
So/M: A Requirements Definition Tool
using Characteristics of Existing Similar Systems

Naoyuki Kitazawa, Akira Osada, Kazuyuki Kamijo, Haruhiko Kaiya, Kenji aijiri
Shinshu University, Nagano, JAPAN

http://www.cs.shinshu-u.ac.jp/˜kaiya/

Abstract

During a software system development, existing similar
systems are useful because such systems and their docu-
ments help developers to understand and reuse problems
and solutions of the new system. Especially, such helps are
effective if developers are not familiar with the new system.
In this paper, we present a supporting tool called “So/M”
for an analyst to define software requirements. By using
So/M, the analyst can easily refer functions of existing simi-
lar systems, their commonality and the relationships among
them. So/M also enables the analyst to choose the candi-
date of requirements, and to generate the skeleton of re-
quirements. During a comparative experiment, we have
confirmed that So/M significantly helped analysts unfamil-
iar with a system to be developed.

1. Introduction

Software systems are applied to various kinds of areas,
thus software engineers especially requirements analysts
have to well understand such areas, e.g., healthcare manage-
ment, military support, consumer electronics, stock markets
and so on. Apparently, it is extremely hard to understand
them well because each area requires significant expertise.
Fortunately, there already exist some kinds of software sys-
tems to support activities in such areas. Therefore, it is rea-
sonable idea to refer existing similar software systems when
a new system is developed. Several methods and tools with
complicated functions were already introduced [10], [11],
[8], [18], but there is no discussion what is the fundamen-
tal and useful functionalities about such methods and tools.
There is also no experimental or empirical validation about
their effectiveness.

We assume that an analyst unfamiliar with an area can
define requirements effectively and efficiently even when
he/she can refer and analyze information about existing sys-
tems in simple ways, e.g., commonalities and differences
among the systems. In this paper, we introduce a require-
ments definition tool called “So/M” 1, that provides infor-

1“So/M” is a nickname of the main developer of this tool.

mation about existing systems in simple ways. By using
So/M, we conducted a comparative experiment to confirm
the effectiveness of simple support. As a result, we con-
firmed that even a simple support largely improved the qual-
ity of defined requirements and efficiency to define them.

The rest of this paper is organized as follows. In the next
section, we investigate and discuss what is a good require-
ments specification and how to develop it by using infor-
mation about existing systems. In section 3, we introduce
a requirements definition tool called “So/M”, that is devel-
oped based on the discussion in section 2. In section 4, we
report an experiment, which purpose is to confirm the ef-
fectiveness of supporting tools like So/M tool. Finally, we
summarize our current result and show the future works.

2. Requirements Definition Method and Pro-
cess Based on Existing Systems

2.1 Requirements Definition and Specification

Before defining software requirements, we have to un-
derstand what are the good software requirements. Most
textbooks [6, 14, 13] mentioned about this issue and they
referred to the IEEE standard for Software Requirements
Specifications [3]. In this standard, characteristics of a good
SRS (Software Requirements Specification) are listed as
follows.

1. Correct
2. Unambiguous
3. Complete
4. Consistent
5. Ranked for importance and/or stability (priority)
6. Verifiable
7. Modifiable
8. Traceable

All of them are of course important, and we think the most
important characteristic is completeness. If missing require-
ments exist, i.e., the requirements are incomplete, other
characteristics cannot be confirmed appropriately. Correct-
ness is the second important characteristic because whether

