
VDM over PSP: A Pilot Course for VDM Beginners
to Confirm its Suitability for Their Development

Hisayuki Suzumori Haruhiko Kaiya Kenji Kaijiri
Dept. of Computer Science, Shinshu University

Wakasato 4-17-1, Nagano 380-8553, Japan
chisa@cs.shinshu-u.ac.jp kaiya@cs.shinshu-u.ac.jp kaijiri@cs.shinshu-u.ac.jp

Abstract

Although formal methods seem to be useful, these is no
clear way for beginners to know whether the methods are
suit for them and for their problem domain, before using
the methods in practice. We propose a method to confirm
the suitability of a formal method. The method is realized as
a pilot course based on the PSP. A course mentioned in this
paper is designed for a typical formal method, VDM. Our
course also helps beginners of VDM to learn VDM grad-
ually and naturally. During the course, they can confirm
its suitability as follows; First, they practice several exer-
cises for software development, while techniques of VDM
are introduced gradually. Second, process data and product
data of software development are recorded in each exercise.
Third, by evaluating these data by several metrics, they can
confirm the suitability of VDM for their work.

Key Words

Vienna Development Method, Formal Method, Personal
Software Process, Software Process Improvement, Soft-
ware Metrics, Software Engineering Education.

1. Introduction

Any software development methods can not work well,
unless a method is suit for users and their problem domain.
Before using the method in practice, such users normally
decide whether they use it, by reading its guide book and/or
its review articles, by attending its tutorial, or only by be-
lieving its reputation. This is one of the reason why users
usually feel awkward in using unfamiliar methods such as
formal methods. If each user can understand the advantages
and disadvantages of such methods by themselves, formal
methods will be used more and more.

Here we briefly discuss the advantages and disadvan-
tages of a formal method. We suppose a typical formal
method The Vienna Development Method, VDM. By using
VDM, software developers can systematically confirm the
correctness of software behavior thanks to its mathematical
notation for software design. By using CASE tool offered
by IFAD1, VDM users can save time and effort. Of course,
there are many disadvantages in VDM. For example, it is
difficult to get feedback from users and testers even though
animation and simulation tools are available. Graphical no-
tations such as use cases and/or state charts are more ade-
quate to get such feedback[10]. In addition, developers feel
to do the same thing, because specification and design doc-
uments written in VDM are often similar to source codes
written in programing languages.

We discuss the reasons why formal methods are rarely
used, even though they have great advantages. Of course,
one of the biggest reason is their disadvantages mentioned
above. However, the disadvantages are only generalization
and sometimes they are only reputation. Each user does not
normally confirm the advantages by himself. So another
reason why the methods is rarely used is that there is no
way for each user to confirm whether a method is suit for
them and their problem domain.

In this paper, we propose a method to confirm whether
VDM is suit for users by themselves. We realize the method
as a course of software development using VDM. The out-
puts of the course are evaluated by metrics we proposed.
Although the user is required to pay only a little efforts for
confirming suitability, he can decide by themselves to use
VDM.

Because users should collect the data of their software
process and product for deriving the metrics, we design our
course based on The Personal Software ProcessSM, the PSP
[8]. Because we focus on the changed parts of processes and
products according to gradual introduction of VDM, we as-

1In this paper, we used VDM and VDMTools developed and licensed
by IFAD - www.ifad.dk.

Proceedings of the 27th Annual International Computer Software and Applications Conference (COMPSAC’03)
0730-3157/03 $ 17.00 © 2003 IEEE

sume that users who try to do our course have already mas-
tered techniques in the PSP, such as recording and schedul-
ing tasks. We call our course as VDM over PSP because of
the backgrounds above. We use the word ‘the PSP’ in order
to distinguish the original PSP from our extension.

The rest of this paper is organized as follows. In
Section2, we briefly introduce underlying techniques, the
PSP and VDM. Section3 is the core part of this paper. In
the section, we show the structure of our course and met-
rics for confirming VDM’s suitability in detail. In Section4,
we illustrate how to use our course by using an example.
Finally, we summarize current results and show future’s di-
rection.

2. Underlying Techniques for VDM over PSP

In this section, we briefly introduce techniques for build-
ing our course, underlying techniques for VDM over PSP.

