
FC method: A Practical Approach to Improve Quality and Efficiency of
Software Processes for Embedded System Revision

Kazuma Aizawa
Dept. of Computer Science

Shinshu University
and

Epson Kowa Corporation
1077-5, Otsu, Shimonogo, Ueda-shi

Nagano-ken, 386-1214, Japan
aiz@epkowa.co.jp

Haruhiko Kaiya
Dept. of Computer Science

Shinshu University
4-17-1 Wakasato

Nagano-ken 380-8553, Japan
kaiya@cs.shinshu-u.ac.jp

Kenji Kaijiri
Dept. of Computer Science

Shinshu University
4-17-1 Wakasato

Nagano-ken 380-8553, Japan
kaijiri@cs.shinshu-u.ac.jp

Abstract

We introduce a design method for revising embed-
ded software system. Engineers can accept requirements
changes of hardware components and functions reasonably
because design documents are managed in small unit. We
can apply this method stepwise because this method can be
coped with a development process that heavily depends on
the hardware structure. We report an application of this
method in our company so as to validate it. From the ap-
plication, we can confirm that the quality of software was
improved about in twice, and that efficiency of development
process was also improved over three times.

Key Words

Embedded Software System, Software Process Improve-
ment, System Revision.

1. Introduction

Traditionally, software products in embedded systems
are decomposed into tasks and the products are developed
in each task by each software engineer. The reasons are
that software products should contribute to make full use of
hardware components, and that development method based
on the tasks seems to be one of the best ways to do so. How-
ever, such method becomes unfit for embedded software to-
day, because existing software products can not be easily
modified so as to meet next versions of embedded system.
Note that hardware components in embedded systems are

frequently changed today. If such methods are used con-
tinuously, software products e.g., source codes and design
documents, become unmanageable. As a result, software
engineers cannot understand and update existing software
products correctly and efficiently.

In this paper, we will propose a new design method, FC
(Functional Component) method, to overcome such prob-
lems, and reports an experience to apply the method into a
real software project. In FC method, software products are
decomposed into functional components, each of which is
independent to specific hardware components. Through the
experience, we found that FC method helped software engi-
neers to add new functions and to modify existing functions
based on the existing software products. We also found that
the number of defects decreased by about half, and that the
number of reviews for each design document was decreased
by about one third.

The rest of this paper is organized as follows. In the next
section, we clarify usual practice of embedded software sys-
tem development, and its problems. So as to resolve several
parts of the problems, we introduce FC method in Section 3.
We applied FC method into practice and compared the re-
sults with results of usual practice. In Section 4, we report
such practices and discuss the differences so as to validate
FC method. Finally, we summarize current results and show
the future works.

2. Current Practices and Their Problems

In this section, we explain how we develop embedded
software systems in our company today, and define some
terminologies in this paper. At least in Japan, our company
is typical one in the field of embedded software systems. So

1

Proceedings of the 28th Annual International Computer Software and Applications Conference (COMPSAC’04)

0730-3157/04 $20.00 © 2004 IEEE

as to clarify the characteristics of software development for
revising a system, we first explain the way of developing
brand-new systems. Next we explain the way of system
revision by comparing with the previous way, and clarify
the problems of system revision. Because of the economic
and/or organizational reasons, we can not inherently solve
all of the problems. We finally discuss which problems can
be technically solved or not in this section.

2.1 Brand-new System Development

An embedded system consists of several hardware com-
ponents and the system performs functions by using the
components. For example of a graphic scanner system, a
CCD camera, motors and other hardware components work
cooperatively so as to preview a scanned image. From the
view point of software engineers, requirements for the sys-
tem are characterized by the kinds and structure of hard-
ware components, the kinds of functions and their non-
functional characteristics. For simplicity, we do not handle
non-functional characteristics after this.