K

Annual IEEE International Computer Software and Applications Conference

0730-3157/08 $25.00 © 2008 IEEE

DOI 

255

Annual IEEE International Computer Software and Applications Conference

0730-3157/08 $25.00 © 2008 IEEE

DOI 10.1109/COMPSAC.2008.41

255

Annual IEEE International Computer Software and Applications Conference

0730-3157/08 $25.00 © 2008 IEEE

DOI 10.1109/COMPSAC.2008.41

255

Annual IEEE International Computer Software and Applications Conference

0730-3157/08 $25.00 © 2008 IEEE

DOI 10.1109/COMPSAC.2008.41

255



developed software meets stakeholders’ needs depends on
the correctness of SRS. It is not so easy to confirm correct-
ness in early phase in software development, and techniques
such as interview, workshops and/or prototype review are
used. Unfortunately, these techniques are not cost-effective
in general. In a practical point of view, rank of importance
is very important because not all requirements can be imple-
mented under limited budget and schedule. Rank of impor-
tance is sometimes referred as prioritization or triage [7].
Traceability is also important in practice because require-
ments are frequently changed thus impacts within require-
ments and to the other artifacts by the changes should be
found efficiently and correctly. The most fundamental task
for traceablity is a task for labeling all requirements for re-
ferring from the others.

2.2 Information about Existing Systems

One of the ways to develop good SRS is using infor-
mation about already existing systems and their problems.
When the number of referred systems increases, the number
of characteristics such as functions and qualities that can be
used in a new system also increases. Therefore, information
about several systems contributes to completeness of the re-
quirements for the new system. Even if all information of
a system cannot be extracted, information extracted from
other systems can complement total information.

In a software product line research, domain engineering
is a set of techniques for this kinds of information [16].
In domain engineering, commonality and variability among
similar systems are focused. This idea can be applied not
only to products in a family but also to similar products.
For example, by comparing existing similar systems with
respect to its functionalities, functional commonality and
variability can be identified and non-functional character-
istics such as performance and usability can be also found
[15].

Several types of data-models for representing such infor-
mation are proposed [10], [11], [8], [18]. They define data-
models for problems, functionalities, qualities and/or tasks,
and provide several means of making software requirements
better. For example, several inference rules are provided to
improve correctness, completeness, unambiguity and so on
in [10]. Most of these kinds of researches lack empirical
and/or experimental validation of confirming its effective-
ness.

RDF based standard notation will also contribute to mak-
ing this kinds of information reusable. For example, li-
braries and tools exists based on this technology [2], [1].
For requirements definition, there is no standard notation
and/or tool yet, thus it is a little bit hard to try using these
technologies.

One of the obstacles for using information about exist-

ing systems is the difficulty to create such information. It
is very important for requirements analysis to focus on both
problems, solutions and their relationships [9], but infor-
mation about problems, i.e., the reason why the systems
are required, is hard to be gathered. On the other hand,
information about solutions seems to be gathered semi-
automatically. For example, NLP (Natural Language Pro-
cessing) techniques were used to create domain ontology
[12]. Genetic algorithm was used to classify software com-
ponents based on requirements [4], thus solutions, i.e., com-
ponents, can be structured based on requirements. Formal
concept analysis can be also used for this purpose [17].

3. Supporting Tool

3.1 Requirements for Supporting Tools

As mentioned in last section, there are several methods
and/or tools to improve software requirements. However,
their effectiveness is not frequently validated through ex-
perimental or empirical studies. One of the reasons is the
difficulty to create such information, but there are several
means of creating information about solutions as mentioned
in last section.

We will design and implement a requirements definition
tool to validate fundamental idea about using information
about existing systems. Methods and tools mentioned in
last section provide various kinds of state-of-the-art means
of analyzing characteristics of existing systems and to de-
scribe requirements for requirements analysts. Their funda-
mental and common means are not so complicated. Here we
clarify such fundamental and common means as following
requirements for methods and tools.

1. Methods and tools shall provide the list of existing sys-
tems that are similar to each other.

2. Methods and tools shall provide the list of characteris-
tics such as functions or quality attributes.

3. Methods and tools shall provide commonalities and
differences about such characteristics among existing
similar systems.

4. Methods and tools shall provide relationships among
such characteristics that are useful for choosing collo-
cated characteristics.

5. Methods and tools shall enable analysts to choose
and/or create requirements for solving new problems.

6. Methods and tools shall enable the analysts to make
the quality of requirements better, e.g., more complete,
correct, traceable and prioritized.