2.1. The PSP

The goal of software engineers is to develop reliable soft-
ware within given cost and schedule[9]. The PSP proposes
scheduled planning and quality management method in per-
sonal level.

The PSP includes the following techniques[13]: measur-
ing product and process (In particular, they report time log,
defect log and software size), recording the data into forms
along with the process script, and analyzing the data. Dur-
ing the introductory programming course using the PSP [8] ,
PSP learners learn the above techniques. In this course, they
experience improving software process by gradually intro-
ducing methods. Software process improvement is achieved
by evaluating the data with respect to several metrics. The
evaluation of the PSP also contributes for students to know
the benefits of particular methods[6, 12].

2.2. Formal Methods

Formal methods are used to design software by using
mathematics. Specifications in formal methods can be
checked formally using some mathematical techniques and
tools. In general, formal methods contribute the improve-
ment of software development as follows [4, 10].

• Because the specifications can be described exactly,
there is little misunderstanding between writers and
readers in reading such specifications.

• By analyzing the specification formally, defects can be
found in early phase, and most defects can be found at
the end.

In addition, formal methods are not used frequently by
the following preconceived notion[10].

• Because specifications written in formal methods are
often similar to source codes written in programing
languages, developers feel to repeat the same thing.

• Because mathematics are used in formal methods, de-
velopers feel that formal methods are difficult.

2.2.1 VDM and VDMTools

In this paper, we use a typical formal method, VDM. VDM
was designed by IBM Vienna laboratory in 1973[4]. There
are two specification languages for VDM, VDM-SL and
VDM-SL++, and we use VDM-SL in this paper. CASE
tools are also available such as VDMTools developed by
IFAD [3]. We only use VDM-SL Toolbox(in the following
Toolbox means VDM-SL Toolbox) in VDMTools. We only
use the following functions in Toolbox, because VDM over
PSP is for beginners of VDM.

Syntax check :To check syntactic legality in VDM-SL.

Type check :To check type compatibility statically.

Interpreter and Debugger :Toolbox has an interpreter
and source level debugger for VDM-SL. It is possible
to check invariants and preconditions dynamically.

We decided that functions in VDM and Toolbox are
gradually introduced in VDM over PSP, so that you can feel
your improvement which is achieved by the functions.

3. VDM over PSP

In this section, we introduce the structure of our course
and metrics for confirming VDM’s suitability.

3.1. Course Structure

In the same way as the PSP, our course has also four lev-
els, from VDM over PSP0 to VDM over PSP3. The baseline
of our process, VDM over PSP0, is the same as level 2.1 of
the PSP. Along with the progress of the course, techniques
of VDM are gradually introduced.

3.1.1 Where is VDM embedded?

Because VDM over PSP use PSP2.1 as the baseline, we
briefly review the structure in the PSP2.1. The PSP2.1 con-
sists of two kinds of objectives, one is for cost estimation
and schedule planning and another is for quality manage-
ment. For quality management, review and semi-formal
design specification techniques are mainly used. Design

Proceedings of the 27th Annual International Computer Software and Applications Conference (COMPSAC’03)
0730-3157/03 $ 17.00 © 2003 IEEE

Table 1. VDM over PSP 3 process

name of the
phasis

name of phases

start design phasis
planning
design (Modified)
design review

⇓
VDM-SL syntax review
Syntax check (with Tool)
Type check (with Tool)
Validation (with Tool)

end implementation
phasis

code
code review
compile
test
postmortem

templates are used for writing design specifications, and re-
view guidelines and checklists are used during its review
phase. Because VDM can be used as an alternative of de-
sign template, it can be used for quality management instead
of design templates in the PSP2.1. Therefore, we select the
PSP2.1 as the baseline of VDM over PSP.

3.1.2 Process Levels in VDM over PSP

We have already mentioned that PSP2.1 is the baseline pro-
cess of VDM over PSP. Here we introduce each level of
VDM over PSP in detail. Along with the progress of the
level, techniques in VDM are gradually introduced. Exer-
cises in our course are categorized into the following levels;

VDM over PSP0 : The baseline personal process. This is
the same as the PSP2.1.

VDM over PSP1 : Functional specifications in VDM-SL
are introduced. In addition to VDM over PSP0, VDM
over PSP user uses VDM-SL description to specify
data types, pre-conditions, implicit function descrip-
tions and invariants of each data type.