*

1

Source code

TaskHardware

Embedded System

1

*
1

1 1*

1

Function

*

*

Design Document

Figure 1. Concepts and Products in Brand-
new System Development

By using Figure 1, which is written using a simple class
diagram, we explain how to develop software products in
an embedded system now. As already mentioned before,
an embedded system consists of hardware components and
functions. In Figure 1, we simply call ‘hardware compo-
nents’ as ‘hardware’. Because software in an embedded
system works on a real-time and multi-tasking operating
system, we should identify tasks on the operating system.
Traditionally, such tasks and the structure of the tasks are
defined by the kinds of hardware components and their
structure, and each task are normally related to one hard-
ware component as shown in Figure 1. There are several
reasons of such tradition. First, software system should
make full use of hardware resources. Second, hardware
is still more important than software in embedded system
projects. Because the tasks and their structure are decided in

advance, design documents for software are written in each
task. According to each document, software products such
as source codes are developed along with waterfall model.
Although functions of the embedded system are not simply
related to design documents as shown in Figure 1, this kind
of development processes has worked well.

2.2 Revised System Development

Nowadays, brand-new embedded systems are rarely de-
veloped [3] because we should release products quickly and
cheap. Instead of brand-new systems, we develop embed-
ded systems by revising existing systems and their related
products. We call such embedded systems as ‘revised sys-
tems’, and their system development as ‘system revision’ in
this paper. So as to complete system revision successfully,
we should efficiently reuse software assets as much as pos-
sible. As a result, embedded systems are repeatedly revised
in general.

As shown in Figure 1, an embedded system consists of
hardware components and functions. Therefore, software
engineers face two kinds of requirements changes in system
revision; one is the changes of hardware components and
another is functional changes. Changes of hardware compo-
nents are frequently occurred because such components are
improved quickly and because cheaper and/or more efficient
components with same functions are released. Changes of
functions are also occurred frequently because we normally
develop family of similar products based on the same exist-
ing product and the products have different functions from
others in the family. For example, the high-class model in
a family has all functions but normal-class model only has
the subset of them.

In the case of our company, it takes about a year for a
project of a system revision, and about ten software en-
gineers engage in the project. Hardware components and
their structure are usually defined by another company in
advance. Because several projects of system revision based
on the same product has progressed simultaneously, we can
not say the cycle time of system revision exactly. However,
such projects are usually performed without interval.

2.3 Problems in Revised System Development

As mentioned above, we should efficiently reuse soft-
ware assets as much as possible in system revision. In addi-
tion, we should of course assure the quality of software. For
such software quality, design documents will help software
engineers to identify the impacts of changes on software
products and to follow the behavior of each function. Un-
fortunately, our current practice can not support such help in
software revision, and we can not change our current prac-
tice completely because of the economic and organizational

2

Proceedings of the 28th Annual International Computer Software and Applications Conference (COMPSAC’04)

0730-3157/04 $20.00 © 2004 IEEE

reasons. In the rest of this section, we explain the problems
in detail and explore what we can do under our restriction.

We have already identified two kinds of changes follow-
ing system revision; one is changes of hardware compo-
nents and another is functional changes.

When changes of hardware components occur, it is dif-
ficult for software engineers to reuse design documents ef-
ficiently. If one hardware component is replaced with an-
other component and these two components are completely
different, engineers can not reuse current design document
completely. In addition, engineers can not reuse source
codes for a task corresponding to the component. In most
cases, engineers may revise design documents and reuse
several source codes because replaced component is similar
to old one. However, responsibility of a hardware compo-
nent for a function could be changed under such replace-
ment, and it becomes difficult to update design documents,
so that engineers can identify the impacts of such changes
and can follow the behavior of functions.