7. Methods and tools shall help analysts to perform their
tasks efficiently.

256256256256



Figure 1. Snapshot of So/M Tool

3.2 So/M tool: its Design and Implementation

Based on the requirements above, we developed a sup-
porting tool called “So/M” for requirements definition. Be-
cause So/M is used in experiments to validate the effective-
ness of fundamental means mentioned above, functionali-
ties of So/M are limited. By using Figure 1, we will explain
such functionalities.

Review information about existing systems. So/M pro-
vides the list of existing systems as shown in the left side in
Figure 1. In this figure, three different conference manage-
ment systems, S-1, S-2 and S-3, are listed. At the top right
area, So/M provides the list of characteristics (functions) for
each system, and their commonalities and differences. For
example, all three systems have characteristics correspond-
ing to FR-006 and FR-007, but FR-0005 is supported by
only S-1 and S-2. The other characteristics shown in this
figure are supported only by S-1. When its user wants to fo-
cus on characteristics only in S-1, he/she may simply puts
or removes check boxes, i.e., “�v S-1 � S-2 � S-3 � ALL”,
in the top of figure. By choosing a line corresponding to a

characteristic, So/M tells other characteristics related to the
characteristic to the user. In this figure, the user knows that
FR-0001 is related to FR006 by their color changes.

Choose candidates of requirements. So/M enables its
user to choose existing characteristics as candidates of re-
quirements for a new system. When the user chooses a
characteristic, he/she should specify whether it is manda-
tory or optional. For example in Figure 1, FR-006 is cho-
sen as mandatory requirement and FR-001 is chosen as op-
tional. So/M enables the user to create groups, we call “cat-
egory”, of requirements. For example in this figure, a cat-
egory named “Upload” was created, and at least FR-0001
and FR0006 are categorized into this group.

Create skeleton of requirements specification. Chosen
candidates are listed at the bottom middle, labeled “Selected
FR”, in Figure 1. By bushing the button labeled “GENER-
ATE SKELETON”, a skeleton of requirements is generated
at the right bottom area in this figure. All requirements in
the skeleton are labeled by its own identifier, and mandatory

257257257257



requirements are prefixed by “*”. By using this skeleton,
the user may create a SRS according to some format.

Create information about existing systems. So/M tool
has another mode for creating information about existing
systems from documents such as manuals and help files
semi-automatically. In the mode, a morphological analyzer
and simple word matching technique are used to identify
characteristics in each system and commonalities and dif-
ference between several systems. Issues about this mode is
out of scope in this paper.

4. Experiment

4.1 Experiment Design

4.1.1 Purpose and Hypotheses

We formulate the goal of this experiment according to the
Goal-Question-Metric paradigm [5] as follows.

Analyze So/M tool for requirements definition
for the purpose of investigating their effective-
ness
with respect to the quality of defined require-
ments list and effort
from the perspective of domain expert
in the context of university students at a com-
puter science course that are unfamiliar with the
problem and its domain but are provided informa-
tion about its solutions.

As mentioned in Section 3, So/M enables a requirements
analyst to analyze information about existing systems for
similar problem that he/she wants to be solved. Therefore,
we expect the analyst can define requirements completely,
correctly and efficiently, and the requirements may be trace-
able and prioritized. We then formulate null hypotheses as
follows.
• H1 (Correctness): There is no difference between the

correctness of defined requirements with So/M and
without So/M.

• H2 (Completeness): There is no difference between
the completeness of defined requirements with So/M
and without So/M.

• H3 (Traceability): Whether requirements are traceable
or not is independent of requirements definition pro-
cess with So/M or without So/M.

• H4 (Priority): Whether requirements are prioritized or
not is independent of requirements definition process
with So/M or without So/M.

• H5 (Efficiency): There is no difference between the
efficiency of a requirements definition process with
and without So/M.

