
Software Evolution Support Using
Traceability Link between UML diagrams

Hidekazu Omote, Kohta Sasaki, Haruhiko Kaiya, Kenji Kaijiri
Faculty of Engineering, Shinshu University
4-14-1 Wakasato Nagano 380-8553 japan

{comote,ckota,kaiya,kaijiri}@cs.shinshu-u.ac.jp

Abstract. Evolution is indispensable process in software development, so the system-
atic treatment of evolution is very important. UML becomes a de facto standard for
notation in object oriented development, but the relations between each models are not
defined clearly in UML, and further a usecase model is not defined in UML. In this
paper, in order to support the evolution in object oriented development, we defined a
usecase model, an object model, and traceability links between these models. Using
these models and links, we proposed a new evolution method. Evolution in design
patterns are also considered.

1 Introduction

Evolution is indispensable process in software development, so the systematic treatment of
evolution is very important. UML becomes a de facto standard for notation in object oriented
development, but the relations between each models are not defined clearly in UML, and
further a usecase model is not defined in UML, so the evolution in upper models cannot be
easily transfered to lower models, even if these models are properly maintained. In this paper,
in order to support the evolution in object oriented development, we defined a usecase model,
an object model, and traceability links between these models. Using these models and links,
we proposed a new evolution method. Evolution in design patterns is also considered.

There are several kinds of evolution[15, 18], so we define evolution as “changes in use
case model”. In this paper, use case models consist of the following elements:

• use case diagrams

• activity diagrams which describe scenario for each use case

and object models consist of the following elements:

• class diagrams

• sequence diagrams

We also define traceability link as “the relation between the elements of use case models
and those of object models”. We consider the use case model as an initial model, propagate
the evolution using traceability, and do the required change in object model. We supposed
that the traceability link between each models are established during development process.
We maintain this link using proposed method. The advantages of our method are as follows:



1. The traceability link is maintained throughout the development process, because we con-
sider the maintenance of traceability link as one of the fundamental development pro-
cesses.

2. Software evolution can be propagated systematically. We can traverse each model ele-
ments using these links and effected elements can be identified easily.

In section 2, we described about software evolution, design pattern, and traceability link,
related researches in section 3, evolution using traceability link in UML in section 4, and
traceability link in design pattern in section 5. We showed an example in section 6, and
concluded in section 7.

2 Software Evolution, Design Pattern, and Traceability Link

2.1 Evolution

We show our image of evolution in Fig.1. We consider two models: use case mode (UM) and
object model (OM). We suppose that the traceability link between UM and OM is established
during development.

After the first stage of development, some evolution will occur. We suppose that the trace-
ability link was already established. We need to reconstruct the overall software according to
this evolution. We must do the following steps:

1. To reflect the requirement change into UM

2. To identify the model elements in OM which must be changed using traceability link

3. To reflect required change in OM

4. To reestablish the traceability link

In order to realize the above steps, the followings become needed:

• development process integrated with traceability
Traditional development process does not consider the traceability explicitly during de-
velopment, so traceability link must be established afterward, but in this case some infor-
mations are missed, so the establishment of precise traceability link becomes difficult. On
the other hand, traceability link is easily established during development process because
the link is IN/OUT relation between model elements in our method.

• traceability link between each model elements
We need to define each model and traceability link between several elements for each
model. We need to consider fine grained traceability link.

2.2 Use Case Model and Object Model

There are several techniques about modeling use case and transformation between use case
and object model. We surveyed these researches in section 3. But these researches are not
adequate for our purpose from the granularity. We defined the use case model using use



Use Case Model Object Model

Evolution

Refinement

Abstraction

Traceability

Evolution Propagation
Using Traceability Link

Figure 1: Use Case Evolution

case diagrams and activity diagrams, and describes scenarios using activity diagrams. We
restrict the statements in activity diagrams as the following three forms in order to make the
transformation from activity diagrams to sequence diagrams easy:

• An actor action which describes an action from an actor to a system
actor does something to system

• A system action which describes an action from a system to an actor
system does something to actor

• A system inner action
system does something

We use two kind of a sequence diagram to describe dynamic behavior: a system sequence
diagram which does not consider inner objects and a detailed sequence diagram which
considers inner objects. A system inner action will be refined in a detailed sequence diagram.



Action
Element

activity diagram sequence diagram

Transition
Element class name

attribute name

method name

class diagram

Figure 2: Model Elements

2.3 Development process

We suppose the following development process which refers the elements in Fig.2. We use a
stereotype notation for traceability link.

1. Problem description

2. Use case diagram description

3. Scenario description using activity diagram
Make link between use cases and activity diagrams using �refine� link

4. Class diagram description
Make clear the responsibility and make link between action elements and classes using
�responsibility� link

5. System sequence diagram description using activity diagrams
Make link between action elements and transition elements using �action� link

6. Detailed sequence diagram description using system sequence diagrams
Make link between transition elements in system sequence diagrams and those in detailed
sequence diagrams using �action refine� link. If some transition is delegated to other
transition, then make link using �delegate� link

7. Class diagram refinement using detailed sequence diagrams
Make link between transition elements in detailed sequence diagrams and method names
in class diagrams using �method� link

8. Detailed sequence diagram refinement
Make link between transition elements in detailed sequence diagrams and class names in
class diagrams using �class� link

9. Implementation
Make link between transition elements and methods using �implement� link.

This process may be too simple, so more elaborated process must be needed for real
applications.