Because the structure of tasks depends on the hardware
structure and design documents are written for each task as
shown in Figure 1, the structure of software is usually the
same as hardware structure in brand-new systems as shown
in the top half of Figure 2. When hardware components are
replaced, added and/or deleted, the whole structure of hard-
ware components is usually changed. Although software
structure should be changed in the same way as hardware
structure, software structure is not changed so, as shown
in the bottom half of Figure 2. So as to reuse design docu-
ments and source codes as much as possible, software struc-
ture can not be changed in the same way as hardware one.
In addition, there are no enough budgets and time to re-
construct software products because the degree of software
changes is not directly related to the degree of hardware
changes, and the budget and time are decided by the de-
gree of hardware changes. As a result, software engineers
can not maintain design documents sufficiently, but several
source codes are reused without suitable design documents.

When functional changes occur, it is not so easy to iden-
tify impacts of such changes because each function usually
related to many tasks, and design documents are written in
each task as shown in Figure 1. As a result, design decisions
for a function are distributed to many design documents for
tasks, and it is not so easy to follow the behavior of each
function too.

Even if there are no significant changes of both hard-
ware components and functions, it is not so easy for engi-
neers with documents of each task to identify change im-
pacts and to follow functions’ behaviors. One reason is that
such design documents are usually too large to be reviewed
at once, and another reason is that such documents do not
correspond to each function directly as shown in Figure 1.
In addition, the sizes of design documents are not uniform

hardware structure software structure

Revised

Current
System

Revised
System

=
matched

=
unmatched

Figure 2. Inconsistency between Hardware
and Software Structures

because the ability and the role of a hardware component
are intrinsically different from others. When impacts of
changes can fall into one task, we do not mind inconsis-
tencies as shown in Figure 2. However, the related design
document becomes fat and it becomes hard for software en-
gineers to review such fat document.

Whenever changes of hardware components and func-
tions occur, it is better to reconstruct design documents
so as to match new hardware components and functions.
However, we can not do so because the degree of software
changes is not directly related to the degree of hardware
changes and, the budget and time are decided by the degree
of hardware changes.

It is better to develop software components and their
structure independent to the hardware structure. However,
we can not survive without assets of existing software prod-
ucts and they strongly depend on tasks and each task de-
pends on hardware components. In addition, software engi-
neers should take hardware components and their structure
into account for performance requirements.

As a result, software engineers should stepwise revise
software assets so as to meet requirements changes. At the
same time, software engineers improve design documents
so that they can easily identify impacts of such changes and
follow the behavior of functions.

3. FC Method

3.1 Goal of FC method

So as to improve our software process, we hold up the
following goals.

3

Proceedings of the 28th Annual International Computer Software and Applications Conference (COMPSAC’04)

0730-3157/04 $20.00 © 2004 IEEE

1. Change the relationship among products in Figure 1
to one in Figure 3. In other words, maintain design
documents not for each task but for each function.

2. Reduce the size of design documents as small as pos-
sible.

3. Unify the size of design documents as much as possi-
ble.

We should achieve the goals not at once but stepwise be-
cause we have revised a family of systems repeatedly, and
we do not have enough budgets and time in each revision so
as to achieve the goals at once.

We call a pair of a function and its design document in
Figure 3 as a Functional Component (FC) in this paper.
Above goals can be regarded as the requirements for good
FCs.

*

1

Source code

TaskHardware

Embedded System

1

*
1

1 1*

1

Function

*

*
Design Document

Figure 3. Relationship among Concepts and
Products in FC method

If these goals are achieved, software engineers can sat-
isfy requirements for embedded software systems reason-
ably. Expected consequences and effects by achieving the
goals are as follows.

• Engineers can easily follow the behavior of functions.

• Engineers can clearly separate the concern about de-
sign from the concern about implementation because
design documents are written in each function. When
the documents were written in each task, engineers
tended to take implementation issues into account too
much during design phase.

• Engineers can perform incremental development[4]
and can make each increment to be relatively small.
When increments are small, engineers can satisfy un-
expected changes of requirements with small loss of
work.

• Engineers can estimate their efforts because the size of
design documents are unified.