VDM over PSP2 : Logical specifications in VDM-SL are
introduced. In addition to VDM over PSP1, the user
specify the internal specification of each function.

VDM over PSP3 : Using Toolbox to validate specification
written in VDM-SL. In this level, the user uses the pro-
cess as shown in Table1, the quality management met-
rics that are redefined as describe in section 3.1.5, and
procedures as shown in Table2. We will describe the
detail of this level in the next section.

3.1.3 An Overview of the Process Script of VDM over
PSP3

In Table1, we show a process script of VDM over PSP3. We
categorize that the first seven phases are design phasis and

Table 2. Validation procedures using the de-
sign template and ToolBox

phase the design
template

step

1. VDM over PSP user uses in-
terpreter only, doesn’t use optional
function in interpreter.

function
check

functional
specification
template

2. The user uses interpreter, selects
option for dynamic possible well-
formedness in interpreter.
3. The user uses interpreter, se-
lects option for dynamic possible
well-formedness and dynamic defi-
nite well-formedness in interpreter.
1. The user uses interpreter only,
doesn’t use optional function in in-
terpreter.

use case
check

operational
scenario
template

2. The user uses interpreter , selects
option for dynamic possible well-
formedness in interpreter.
3. The user uses interpreter, se-
lects option for dynamic possible
well-formedness and dynamic defi-
nite well-formedness in interpreter.

Table 3. Category of VDM template

internal external

static Explicit function
description (VDM)

Data type description
(VDM)
Invariant relation of
data types (VDM)

dynamic State specification tem-
plate (the PSP)

Implicit function
description (VDM)
Pre-condition descrip-
tion (VDM)
Operational scenario
template (the PSP)

the rest are implementation phasis. Scripts of other levels in
VDM over PSP are subsets of this script. Here we explain
how to make VDM to cooperate with the PSP. Because the
quality management in the PSP has two aspects: one is the
defect preventive strategy and another is the defect elimi-
nation strategy, we discuss this cooperation in each aspect
respectively.

For the defect preventive strategy in VDM over PSP, we
also use review guidelines and checklists in the same way
as the PSP. We categorize VDM-SL descriptions into de-
sign template in the PSP as shown in Table3. This table
shows the category of complete design representation for
design templates in the PSP[8]. VDM over PSP users use
new design templates for VDM instead of design templates
of the PSP. However, we use two design templates of the
PSP, state specification template and operational scenario

Proceedings of the 27th Annual International Computer Software and Applications Conference (COMPSAC’03)
0730-3157/03 $ 17.00 © 2003 IEEE

template, because we can not describe such kinds of speci-
fications naturally in VDM-SL.

For the defect elimination strategy in VDM over PSP, we
append four additional phases into the script in Table1. In
addition, we use design templates at the validation phase, as
the guideline to generate test case. The design phase, which
is also the part of the PSP, are slightly modified in VDM
over PSP. The details of the additional and modified phases
are as follows;

Design : VDM over PSP user describes design specifica-
tion in VDM-SL.

VDM-SL syntax review : the user checks VDM-SL spec-
ifications to find syntax defects. Although VDM-
SL specifications can be executed, defects should be
checked by the review as well as in defects of the code.

Syntax check : the user executes the syntax checker in
Toolbox.

Type check : the user executes the type checker in Tool-
box.

Validation : the user validates the specification by execut-
ing it with the interpreter. In this phase, poof tech-
niques are not used, because our course is for begin-
ners of VDM.

In Table2, we show validation procedures using design
templates and ToolBox. Columns of the table show the
name of the phase, design template witch is used to gen-
erate test data, and the ordering of the step achieved in each
phase. In these procedures, VDM over PSP users check
the validity of each function first, and the validity of each
scenario next. By using external and invariant specification
of each function and reasonable test data, they can check
the former kind of validity. By using each scenario written
in operational scenario template, They can check the latter
kind of validity.

3.1.4 New Defect category

Because VDM-SL specification is executable, syntax de-
fects of VDM-SL should be recorded in the same way as
code defects in the PSP. These defects are only injected
in design phasis. After the code phase, these defects are
not injected. We append new defect categories for defects
of VDM-SL specification because we formally distinguish
code defects from those of VDM-SL specification. Syntax
defects of VDM-SL contribute to know design quality.