4.1.2 Design

The purpose of this experiment is to investigate the effect
of means of analyzing existing systems provided by So/M.
Therefore, the treatment is to apply requirements analysis
tasks with and without So/M. We define the following two
treatment types.
NoTool : no tool support for analyzing existing systems.

The subjects use So/M to refer and analyze character-
istics of existing systems to define requirements for a
new system.

Tool : tool support for analyzing existing systems. The
subjects refer and analyze such characteristics to define
requirements for a new system.

Each subject carried out the experimental task alone. We
have randomly assigned subjects to treatments. This allows
us to assume independence between the treatments. Each
subject performed the task for one treatment type.

4.1.3 Subjects, Objects and Tasks

About 25 bachelor students in computer science course in
their third year participated in this experiment, which was
conducted within a course in winter term of 2007 at our
university. All subjects had already taken courses for C
and Java programming, software engineering fundamentals.
The students were motivated to perform well in this task
because it was part of an assignment that was mandatory
to pass the course. In addition, each of them may choose
other two topics (embedded system design and DSP pro-
gramming) for this mandatory course, but the 30 students
intentionally choose requirements engineering.

The task of each subject was to define requirements for
a system to support a program chair of a conference such as
COMPSAC. We expected this task was unfamiliar to sub-
jects. The task for each treatment type is depicted in Figure
2. Problems of a program chair are given as a short docu-
ment as follows.
• It is hard to manage submissions.
• It is hard to remind reviewers who did not submit re-

sults on schedule to submit the results.
• It is hard to assign suitable reviewers to each submis-

sion.
• It is hard to gather suitable reviewers in advance.
• It is hard to collect camera ready papers and to check

their validity.
• It is hard to decide candidates of accepted papers.
• It is hard to forget taking the minutes of PC meetings.
• I am worried about the number of submission and the

progress of review.
Each subject can refer characteristics of three existing sys-
tems for conference management 2 in each way. 75, 62 and

2confman http://www.ifi.uio.no/confman/ABOUT-ConfMan/

258258258258



8 problem statements

system S-2 26 char.

dictionary 25 words

system S-2 62 char.
system S-1 75 char.

a class room (NoTool)

a requirements 
list

a subject outputinputs

8 problem statements

system S-2 26 char.

dictionary 25 words

system S-2 62 char.
system S-1 75 char.

another class room (Tool)

a requirements 
list

another subject outputinputs

Tool

Figure 2. Tasks for each Treatment type

26 characteristics, especially functions of each system, for
each system are used. Because these characteristics were
extracted from specific documents for each system, all char-
acteristics in an actual system could not be provided for our
subjects. One of authors, who was an expert of conference
management checked the validity of these characteristics.
The total number of characteristics is 137 when duplicated
characteristics are eliminated. In addition, each subject can
refer a term dictionary with 25 domain specific words and
each explanation, e.g., camera ready, review, PC member
and so on.

The task of subjects with treatment NoTool was to
choose the requirements out of the characteristics by using
a text editor in his/her own laptop. The task was completed
in class, less than 3 hours. We call the list of chosen re-
quirements as “a requirements list”. Each subject can refer
the characteristics of each system as a text file respectively.
He/she can also refer the problems of a chair and the term
dictionary as a text files and printed documents respectively.
The subjects were not allowed to gather information via In-
ternet. We asked subject to upload his/her requirements list
just after completing his/her task. To improve subjects’ mo-
tivation to choose requirements, each subject was asked to
complete a requirements specification at home after class.

The task of subjects with treatment Tool was also to
choose the requirements out of the characteristics. Each
subject can refer the characteristics via So/M tool and also
choose requirements by using So/M tool. The other things

openconf http://www.zakongroup.com/technology/openconf.shtml
and cyberchiar http://borbala.com/cyberchair/

were the same as the task with treatment NoTool.