From our experiences, the size of a document is corre-
lated with the effort with which designs written in the
document are implemented. If the size of documents
are unified, we can estimate such efforts by counting
the number of documents.

• Engineers can explore alternatives of a design easily
because each design document is small enough to be
rejected. If such rejection will occur, there is not so
large impacts for progress and for the other products.

• Engineers can decrease the number of tasks related to
a design document, and they do not mind the mutual
relationships among tasks and functions so much. FC
method intrinsically makes the number of documents
increase because documents are written in each func-
tion and a function is related to many tasks in general
as shown in Figure 4. In addition, several documents
could be related to the same task, e.g. task5 in Figure
4.

task1 task2

task3

task4 task5

task6

Document1
for
Large Func.

Document2
for Func.

Figure 4. Task Structure with Large Docu-
ments

So as to mitigate the impacts followed by the situa-
tion in Figure 4, the size of documents for each func-
tion should be reduced as small as possible as shown
in Figure 5. For example, engineers should take most
tasks and documents into account when they review
document1 in Figure 4. On the other hand, they only
take into account task2 and 3 into account when they
review document1a in Figure 5.

3.2 Procedure

3.2.1 Overall

As we mentioned above, software engineers should step-
wise change our software development process because of
the economic and organizational reasons. Here we show the
overall way of FC method.

1. Get the requirements for an embedded software sys-
tem. There are two kinds of requirements; one

4

Proceedings of the 28th Annual International Computer Software and Applications Conference (COMPSAC’04)

0730-3157/04 $20.00 © 2004 IEEE

task1 task2

task3

task4 task5

task6

Document1a
for Func.

Document2
for Func.

Document1b
for Func.

Figure 5. Task Structure with Small Docu-
ments

is changes for hardware components and another is
changes of functions. These requirements normally do
not take assets of an existing system to be revised into
account.

2. Find an existing system and its assets to be revised for
the requirements. Build a development team using en-
gineers who belonged to the team of the existing sys-
tem if possible.

3. Put members of the team in charge of each design doc-
ument. Basically, an engineer should take charge of
documents that were taken by him before. If the exist-
ing system was developed in usual way, the documents
correspond to each task as shown in Figure 1. If FC
method was already introduced in its development, the
documents correspond to each task or each function.

4. Identify FCs that satisfy the requirements. We will
mention how to identify them in later part of this sec-
tion.

5. Identify the relationships between existing tasks and
FCs. As shown in Figure 3 and 4, the relationships are
normally many to many mapping.

6. Put members in charge of each FC. If a FC is related
to several tasks, decide a member who takes charge of
the FC by referring the skill of each member and/or by
checking which task is most related to the FC.

7. Complete each design so that designs can be imple-
mented. This part is also mentioned in the following
part separately.

3.2.2 Identify Functional Components

The core of FC method is how to identify better FCs (func-
tional components) as many as possible. Currently, we use
Cleanroom approach[5, 6] loosely. In Cleanroom approach,
requirements are refined into black box specifications at

first. A black box specification is refined into state box
specifications, each of which encapsulates state data and
services, if the black box can not be refined into other black
boxes. Finally, A state box specification is refined into clear
box specifications if the state box can not be refined into
other state boxes.

Although FCs almost correspond to such boxes of Clean-
room approach, we think much of unifying the size of each
specification. Therefore, refinement is continued even if all
parts of the specification are refined into clear boxes. Cur-
rently, we try to unify the pages of specification documents
so as to review each document within one hour. Unified
number of pages is defined by each project leader,

Another significant difference between FC method and
Cleanroom approach is that engineers do not strictly obey
formal verifications. For example, we do not verify for-
mal correctness and do not apply stepwise refinement rules
strictly. There are several reasons about this. One is that en-
gineers normally do not have skills enough to verify speci-
fications formally. In the same case of other software sys-
tems, requirements for embedded software systems are con-
tinually requested during a development process too. An-
other reason is that strict application of formal verification
seems to be harmful for such development process.