In the PSP, defect recording log consists of the follow-
ing members for each defect: the phase where defect is re-
moved, the phase where defect is injected, category of de-
fect from defect type standard in the PSP, and removal time.
In VDM over PSP, we use the same form as well.

In the PSP, defects are categorize into 10 types. The first
four types represent code syntax defects, and the rest types
represent design defects [9]. We add four additional types
for VDM-SL syntax defects in the same way as code syntax
defects.

3.1.5 Redefining The Quality Management Metrics

We redefine the Cost-Of-Quality (COQ) metrics. COQ are
used for evaluating the process quality in the PSP. COQ in-
dicates economics of defect removal. There are two kinds
of COQ in the PSP: failure cost and appraisal cost. The de-
fect removal phases are classified into either failure cost or
appraisal cost.

We classify the cost of the validation phase in the failure
cost because the validation phase is almost the same as test.
We classify the cost of syntax check and type check phases
in the failure cost because the phases are almost the same
as compile phase. We classify the cost of VDM-SL syn-
tax review phase in the appraisal cost because the VDM-SL
syntax review phase is review phase.

We don’t need to redefine the metrics for quality man-
agement. The other metrics are the same as those in the
PSP.

In VDM over PSP3, VDM over PSP users follow the
script in Table1 to develop a program. They describe design
specification to design templates in Table3. They use review
guidelines and check lists in each review phase. They use
procedures in Table2 at the validation phase. They evalu-
ate our process and product using the quality management
metrics.

3.2. Metrics for Confirming VDM’s Suitability and
Unsuitability

Here we propose the new metrics to confirm VDM’s suit-
ability from the product and process data.

3.2.1 Metrics for Confirming VDM’s Suitability

We define three metrics for confirming VDM’s suitability
as follows; The metric focuses on design defect because we
suppose that design quality influences design defects. We
define the metric for confirming VDM’s suitability based
on quality management metrics of the PSP.

• Ratio of Phases where design defects are re-
moved(DDR)
DDR(phasei) = design defects removed in phasei

all design defects × 100
Objective: VDM over PSP users can remove almost
all design defects up to the validation phase. After the
validation phase, They can leave no design defect.

Proceedings of the 27th Annual International Computer Software and Applications Conference (COMPSAC’03)
0730-3157/03 $ 17.00 © 2003 IEEE

• Ratio of phases where design defects are injected(DDI)
DDI(phasei) = defects injected in phasei

all design defects × 100
Objective: They can find bad final design decision in
early phase.

• Design defect removal leverage(DDRL)
DDRL(phasei) = Defects/Hour(phasei)

Defects/Hour(UnitTest)
Objective: They can remove design defect easily.

Note that phasei means i-th phases in Table1.

3.2.2 Metrics for Confirming VDM’s Unsuitability

We define two metrics for VDM’s unsuitability as follow:

• Productivity
Productivity(exercisei) = LOC

total development hour
Objective: The decline of productivity in VDM over
PSP’s development.

• Number of Design Defect per KLOC(NDDK)
NDDK(exercisei) = all design defects

KLOC
Objective: The rise of design defects per KLOC in the
user’s development.

Note that exercisei means i-th exercise in VDM over
PSP course.

3.2.3 How to use the Metrics

We explain how to use our metrics to indicate VDM’s suit-
ability and unsuitability. In the same way as the PSP, several
number of exercises are imposed to an user who tries to do
our course. Along with the progress of the course, VDM
over PSP user can observe the changes of metrics. the user
can identify the effects and/or suitability of VDM from such
changes. We observe only the change of each metrics along
with the progress of VDM over PSP course. A way of how
to evaluate data measured with the metrics is shown in Table
4.

4. How to use Our Course: An Example

In this section, we illustrate how to use our course and
how to confirm VDM’s suitability using an example. Note
that data here does not come from real experiences of our
course, and merely a fiction based on an experience of the
PSP. We have not applied our course to any persons yet.

The situation for this example is as follows.

