Love, Phil. Trans., A, vol. 228 (1929).



22(94) B. TANIMOTO No. 4

T
h =k = .
2
In this case lattices to be computed reduce a great deal in number, and
the following lattice values are sufficient (Fig. 18).

1+r

Fig. 18 Lattice values of the integrand f (a, B)= aB'— sinasin B e-".

Pitch h = k = —.
( )

2

0 0

0 0 0

141 | 0 | —6 | O
LO000| 340 | O | -11| ©
(340) | (141D} 0 | (=6} 0

Then the mechanical cubature in question amounts, with Figs. 15 and
17, to
- % = j I-= f“zngi (rs) = 334284 = (.708 = 0.71.
We see that the result obtained is fairly good, in spite of the com-
putation at only four lattices.
In this way, we can obtain the following result (Fig. 19).
This result is in accordance with that of Love’s solution, the

numerical evaluation of which was worked out by the late J. Kimura®.

§ 26. It can be inferred from the foregoing results that the general
expression for the mechanical biquadrature of the form

a (U et
I = j s S f(x, 9, 2)dxdydz
a b c

in terms of the interpolation formula of Stirling type for the function
f(x, v, 2), will take the form

n r4+s s+t Cr Cs C't
— S‘\ s‘\ S‘\ R A — oy a5
!z 8 hklr+?——'o 540 £w0 E27’ 123 ]2t ar 3520

in which

ot A (p—-1)
= 3 (=) S
=2 () g g1
The above expression may be developed as was done in the mechan-

yep—2t+1

6) J. Kimura, ‘Stresses in Seil Loaded with a Square Block on its Surface,’
Bulletin of the Geotechnical Committee, Government Railways of Japan, June,
1931.



No. 4 ON THE MECHANICAL CUBATURE (95)23

Fig. 19 Values of —Z: /Q in the plane x = (.

Q
, || v
1.00 0 0 -
0.70 0. 40 0.06 0.01
0. 34 0.23 0. 11 0.02
0.18 0.15 0. 09 0.04
0.11 0.10 0.07 0.04
0.07 0. 07 0.05 0.04

.

ical cubature. General expressions of different type may also be deriv-
ed from other interpolation formulas for the function f(x, v, z). Further-
more, general expressions for the integration of higher order can also be
written down if wanted.
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