3 Related Researches

There are several researches about the structuring and formalizing use cases. A.Cockburn[2]
introduced a goal concept and proposed structuring method for use cases using this concept.
There are also several researches about the traceability between UML models. Glinz[11]
proposed the traceability between scenario and class diagrams. He introduced the class link
to scenario and the scenario link to class. Egyed[10, 13] established the traceability between
scenario and system using dynamic profiles, which can be obtained using the scenario based
on test data. Rausch[14] proposed the test method for the total integrity when the external
requirement of some component is changed. Antoniol, et al[6, 9] proposed the traceability
between two versions of the same OO software. In their method, high level design models
for each version is compared, so coarse granularity is used. Koesters, et al[4, 16] proposed
the method which maps the class model concept into a use case model, and implemented
a support tool. For this purpose, they defined a formal use case model. Mittermeir, et al[7]
proposed the reflection method of the evolution in specification level into the evolution in
implementation. R.France, et al[17] proposed the software evolution method based on several
stakeholders’ multiple views.

The above researches are categorized into the following two categories:

• To formalize use case and introduce the concept of class diagrams into use cases (Koesters,
et al[4])

• To introduce concepts in one model into the another model and vice versa (Glinz, et
al[11]).

In our method, traceability will be established easily during the development process, and
evolution propagation can be considered in fine granularity level.

4 Evolution Using Traceability Link in UML

In this section, we consider the evolution propagation using the traceability link between
UML diagrams, which does not consider design patterns. In the next section, we propose the
traceability link between UML diagrams which use design patterns. We propose the following
steps:

1. From the changed problem description, we identify the use case that will be affected.

2. We identify action elements that will be affected using �refine� link.

3. From the �action� link between activity diagrams and system sequence diagrams, we
identify the transition element in the system sequence diagram and modify it.

4. From the �action refine� link between system sequence diagrams and detailed se-
quence diagrams, we identify the transition element in the detailed sequence diagram
and modify it. If a �delegate� link is defined in this transition, the linked transition
need be modified.

5. From the �implement� link between detailed sequence diagrams and codes, we identify
the code segment which needs to be modified and modify it.



Traceability will be reestablished during this process. There may be another evolution
which cannot be processed using this method, but if evolution can be processed using this
method, semi-automatic evolution propagation becomes possible.

5 Traceability Link in Design Pattern

Design patterns (DPs) have several additional knowledges which characterize each pattern[1],
and these knowledges diffused in several diagrams, so the links connecting these knowledges
are useful. We considered three knowledges, and links between these knowledges and con-
crete UML models as shown in Fig.3: Structure, Participants, and Collaboration. We consider
the virtual model about DP which describes recurring design knowledges, and make traceabil-
ity links between that model and concrete models (UM and OM). France, et al[19] proposed
UML based design pattern specification techniques. They used a role model in order to char-
acterize design patterns and to describe these design knowledges. According to their terms,
Structure corresponds to Structural Pattern Solutions, Participants corresponds to Role Name,
and Collaboration corresponds to Feature Role.

DPs have specific evolution patterns and for these patterns, regulated evolution becomes
possible, so if the required modification matches with the specific modification in a DP, the
predetermined modification of that DP can be applied automatically using traceability link.
If the required modification upsets the required condition of some DP, refactoring becomes
needed for that DP realization, but the part to be refactored can be identified easily using
these links.

Virtual Model Based On DP
which describes recurring design knowledges

Actual Model Using DP

Structure
and

Participant

Collaboration
and

Concequence

<<participant>>

<<collaboration>>

Figure 3: Traceability Link in Design Pattern

6 Examples and evaluations

In this section, we show the concrete example of traceability link maintenance. We suppose
simple library system, and the problem description is as follows:

Users have ID cards. When they borrow a book, they indicate their ID card and the
book. When they return the book, they only present the book. Users can borrow three books
simultaneously, and can borrow within two weeks. If users already borrowed three books, or
they borrowed over two weeks, they can not borrow further. There are two kinds of books in
library: borrowable and unborrowable. In the library counter, the book to be borrowed will



be checked and unborrowable books can not be borrowed. Once a day, the system checks for
each user the period of borrowing and urges users who borrowed over two weeks to return
as soon as possible.

We show the use case diagram for this problem in Fig.4(a). Next we describe the scenario
for “Borrow a Book” using a activity diagram as shown in Fig.4(b). According to the activity
diagram in Fig.4(b) we construct a system sequence diagram as shown in Fig.4(c). We refine
the system sequence diagram in Fig.4(c) into the detailed sequence diagram as shown in
Fig.4(d). We showed the part of traceability links in Fig.4 using a thick line with arrows in
both side.

