

A detection of ill-formed patterns
about programming style

 Rika SEKIMOTO and Kenji KAIJIRI

Department of Information Engineering, Faculty of Engineering
 Shinshu University, 500 Wakasato, Nagano 380-8553, JAPAN

E-mail:rika@cs.shinshu-u.ac.jp

Abstract: Programming style plays an important role in program understanding and
maintenance. We have implemented a plan recognition system for source code search,
and have attempted detection of ill-formed patterns about programming style through
it. In this paper, we present experimental result obtained from a prototype system. We
ascertained that our system is able to diagnose various items about programming style,
so it may be used as an effective tool of programming style diagnosis.

1. Introduction

 In programming, it is important to keep a coding standard and to implement an
understandable program for everyone. The guideline to produce code that is clear and easily
understood without sacrificing performance is called programming style. In particular,
programming style plays an important role in program education for novice programmers and
in program development by many programmers. By obeying the programming style, quality of
the program and maintenance efficiency will increase.
 We aim at developing a system which diagnoses programming style. It assists programmers
to obey the programming style. Our system detects program fragments, which match the
ill-formed patterns against programming style within target programs, and outputs the
diagnosis message. The target language is ANSI C.
 We have already proposed program plan representation for source code search, and have
implemented a plan recognition system that detects program fragments which match plans [1,
2]. We attempted the recognition of ill-formed patterns about programming style through this
plan recognition system.
 Several programming style analyzers have been developed. For example, there are Code
Analyzer for Pascal (CAP) [3] and STYLE [4]. CAP is an automated self-assessment tool to
aid novice student programmers. STYLE outputs messages about the programming style
based on six-quality metrics: documentation, layout, etc. These systems center on statistics
quantity, indentation and comment style analysis and they don't deal with structural patterns
and context dependent patterns. These systems realized each analysis as procedures, so there
are problems about extensibility of systems. In our method, we assume that a check item of
programming style is a search pattern, and define it as a plan. The system detects program
fragments against each programming style by searching plan. When we'd like to add new
check item, we need only to define it as plans. Furthermore our system can deal with structural
patterns and context dependent patterns.

 In this paper, we describe the description experiment of ill-formed patterns about
programming style and recognition experiment for programs of the GNU text utility library.

2. Overview of plan recognition

 We have proposed the representation method for source code search using programming plan,
and have implemented a plan recognition system which locates source code fragments that are
matched with given plans.
 Our proposed plan consists of plan name, parameter list, body part, and constraint part. In
body part, the pattern to be matched is described, which we call the template. In constraint part,
the context condition, which is concerned with the template (e.g. condition about syntax and
static analysis information), is described. From the description form of the template, a program
plan is classified into two types: fundamental plans and compound plans. A fundamental plan
is assumed to be a sentential form of the C grammar. A compound plan consists of sets of
instances of fundamental plans.
 In the recognition process of plan, at first, system tries to compare the template in body part
with target program. In template matching of fundamental plans, we use technique based on
the finite state automaton proposed by [5]. The template is transformed into an extended
non-deterministic finite state automaton called plan automaton (PA). The system simulates a
PA on a source program which is transformed into an abstract syntax tree. We presented the
recognition mechanism in [2]. In the template matching of compound plans, we use the
fundamental plan recognition module. Next, program fragments that matched templates are
checked about context condition in constraint part. For this separation of process, addition of
the new condition becomes easy. Furthermore, the complex matching technique specialized to
various patterns need not be done, so the template matching algorithm becomes simple and
well-formed.

3. Diagnosis of programming style

 We apply the plan recognition system to detect of ill-formed patterns about programming
style. We have defined various kinds of ill-formed pattern using plan format, and done
recognition experiment for programs in the GNU text utility library.

3.1 Description experiment

 The aim of this description experiment is as follows: 1) To investigate whether we can define
various kinds of item about programming style with our proposed notation; 2) To investigate
what kind of item we can’t define. The programming style we used is in [6], and we also used
the programming style that is used in programming course at our university.
 In [6], some pitfalls, which can’t be detected by compilers and may cause serious errors,
were collected. They were classified into seven categories: lexical pitfalls, syntactic pitfalls,
semantic pitfalls, pitfalls about linkage, pitfalls about library functions, pitfalls about
pre-processor, and portability pitfalls. In this experiment, we targeted syntactic and semantic
pitfalls.
 In the description of the syntactic pitfalls, we can define five kinds of concepts out of six. We
defined 12 plans which are concerned with the following concepts: priority between operators,
missing or extra semicolon, case label without break, and dangling else. We have not yet
prepared pattern variable about declaration, so we can't define the concept about function
definition.

 In the description of the semantic pitfalls, we can define three kinds of concepts out of seven.
We defined seven plans, which are concerned with the following concepts: use of pointer
variable, boundary usage, and evaluation order. There are some concepts which we can't
define, and these are concerned with declaration. In check of return variables, it is possible to
check it procedural, but this method is not adequate for our plan representation style.
 In our style guideline, we defined 19 plans about syntax and semantics.
 Examples for plan definition are shown below.