Instead of formal verifications, informal reviews for FCs
are performed so as to minimized the impacts among FCs
and so as to minimized the charge of each engineer.

When a new requirement is requested during the pro-
cess, engineers sometimes have to identify FCs again or to
modify them. Because engineers structurally decompose
requirements into FCs, engineers can easily identify where
they have to modify.

3.2.3 Implement Functional Components

Another important point is how to implement design doc-
uments for each FC, and how to utilize (old) design doc-
uments for each task. As mentioned above, design docu-
ments are developed for each function. After the design
phase, each task is implemented by an engineer according
to waterfall model in the same way as current practice.

Because each design document does not correspond to a
task directly, the engineer should refer several design docu-
ments at the same time. However, this fact does not become
a disadvantage of FC method because design documents are
small enough to review more than one documents, and engi-
neers can communicate with each other right now. Because
this kinds of communication helps them to build mutual un-
derstandings about the system, it seems rather an advantage
of FC method. If engineers in a team are geographically
distributed, some kinds of CSCW support will be needed.

Because each design document is taken charge by an en-
gineer, one document is maintained and updated only one

5

Proceedings of the 28th Annual International Computer Software and Applications Conference (COMPSAC’04)

0730-3157/04 $20.00 © 2004 IEEE

engineer. When an engineer finds a part in a design doc-
ument which should be changed or be transferred into an-
other document after design phase, the engineer should not
modify the document by himself but should request it to an
engineer who takes charge of its design. The engineer may
sometimes modify it by himself because the engineer him-
self takes charge of its design.

Finally, we explain how to cope design documents by FC
method with documents by the usual way. Figure 6 shows
the outline. In the figure, ‘FC Document’ means design doc-
uments by FC method and ‘Old Document’ means design
documents by the usual way. Because each engineer still
takes charge of tasks, he also takes charge of documents of
such tasks. At the same time, he takes charge of FC docu-
ments. Therefore, he has the responsibility to cope design
documents by FC method with documents by the usual way.

*

1

Source code

TaskHardware

Embedded System

1

*
1

1
1

*

1

Function

*

*
FC Document

Old Document

Engineer
1
* 1 1

*

1

Figure 6. Relationship among Concepts and
Products in FC method (version 2)

4. Using FC method into Practice

We applied FC method into a real project, say Project
FC, in our company. So as to confirm the effectiveness of
FC method, we report Project FC and another project, say
Project TC (Task based Components), which was carried
out in usual way, and compare these projects.

4.1 Project TC

In Project TC, an embedded system was revised as an
extended system of an existing system. Requirements for
the revised system are as follows;

• Several functions should be added because of market
trends.

• Several hardware components should be replaced be-
cause new and good hardware components can be
available.

When the existing system was developed, there was no plan
for such revision. Therefore, the existing system and its re-
lated products were not ready for such revision. Because
the existing system was developed in usual manner as men-
tioned in Section 2, design documents for software were
written in each task, and each engineer maintained each de-
sign document and implemented source codes correspond-
ing to each document.

4.2 Project FC

In Project FC, other embedded systems were revised as
extended systems of another existing system, that was dif-
ferent from the existing system for Project TC. However, re-
quirements for revision and the characteristics of the exist-
ing system were almost the same as the case of Project TC.
The most significant difference between Project TC and FC
was that two different systems for the existing system were
revised at the same time in Project FC, but only one sys-
tem was revised in Project TC. Therefore, the size of soft-
ware products, such as source codes and design documents,
in Project FC were intrinsically different from the size in
Project TC. However, the size of requirements changes for
a system in Project FC was almost the same as the size for
a system in Project TC.

Project TC and FC were performed by almost the same
members and terms in average. The differences are as fol-
lows.

• Project FC was started after Project TC was finished.