We consider the following evolution; addition of reservation function for the borrowable
book. We can propagate the evolution through traceability link as follows(description within
a parenthesis shows the identified element):

1. Identify the use case (borrow a book)

2. Identify the action element (system checks whether the book is borrowable)

3. Identify the transition element in system sequence diagrams (system checks whether the
book is borrowable)

4. Identify the transition element in detailed sequence diagrams (Clerk asks the Library
whether the book is borrowable)

5. Identified element is related with the transition element (Library asks the Book whether
it is borrowable) with delegate relation, so only the latter element needs to be modified.

As a result, traceability links are reestablished.

7 Conclusions

We proposed the systematic method to process software evolution using the traceability link
between UML models. It is only an idea, so it is necessary to further consider the following
problems:

• Refine the development methodology which establishes the traceability link. In ordinary
methodologies, several diagrams are developed from different viewpoint and concur-
rently, so establishment of traceability link is not so easy even if we consider it during
development.

• Add the knowledge about evolution within design pattern catalogs. Design pattern cat-
alogs do not include such informations. We need to write scenario templates and their
evolution patterns for each design pattern.

• Refine traceability link and formalize it. Our traceability link is too simple and we need
to elaborate the kind of link and to formalize it in order to realize a support tool

• Realize a support tool

• Do experiments and validate the effectiveness



References

[1] Erich Gamma, et al: Design Patterns, Readings, Addison-Wesley (1994)

[2] A. Cockburn: Structuring Use Case with Goals, html version (1995)

[3] M. Sefika, et al: Monitoring Compliance of a Software System with Its High-Level Design Modes, 18th
ICSE (1996)

[4] G. Koesters, et al: Coupling Use Cases and Class Models, BCS FACS EROS workshop (1997)

[5] G. Koesters, et al: Animated Requirements walkthroughs based on Business Scenarios (1997)

[6] G. Antoniol, et al: maintaining Traceability During Object-Oriented Software Evolution: a Case Study,
ICSM (1998)

[7] R.T.Mittermeir, et al: Object Evolution by Model Evolution, ICSM (1998)

[8] karin K. Breitman, et al: A Framework for Scenario Evolution, ICRE 98 (1998)

[9] G. Antoniol, et: Evolving Object Oriented Design to Improve Code Traceability, 7th IWPC (1999)

[10] Alexander Egyed, et al: Automatically Detecting Mismatches during Component-Based and Model-Based
Development, ASE(1999)

[11] Martin Glinz: A Lightweight Approach to Consistency of Scenarios and Class Models, ICRE 2000

[12] Karin Breitman, et al: Scenario Evolution: a Closer View on Relationships, ICRE’2000

[13] Alexander Egyed: A Scenario-Driven Approach to Traceability, ICSE2000

[14] Andreas Rausch: A Proposal for Supporting Software Evolution in Componentware, CSMR (2000)

[15] T. Mens, et al: Automating Support for Software Evolution in UML, Automated Software Engineering, 7,
1 (2000)

[16] G. Koesters, et al: Coupling Use cases and Class Models as a Means for validation and verification of
requirements Specification, RE Vol.6 (2001)

[17] R. France, et al: Multi-View Software Evolution: A UML-based Framework for Evolving Object-Oriented
Software, ICSM (2001)

[18] Antje von Knethen: A Trace Model for System Requirements Changes on Embedded Systems, IWPSE
(2001)

[19] Robert B. France, et al: A UML-Based Pattern Specification Technique, IEEE Trans. on Soft. Eng., 30, 3
(2004)



Simple Library System

Borrow a Book

Return a Book

Check Delay

User External Timer

User System

User present ID card
to the system

System checks the legality
of the ID card

System informs that
the ID card cannot be used

User present the book
to the system

System checks whether
the book is borrowable

System informs that the book
is unborrowable

System does the 
borrowing process

System informs that
borrowing process ended

User present ID card
to the system

System check the legality
of the ID card

User present a Book
to the system

System checks whether
the book is borrowable

System does borrowing
processSystem inform that 

the book is unborrowable

System informs that
the ID card cannot 

be used

System informs that
borrowing process

ended

<<refine>>

<<action>>

<<action_refine>>

(a) Use Case Diagram

(b)activity Diagram

(c)System Sequence Diagram

(1)

(2)

(3)

Source Code

User Clerk

User presents the ID
card to the system

System informs that
the ID card cannot be used

User presents the book
to the system

System informs that
the book is unborrowable

System informs that
borrowing process ended

User BookLibrary

Clerk asks the legality of 
ID card to the Library 

User asks the borrowed
period to the Book

(For each borrowed book)

Library asks the legality of 
ID card to the User

Clear asks the Library
whether the book is

borrowable

Library ask the Book whether it is borrowable

Clerk ask the Library 
borrowing process Library asks the Book borrowing process

Book asks the User borrowing
process

<<delegate>>

(d)Detailed Sequence Diagram

(4)

(5)

<<lmplement>>

Clerk

Library User

Book

(e)Class Diagram

Borrowable

<<responsibility>>

<<method>>

<<class>>

Figure 4: Traceability Link