A software engineer engages in a mission criti-
cal project. Fortunately, there are enough bud-
get and time for the project. Because he is well-
experienced engineer, he has already used quality
management techniques such as review and semi-
formal design. For improving the quality of his
process furthermore, he tries to introduce VDM.

Assume VDM over PSP is used under such situation. Nine
exercises for software development are prepared for his
VDM over PSP. As shown in Figure 1, 2, 3 and 4, exercise
1 and 2 are solved by VDM over PSP0, 3 and 4 by VDM
over PSP1, 5 and 6 by VDM over PSP2 and 7, 8 and 9 are
solved by VDM over PSP3. Problems in the exercises be-
long to the same domain as the problem of his project. Now,
he tries to confirm VDM’s suitability for him by using our
metrics.

4.1. Confirming Suitability

As mentioned in Section3.2.1, we have proposed three
metrics for confirming VDM’s suitability; Ratio of Phases
where Design Defects are Removed (DDR), Ratio of Phases
where Design Defects are Injected (DDI) and Design Defect
Removal Leverage(DDRL). The engineer using our course
tries to plot each metrics in each exercise. In Figure 1, 2 and
3, X axis shows the progress of exercises.

Figure1 shows the changes of the ratio DDR during the
course. Up to the level of VDM over PSP2, there are no
significant changes of the ratio. That is to say, about 90%
of defects are removed before test phase. At the level of
VDM over PSP3, where validation using VDM-SL tool is
introduced, the ratio is significantly changed. That is to
say, about 90% of defects are removed before code review
phase. From the results, the engineer feels that VDM is
useful for him when tool support is available, but it is not so
useful only writing formal specifications.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9

VDM over PSP 0 VDM over PSP 1 VDM over PSP 2 VDM over PSP 3

Design Review

Code Review

Compile

Test

Test

Syntax Check

VDM-SL Syntax Review

Validation

Figure 1. Ratio of Phases where Design De-
fects are Removed (DDR)

Figure2 shows the changes of the ratio DDI during the
course. As the course is progressed, the ratio of design
defects injected in coding phase is gradually decreased.
Because design defects injected in coding phase implies
that design decision is not fully discussed in design phase,
he finished the lager number of design decision in earlier
phase. At the level of VDM over PSP3, there are few de-

Proceedings of the 27th Annual International Computer Software and Applications Conference (COMPSAC’03)
0730-3157/03 $ 17.00 © 2003 IEEE

Table 4. What does the change of each metric indicate and What can be concluded?

Metrics Increase Decrease

DDR of de-
sign phasis

VDM over PSP user removed more design defect in design
phasis and the user removed design defect earlier.
So, VDM is useful for design defect elimination.

The user removed insufficient number of design defects in the
phasis and activities in the phasis did not contribute to elimi-
nate design defects.
So, the user may introduce other methods instead of VDM
when the user removes design defects in design phasis.

DDI of de-
sign phase

The user increased ratio of the design phase where design de-
fects are injected and the user can finished the larger number
of design decision than in the previous exercise.
So, VDM contribute to find bad finish design decision in ear-
lier phase.

The user tended to overlook design issues during design phase.
So, VDM put design issues out of the user’s sight and the user
should stop using VDM immediately.

DDRL
of design
phasis

The user got DDRL of a phase of design phasis more than the
other phase and the user could remove design defects more
efficiently.
So, VDM techniques introduced in the phase will contribute to
improve efficiency of design defect removal.

The efficiency of design defect removal became worse.
So, the user may introduce other methods instead of VDM with
respect to the efficiency of design defect removal when the user
removes design defect in the phase.

Productivity The user’s productivity was improved more than the previous
exercise.
So, VDM is useful for cost saving.

The user productivity became smaller than the previous exer-
cise.
So, the user should examine whether the user have enough bud-
get and time for using VDM.

NDDK If the user’s ability of defect detection was not changed during
the course, bad design decision was increased.
So, the user may introduce other methods instead of VDM for
design.