4.1.4 Operation

Table 1. Operation Overview
Date group X group Y
Nov.
14, 21, 28 lecture and lesson for req. def.
Dec. 05 NoTool lesson for tool
Dec. 12 lesson for tool Tool
Jan. 09 exercise with tool exercise without tool
Jan. 16 feedback, questionnaire, workshop

In Table 1, we show the schedule of our experiment.
We spent 7 weeks for this experiment. For each week, at
least 3 hours were used in class. To improve comprehen-
sion of subjects for requirements definition, first 3 weeks
were spent and each subject wrote a requirements list by
him/herself and revised each list after review by a lecturer.
The problems were about library systems. During the lec-
ture, subjects learned characteristics of a good SRS, e.g.,
completeness, correctness and so on. Therefore, all subjects
had already learned and experienced requirements defini-
tion at least till Dec. 05.

In Dec. 05, 12 and Jan. 09, we divided subjects into
two groups randomly and subjects in each group achieved
lesson or exercise for requirements definition in different
rooms. As shown in Table 1, we regard tasks in Dec. 05
by group X as NoTool, and tasks in Dec. 12 by group Y as
Tool. Because subjects of treatment NoTool did not know
So/M tool, they never achieve their tasks according to the
means provided by So/M tool. Because subjects of treat-
ment Tool spent learning how to use So/M tool in Dec. 05
by analyzing software music player like iTunes or Windows
media player, most of them became skilled in using So/M
tool. For equality of learning, we let subject to achieve an
exercise with or without So/M tool to solve problems in an-
other domain, i.e., web browser in Jan. 09.

In Jan 16, we show the statistical results of our experi-
ment to our subjects, and then gave questionnaire. Finally,
subjects and we had a workshop to discuss how to define
requirements in high quality.

4.1.5 Data Collection and Analysis Technique

We focus on the requirements lists and spending time to
complete them. Because a requirement in a requirements
list is a characteristic of existing systems, in other words, a
function provided by one or more systems, we simply iden-
tify the requirement and count the number of requirements.
Because the lists were written in class and gathered via our
web site, we could collect spending time for each subject.

259259259259



We used a questionnaire to collect data about the sub-
jects’ impression and attitude towards the task. The 23
questions and inquiries of the questionnaire were distributed
and collected after showing the results in Tables 2 and 3 in
Jan 16 as shown in Table 1. Within the questionnaire, we
confirmed whether his/her data may be used or not in our re-
search. We also gathered the answers whether each subject
understands the differences of requirements quality with or
without So/M and the reasons via the questionnaire.

As mentioned in section 4.1.1, we want to know the qual-
ity of requirements list and its effort. An author of this paper
who was an expert of conference management tasks devel-
oped a correct requirements list. The correct list consists of
83 requirements.

By comparing the correct requirements list and a require-
ments list written by each subject, the quality of each re-
quirements list can be measured. We use the following met-
rics for quality. For simplicity, we abbreviate the correct
requirements list to “CORR”, and a requirements list writ-
ten by a subject x to “SUBJ(x)”. Because CORR and
SUBJ(x) are sets of requirements, we can apply general
set operations, e.g., cardinality of S as |S|, to CORR and
SUBJ(x).

• Precision(x) =
|SUBJ(x) ∩ CORR|

|SUBJ(x)|
This metric almost corresponds to correctness of re-
quirements.

• Recall(x) =
|SUBJ(x) ∩ CORR|

|CORR|
This metric almost corresponds to completeness of re-
quirements.

• Traceable(x) =
if (∀i ∈ SUBJ(x) : i has own label)
then return true else return false fi

Traceablity is achieved only when each requirement
in a requirements list has its own label, such as 1,
2 and 3. Therefore, this metric will measure most
fundamental aspect of traceability.

• Prioritize(x) =
if (∃i ∈ SUBJ(x) : i is prioritized)
then return true else return false fi

Ideally, all requirements in a requirements list should
be prioritized, e.g., labeled with mandatory or
optional mark. However, requirements at only spe-
cial level could be marked for specifying priority.
Thus, this metric focuses on existence of prioritized
requirements.