 T
T
va
“f
ar

3.2

 T
ca
w
pr
pl
G
 W
is
of

3.3

3.

[Example 1]
BEGIN
priority1_plan;
#v1
BODY COMPLEX
 l1:assignment_plan();
 l2:equality_exp_plan(#v1)
CONSTRAINT
 with_in(l2, l1)
END
he [priority1_plan] will match
he [multi_assign_plan] will mat
riable in different function. T
open” function calls but does n
e defined as follows;

 Recognition experiment

he aim of this recognition expe
n find the intended program fr
hether the plan recognition me
ogramming style. We used plan
an data. The total number of pla
NU text utility library.

e tried on 22 programs using 3
 26.5 on the average (the maxim
 source code without comment i

 Considerations

3.1 Recognizable pattern
[Example 2]
BEGIN
multi_assign_plan;
$v1, $v2
BODY COMPLEX
 l1:assign_plan($v1);
 l2:assign_plan($v2)
CONSTRAINT
 same_variable($v1,$v2),
 different_function($v1,$v2)
END
an assignment statement that inc
ch some program fragments that
he [file_not_close_plan] will de
ot use “fclose” function calls. So

riment is as follows: 1) To inves
agments concerning programmin

thod is effective for the check o
s which were described in the f

ns is 38. The target of this experim

8 plan data. The number of matc
um is 195, the minimum is 0). T

s 497 (the maximum is 1354, the
[Example 3]
 BEGIN
file_not_close_plan;;
$v1,$v2
BODY COMPLEX
 l1:file_open_plan($v1);
 l2:file_close_plan($v2)
CONSTRAINTS
 found(l1),
 not_found(l2)
END
ludes an equality operator.
assign a value to the same
tect the pattern that uses
me component plans used
BEGIN
assign_plan;
$v1
BODY
 $v1 = #;
END
BEGIN
file_open_plan;
$v1
BODY

$v1 = fopen(#);
END
BEGIN
file_close_plan;
$v1
BODY
 fclose($v1);
END
tigate whether this system
g style; 2) To investigate

f ill-formed patterns about
ormer section as the target

ent is a program set of the

hed elements per one plan
he average number of line
minimum is 107).

 In this experiment, we ascertained that we could define the following patterns easily, and our
system could recognize them: 1) context dependent pattern (e.g. Example 1); 2) dispersed
pattern in two or more functions (e.g. Example 2); 3) pattern that specifies lack of some
component plans (e.g. Example 3). It is difficult to recognize them by pattern matching based
on the character string in the text.

3.3.2 Openness of our system

 In the first recognition experiment, there were some plans that matched verbose program
fragments. We investigated the reason, and solved this problem by modification of context
condition. We can add some new condition easily as local improvement, so we also
ascertained that this system has openness.
 For example, we consider the case that there are two same component plans in the compound
plan (e.g. Example 2). In this case, there were two matched elements which have the same set
of program fragments. We added a condition using before_text constraint which restricts
program position of matched program fragments. As a result, we were able to omit verbose
matched elements.

3.3.3 Problems about representation

 As the representation of body part, there are problems that the lack of representation about
the concept of OR and abbreviation. For the lack of such representation methods, there are
cases that we must describe a plan for similar pattern many times. If we can use these
representations, we are able to define some plans as a single plan, and the number of plan
which the system should try search decreases in diagnosis of similar pattern.

4. Conclusions

 We attempted the detection of ill-formed pattern about programming style through our
proposed plan recognition method. In the description and recognition experiment, we
ascertained the following matters. 1) The diagnosis of programming style is possible through
plan recognition method. 2) The recognition for the dispersed or context dependent patterns is
possible. 3) The expansion of system is easy by adding new conditions. In this system, check
item was defined as a plan, so it is easy to add new query patterns. Therefore this system has
extensibility and maintainability.
 To make this system more powerful, we need to spread the variation of recognizable patterns.
For example, in the compound plan recognition, we need new condition representation and
recognition method for matched list as a whole. We also should evaluate the interface or
execution time by the practical point of view.

References

[1] Kenji Kaijiri, “Support of plan library construction,” JCKBSE'94 (1994).
[2] Rika Sekimoto and Kenji Kaijiri, “Plan Representation and Its Recognition Approach for Program
Recognition,” JCKBSE'96 (1996).
[3] Tom Schorsch, “ CAP: An automated self-assessment tool to check Pascal programs for syntax, logic and
style errors,” SIGCSE '95 (1995).
[4] Al Lake and Curtis Cook, “STYLE -An automated program style analyzer for Pascal-,” SIGCSE Bulletin, Vol.

22, No.3 (1990).

[5] S. Paul and A. Prakash, “A Framework for Source Code Search Using Programming Patterns,” IEEE
Trans. Software Eng., Vol.20, No.6 (1994).

[6] A. Koenig, “C Traps and Pitfalls,” Addison-Wesley (1989).

	E-mail:rika@cs.shinshu-u.ac.jp
	References