If the user’s ability of defect detection was not changed during
the course, bad design decision was decreased.
So, VDM is useful to improve the design quality.

sign defects injected in coding phase. From the results, the
engineer feels that VDM is useful for him, and only writing
formal specifications will helps to decrease design defects
injected in coding phase.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1 2 3 4 5 6 7 8 9

VDM over PSP 0 VDM over PSP 1 VDM over PSP 2 VDM over PSP 3

Found and Fixed in Design Phase

Found and Fixed in Coding Phase

Figure 2. Ratio of Phases where Design De-
fects are Injected (DDI)

Figure3 shows the changes of DDRL during the course.
In the same case in Figure1, there are no significant changes
of the ratio up to the level of VDM over PSP2. In all exer-
cises, a leverage by design review is extremely stronger than
leverages by other phases. However, leverages by VDM-
SL syntax review and validation are not so bad, and lever-
ages by code review are improved at the level of VDM over

0

5

10

15

20

25

1 2 3 4 5 6 7 8 9

VDM over PSP 0 VDM over PSP 1 VDM over PSP 2 VDM over PSP 3

Figure 3. Design Defect Removal Leverage
(DDRL)

PSP3. From these results, the engineer feels that VDM is
useful for him when tool support is available, but it is not so
useful only writing formal specifications.

4.2. Confirming Unsuitability

As mentioned in Section3.2.2, we have also proposed
two metrics for confirming VDM’s unsuitability: produc-
tivity and the number of design defects per KLOC. The en-
gineer using our course tries to plot each metrics in each
exercise in Figure4 and 5. X axis also shows the progress
of exercises.

As shown in Figure4, his productivity is declined as the

Proceedings of the 27th Annual International Computer Software and Applications Conference (COMPSAC’03)
0730-3157/03 $ 17.00 © 2003 IEEE

0.00

5.00

10.00

15.00

20.00

25.00

1 2 3 4 5 6 7 8 9

VDM over PSP 0 VDM over PSP 1 VDM over PSP 2 VDM over PSP 3

Productivity

Figure 4. Productivity

0.00

10.00

20.00

30.00

40.00

50.00

60.00

1 2 3 4 5 6 7 8 9

VDM over PSP 0 VDM over PSP 1 VDM over PSP 2 VDM over PSP 3

of defects/KLOC

Figure 5. Number of Design Defects per KLOC

course is progressed. By approximating the line graph in
Figure4 into a straight line, the coefficient of its decline is
about -1.8. From the result, the engineer feels that VDM
is harmful for efficiency. However, he do not mind this fact
because his project has enough budget and time!

As shown in Figure5, the number of defects per KLOC is
not changed as the course is progressed. By approximating
the line graph in Figure4 into a straight line, the coefficient
of its decline is about -0.5. So we may say that the number
is slightly decreased. From the result, the engineer feels that
VDM gives no effects to the amount of design defects.

4.3. Summary of his Decision

As a result, the engineer tries to use VDM with tool sup-
port in the project he engaged. The reasons are as follows.
First, he feels VDM and its tool slightly contribute to re-
move design defects. Second, he feels VDM contributes to

decrease the injection of design defects after design phase.
Third, he do not need to mind productivity in the project.

5. Conclusions and Future Works

In this paper, we propose a pilot course, namely VDM
over PSP. By using this course, a beginner of VDM can con-
firm whether VDM is suit for him and for his problem do-
main systematically. Although, a few costs are required for
the course before using VDM into practice, each software
engineer can decide by himself to use VDM. As mentioned
in the first section, we assume that people who try to do our
course have already mastered techniques in the PSP. This
seems big fetter of our course. However, we believe that
our course can motivate engineers to learn such disciplines
in the PSP, because they can be free from public reputation
of methods and techniques by our course.

There are two kinds of design quality, one is the qual-
ity of the design representation and another is the quality of
the design contents. The former quality is more important
than we have imagined, because poor representation usu-
ally causes poor implementation[8]. Unfortunately, metrics
for the former kind of quality are not proposed in both the
PSP and VDM over PSP. We want to propose such metrics
in the future. In IEEE standard 830[1], we can find qual-
ity characteristics for the requirements specification such as
modifiability and traceability. Concepts of such characteris-
tics will helps us to build metrics for design representation.

As shown in Table2, we propose the process script for
validating VDM-SL specification using Toolbox. However,
the script is not complete because we should prepare test
cases for achieving the process but there is no clear way for
preparing them. We want to append techniques for generat-
ing test cases to our course.