• Performance(x)=
time spent by x
|SUBJ(x)|

We do not use |SUBJ(x) ∩ CORR|, i.e., the number
of correct requirements chosen by x, as a denomina-
tor of this equation because both correct and incorrect
requirements consume subjects’ time.

For each metric except Traceable(x) and
Prioritize(x), we calculate the average of its value

in each type of treatment. Then, we achieve t-test to check
whether the difference is statistically significant or not. For
Traceable(x) and Prioritize(x), we simply count the
number of true value in each type of treatment, and check
its difference.

4.2 Results

4.2.1 Overview

Table 2. Overview of Results
NoTool Tool

Num. of subjects . . . . . . . . (a) 13 10
Average num. of req’s 24.6 94.8
Average num. of correct req’s 22.2 62.3
Num. of traceable list . . . . (b) 1 10
b/a 7.7 % 100.0 %
Num. of prioritized list . . (c) 4 10
c/a 30.7 % 100.0 %
Average time spent (min.) 101 116
Average performance (min.) 4.9 1.3

Table 2 shows the overview of results. Because several
students gave up this credit or did not agree with the re-
search usage of his/her data, the numbers of subjects in two
treatments are not completely the same. Note that the num-
ber of subjects is the same as the number of requirements
list because each subject wrote one list.

4.2.2 H1: Correctness

As shown in Table 3, H1 is rejected because the average pre-
cision of NoTool is statistically different from the average
of Tool. Therefore, we may regard there is significant differ-
ence between NoTool and Tool with respect to correctness.
However, the average precision of NoTool is better than the
average of Tool against our expectation.

We assume subjects in NoTool chose requirements too
carefully and the number of requirements became too small
because there was no clear guidance to choose require-
ments. On the other hand, we assume subjects in Tool
tended to choose some characteristics in existing systems
without deep consideration because So/M tool enables sub-
jects to choose such characteristics easily.

Latter assumption was validated by the answers of our
questionnaire. With respect to practical usage, low preci-
sion is not so big problem because analysts may reject in-
correct requirements by reviewing the list. According to
the result of questionnaire, most of all subjects understand
the result about H1. Several subjects pointed out that So/M
tool enabled them to choose characteristics easily, thus they
tended to fix their choices without enough consideration.

260260260260



Table 3. Statistical Results (Note: The number of req’s in correct list is 83.)
NoTool Tool significant (p < 0.05) p value

Average num. of requirements 24.6 94.8 yes 2.35 × 10−8

Average time spent (min.) 101 116 no 2.724 × 10−1

Average performance (min.) 4.9 1.3 yes 4.645 × 10−3

Average precision 90.3% 66.3% yes 1.4 × 10−10

Average recall 26.8% 75.1% yes 2.1 × 10−9

4.2.3 H2: Completeness

As shown in Table 3, H2 is rejected because the average re-
call of NoTool is statistically different from the average of
Tool. Fortunately, the average recall of Tool is largely bet-
ter than the average of NoTool, thus we may regard So/M
tool is effective for completeness. Even though the subjects
did not know this problem domain, i.e., conference man-
agement, and they were only bachelor students, the average
recall was more than 70%.

According to the result of questionnaire, most of all
subjects understand the result about H2. Several subjects
pointed out that So/M told them related characteristics, thus
they can relatively chose complete requirements. They also
pointed out that So/M enabled them to confirm whether a
characteristic was chosen or not, thus they could avoid miss-
ing requirements.

4.2.4 H3: Traceability

As shown in line (b) in Table 2, all subjects of Tool put la-
bels for each requirement because So/M tool automatically
put such labels. The important result is that only one subject
of NoTool put such labels. As shown in Table 1, there were
three classes before our experiment and all subjects learned
and experienced the importance of traceablity, but the result
was terrible. This result strongly supported the necessity for
tool support about traceablity.

According to the result of questionnaire, most of all sub-
jects understand the result about H3. They of course pointed
out that results in Tool treatment were a natural result be-
cause So/M automatically put labels. They also pointed out
that labeling requirements was tedious task, thus they did
not want to do that in NoTool treatment.