• About 30% of project members were changed between
two projects.

4.3 Comparison and Discussion

We want to confirm that FC method will contribute to
improve the quality of software products and efficiency of
work. We measure the following two metrics for this pur-
pose.

4.3.1 Defect Density

The quality of software is basically characterized by the de-
fect density. Therefore, we compare defect densities of two
projects. Because these two projects were performed by al-
most the same engineers of the same company, we simply
use kilo lines of code (KLOC) as the product size. As the
result, we calculate defect density as the following equation.

Defect density =
Number of defects

KLOC

Table 1 shows the results. Clearly, the quality of software
seems to be improved in Project FC.

6

Proceedings of the 28th Annual International Computer Software and Applications Conference (COMPSAC’04)

0730-3157/04 $20.00 © 2004 IEEE

Table 1. Defect Density of Each Project
Project KLOC # of Defects Density
TC 34.410 252 7.3
FC 62.858 221 3.5

4.3.2 Number of Review per Design Document

We have already argued that inefficient tasks were per-
formed in our current practice. Especially, we reviewed
one design document redundantly because such documents
were written in each task and it was necessary to review
one document many times so as to follow the behaviors of
functions.

Table 2 shows that how many times one design document
was reviewed in average. Clearly, the number is decreased
in Project FC, and we may infer that we could avoid ineffi-
cient review tasks by FC method.

Table 2. Number of Review per Design Docu-
ment

Project # of Doc. # of Review
of Review

of Doc.
TC 40 89 2.26
FC 480 318 0.66

5. Conclusion and Discussion

In this paper, we introduce a develop method, namely
FC method, for system revision of embedded software. For
validating FC method partially, we applied FC method into
practice in our company. At least in Japan, companies of
embedded software systems are not large enough to in-
troduce state of the art methods e.g. OCTOPUS[2] and
ROOMS[7] immediately. However, FC method can be ap-
plied into companies like ours, because FC method can be
coped with our current practice. We believe we can improve
ourselves so that we can use state of the art methods step-
wise by using FC method.

Current FC method do not provide all of the expected
effects as mentioned in Section 3.1. For example, an esti-
mation method for efforts is not provided yet. In embedded
software revision, it is very important to estimate the ef-
forts corresponding to additional requirements because we
should ship our product on time so as to survive in the mar-
ket. We are going to update FC method so that engineers
can estimate efforts by using the size of design documents.
That is the another reason why we stick to unifying the

size of design documents. We can use existing estimation
method like function points [1] easily if the size of each
design document reflect the effort to implement the design.
This is our next goal of this research project.

References

[1] A. J. Albrecht and Gaffney. Software Function, Source Lines
of Code, and Development Effort Predicition: A Software
Science Validation. IEEE Trans. on Software Engineering,
9(6):639–648, Nov. 1983.

[2] M. Awad, J. Kuusela, and J. Ziegler. Object-Oriented Tech-
nology for Real-Time Systems. Prentice Hall, 1996.

[3] B. Graaf, M. Lormans, and H. Toetenel. Embedded Software
Engineering: The State of the Practice. Software, 20(6):61–
69, Nov./Dec. 2003.

[4] J. McDermid and P. Rook. Software Engineering Reference
Book, pages 15/26–15/28. CRC Press, 1993. Software Devel-
opment Process Models.

[5] H. D. Mills, M. Dyer, and R. Lnger. Cleanroom Software
Engineering. Software, 4(5):19–24, Sep. 1987.

[6] J. H. Poore and C. J. Trammell. Cleanroom Software Engi-
neering. Blackwell Publisher, Oxford, England, 1996.

[7] B. Selic, G. Gullekson, and P. Ward. Real-Time Object-
Oriented Modeling. John Wiley & Sons, 1994.

7

Proceedings of the 28th Annual International Computer Software and Applications Conference (COMPSAC’04)

0730-3157/04 $20.00 © 2004 IEEE