As implied in the fist section in this paper, we regard
that each personal software process using VDM is mainly
characterized by both the person who engages the process
and by the problem domain he engaged. By performing our
course by himself, the former kind of characteristics can be
specified, but the latter kind of characteristics can not. By
specifying the problem domain in our course, we should
also design the contents of exercises. For example, exer-
cises in the PSP[8] seem to be designed for a problem do-
main where numerical and statistical calculation is impor-
tant. We should offer another kind of exercise series when
an engineer engages in another kind of problem domain.

Another big problem of our course is the cost for achiev-
ing the course. From the experiences of the PSP course, it
is very very hard for any engineers to complete this kind of
course, because it requires big time and efforts. If you can
engage a project with enough budget and time, we strongly
recommend to do our course for confirming VDM’s suit-
ability. If you can’t, this is the ordinary case, records of

Proceedings of the 27th Annual International Computer Software and Applications Conference (COMPSAC’03)
0730-3157/03 $ 17.00 © 2003 IEEE

other engineers will help you to decide whether you use
VDM. We want to build a database for such records in the
future.

We will apply VDM over PSP to a lecture for undergrad-
uate students. We have already found several reports of lec-
tures using the PSP[6, 7, 12, 11, 14], and most lectures use
the subset of the PSP. The reason is that there is not enough
time and effort in such lectures. Because there will not be
enough time and effort too in our course, such reports pro-
vide us with useful information to simplify VDM over PSP.

In this paper, we only focus on a typical formal method,
VDM. In the future, we want to generalize our course about
design methods. In the next step, we want to propose a
course for confirming model checking techniques, because
it can be suitable for problem domain where VDM is not.
Formal taxonomy of design methods such as method base
[2] will be useful for such generalization.

Acknowledgments

The authors would like to thank IFAD for offering free
academic site licenses for VDMTools[5]. This work is sup-
ported by the foundation for C&C Promotion, Japan.

References

[1] IEEE Recommended Practice for Software Requirements
Specifications, 1998. IEEE Std. 830-1998.

[2] S. Brinkkemper, M. Saeki, and F. Harmsen. A Method En-
gineering Language for the Description of Systems Devel-
opment Methods. In CAiSE’2001 Proceedings, pages 473–
476, 2001. LNCS 2068.

[3] I. Company. VDM-SL Toolbox User Manual, 2001.
[4] J. Fitzgerald and P. G. Larsen. Modelling Systems, Practical

Tools and Techniques in Software Development. Cambridge
University Press, 1998. VDL-SL, Toolbox Lite.

[5] Free Academic Site Licenses for VDMTools. http:/
/www.ifad.dk/Products/VDMTools/free as-
l.htm.

[6] R. F. Grove. Using the personal software process to moti-
vate good programming practies. ITiCSE’98 Dublin,lreland,
pages 98–101, 1998.

[7] T. Hilburn and M. Towhidnejad. Doing quality work: the
role of software process definition in the computer science
curriculum. in Proceeding of 28th SIGCSE Technical Sym-
posium on Computer Science Education, pages 277–281,
1997.

[8] W. S. Humphrey. A Discipline for Software Engineering.
Addison-Wesley, 1995. The Complete PSPSM Book.

[9] W. S. Humphrey. Introduction to the Personal Software Pro-
cess. Addison-Wesley, 1997.

[10] J. Jacky. The way of Z – practical programming with formal
methods. Cambridge University Press, 1997.

[11] K. Lisack. The personal software process in the classroom:
Student reactions(an experience report). in Proceeding

of 13th Conference on Software Engineering Education &
Training, 2000.

[12] J. I. Maletic, A. Howald, and A. Marcus. Incorporating psp
into a traditional software engineering cource: An experi-
ence report. CSEET’01, 2001.

[13] L. Prechelt and B. Unger. An experiment measure-
ing the effects of personal software process(psp) training.
IEEE TRANSACTION ON SOFTWARE ENGINEERING,
27(5):465–472, May 2000.

[14] M. Towhidnejad and T. Hilburn. Incorporating the personal
software process(psp) across the undergraduate curriculum.
in Proceeding of ASEE/IEEE Frontiers in Education Confer-
ence, November 1997.

Proceedings of the 27th Annual International Computer Software and Applications Conference (COMPSAC’03)
0730-3157/03 $ 17.00 © 2003 IEEE

