
Trade-off Analysis between Security Policies for Java Mobile Codes
and Requirements for Java Application

Haruhiko Kaiya Kouta Sasaki Yasunori Maebashi Kenji Kaijiri
Dept. of Computer Science, Shinshu University

Wakasato 4-17-1, Nagano 380-8553, Japan
kaiya@cs.shinshu-u.ac.jp http://www.cs.shinshu-u.ac.jp/˜kaiya/

1. Introduction
We propose a method for analyzing trade-off between se-

curity policies for Java mobile codes and requirements for
Java application. We assume that mobile codes are down-
loaded from different sites, they are used in an application
on a site, and their functions are restricted by security poli-
cies on the site. We clarify which functions can be per-
formed under the policies on the site using our tool[1]. We
also clarify which functions are needed so as to meet the
requirements for the application by goal oriented require-
ments analysis(GORA).

By comparing functions derived from the policies and
functions from the requirements, we can find conflicts be-
tween the policies and the requirements, and also find
vagueness of the requirements. By using our tool and
GORA again, we can decide which policies should be mod-
ified so as to meet the requirements. We can also decide
which requirements should be abandoned so as to meet poli-
cies which can not be changed.

2. Overview of our Method
In Figure1, we show components that are used in our

method and their relationships. Using this figure, we will
show the procedure how to analyze the trade-off between
environments and requirements.

The inputs of our method are an environment and a goal
hierarchy. The environment consists of mobile codes, their

Enabled Functions
Required Functions

(SRS)

Goal Hierarchy

Conflicts
and Vagueness

Detection

Environment
(Codes, Deployment,

Security Policies)

Figure 1. Components in our Method

deployment over the network and security policies for a site
where intended application will be executed. The goal hier-
archy shows what application users want because we regard
goals as to-be or ideal goals in this paper.

The main output of our method is required functions,
that become main parts of software requirements specifica-
tion(SRS). Each function represents a permission for some-
one or some code to do something. At the end of the analy-
sis process, our method guarantees required functions to be
feasible under the given environment, but the functions are
not always consistent with the goal hierarchy.

The goal hierarchy is sometimes modified and/or ex-
tended because implicit and/or unidentified goals are found
by using this method. The environment is also sometimes
modified so as to meet the goal hierarchy in Figure1. As a
result, the goal hierarchy becomes clearer, and the environ-
ment becomes fit to the hierarchy if possible.

Here is the procedure of our method.

1. Get the description of the environment and the goal
hierarchy.

2. Derive required functions and enabled functions:
In the first step, we construct required functions from
the goal hierarchy. We also construct enabled func-
tions from the environment because we can identify
which functions can be performed or not. Note that re-
quired and enabled functions are represented in tabular
form.

3. Identify the differences between required functions
and enabled functions:
Because they are written in the same form, we can sys-
tematically identify their differences.

4. Resolve conflicts between enabled functions and re-
quired functions: There are two ways to resolve such
conflicts.
Modify environment: So as to meet required functions
and goals, the environment is modified. It is easy
to modify policies because policies are located in the

Proceedings of the 11th IEEE International Requirements Engineering Conference

1090-705X/03 $17.00 © 2003 IEEE

Participate e-learning

encourage collaboration
among the learners

know the result of learning

read his/her own score

score the answers

answer the question

and

Protect his privacy
(confidentiality)

without unfairness

learner can not
modify the score

co-learners can not
read his score

and

and

omit
omit

Issue a credit

admin. read scores

without unfairness

others can not
read his answer

Teacher Admin. CoLearner Learner

Answer r - - rw
Score rw r - r
Remark rw rw rw

both in Staff.class

admin. can not
modify the score

Teacher Admin. CoLearner Learner

Answer r r - rw
Score rw rw - r
Remark rw rw rw rw

both in Staff.class

Security Policies

Codes

Deployment of Codes

Environment

Goal Hierarchy

Enabled Functions Required Functions
ConflictConflict

ConflictConflict

Vagueness

Figure 2. Snapshot of an Analysis for an E-learning System

user’s machine. Such modification sometimes enables
other functions performed by other mobile codes, so
we should check such kind of side effects by using our
tool. It is not easy to modify the deployment because
it is defined by code providers and such deployment is
sometimes shared several applications and/or projects.
We assume that we can not modify the codes directly
in this paper.
Modify required functions: The environment some-
times can not be modified as mentioned just above. In
such a case, we should abandon some part of require-
ments so as to resolve conflicts. As a result, several
functions expected by the application users are not pro-
vided. In our method, there is no way to recover such
things. Our method only enables us to record gaps be-
tween goals and required functions, so as to recover
them when the environment will be changed in the fu-
ture.

5. Clarify vagueness of required functions and goals:
By observing the differences between enabled and re-
quired functions, we can sometimes detect require-
ments that are unstated but should be specified. Such
detection enables us to find implicit goals, and to add
such goals into the goal hierarchy.

6. Iterate above steps so as to complete required functions
if the environment and/or the hierarchy are changed.

Currently, we use simple GORA, because we do not han-
dle conflicts among stakeholders. We will use extended ver-
sion of GORA e.g.[2], when we handle such conflicts.

3. Example
We will show a part of an example to demonstrate the

usefulness of our method. In this example, requirements
for an e-learning system are analyzed. A company required
this system will issue the credit of courses by the system.
Such credit can be compatible with the credit issued by an
university.

Figure2 shows a snapshot of an analysis for this system.
As the result of GORA, several goals including two goals,
‘others can not read one’s answer’ and ‘administrator can
not modify the score’, are found. Based on the goals, we
have derived required functions. We also derive enabled
functions from the environment, and we know we can not
modify the environment. By comparing two kinds of func-
tions, we find two conflicts and one vagueness.

In this case, we should abandon these two goals because
conflicts are related to the goals and we can not modify en-
abled functions under this environment. As a result, current
enabled functions are selected as new required functions,
then we record gaps between new required functions and
original goals. This record will contribute future evolution
of this system and the environment.

References
[1] H. Kaiya, Furukawa, and K. Kaijiri. Security Policy Checker

and Generator for Java Mobile Codes. IFIP TC8/WG8.1
Working Conference on EISIC, pages 255–264, Sep. 2002.

[2] H. Kaiya, H. Horai, and M. Saeki. AGORA: Attributed Goal-
Oriented Requirements Analysis Method. Proc. of RE’02,
pages 13–22, Sep. 2002.

Proceedings of the 11th IEEE International Requirements Engineering Conference

1090-705X/03 $17.00 © 2003 IEEE