4.2.5 H4: Priority

As shown in line (c) in Table 2, all subjects of Tool prioritize
requirements because So/M tool enforced prioritization. In
the same way as tracablity, all subjects learned and experi-
enced the importance of prioritization during three classes
before our experiment, but the result was not so good in the
treatment of NoTool. This result also supported the neces-
sity for tool support about prioritization. We forgot to ask
their understandings and reasons about H4, but this result is

also natural because So/M enforce a choice of mandatory or
optional on its user.

4.2.6 H5: Efficiency

As shown in Table 3, H5 is rejected thus the average per-
formance in NoTool is statistically different the average in
Tool. According to the definition, performance depends on
the number of defined requirements and spending time. As
shown in Table 3, spending times with or without So/M
were almost the same, thus the performance largely depends
on the numbers of defined requirements.

We assume easy operation of So/M tool to choose char-
acteristics caused this result, and we asked this point in
questionnaire and during our workshop. Against our as-
sumption, most subjects answered easiness of choosing was
not the cause of this result because they spent most in inves-
tigating the problems and solutions. They also commented
that So/M tool helps them to distinguish chosen character-
istics from others, to identify commonality among existing
systems. Therefore, we may regard So/M provided easiness
for not only operation but also argumentation for require-
ments definition.

4.3 Threats to Validity
Internal Validity. Threats to internal validity can affect
the independent variables of an experiment. In this exper-
iment, independent variables are defined requirements list
and spending time. As shown in Table 1, NoTool treatment
was achieved in Dec. 05 and Tool treatment was achieved
in Dec. 12, thus some subjects in NoTool could leak the
contents of exercise to subjects in Tool. Beforehand, we
sent informal questionnaire to bachelor students about their
communication and topics. They answered they rarely did
not discuss the contents of classes.

External Validity. Threats to external validity reduce the
generalizability of the results. To increase generalizability,
we ask homework to complete arequirements specification
based on the requirements list. We use students as subject,
which might be a large threat to external validity. How-
ever, all students in this experiment learned programming
languages and software engineering in advance, and they
learned and experienced requirements definition just before
this experiment. According to the answers of questionnaire,

261261261261



no subjects knew the task for conference management, thus
our results are enough general in the context of require-
ments definition for unfamiliar tasks.

Construct Validity. Construct validity is the degree to
which the variables measure the concepts they are to mea-
sure. We assume most metrics in Section 4.1.5 seem to
be suitable to measure correctness, completeness, prioriti-
zation and performance. Metric for traceablity in this pa-
per is a little bit weak because labeling is only focused and
there are a lot of other factors for traceability. The correct
requirements list is one of the key factors in construct va-
lidity. This correct list was written by one of authors, who
was PC member of several conferences and PC chair of one
symposium, thus the list will be correct.

Conclusion Validity. Conclusion validity is concerned
with the relation between the treatment and the outcome.
Except traceablity and prioritization, we achieve statistical
test, thus at least tested results were reliable.

5. Conclusion
In this paper, we introduce a requirements definition

tool called So/M, that provides fundamental functionalities
based on information about existing systems. We had an
experiment to confirm the effectiveness of such functional-
ities by using So/M. As a result, So/M contributes to im-
proving completeness, traceablity and prioritization about
defined requirements and the efficiency for defining them,
but hindered improving correctness. According to the re-
sults of questionnaire, the following functionalities con-
tributed to them; showing related characteristics among ex-
isting systems, distinguishing chosen characteristics from
others, achieving monotonous tasks, e.g., labeling, automat-
ically. This kind of supporting tool should enable its user to
review their choice and/or decision for improving the cor-
rectness of defined requirements.

As mentioned in section 2, there are a lot of state-of-
the-art functionalities to improving the quality of require-
ments. We have to compare effectiveness by So/M and ef-
fectiveness by other complicated functionalities. For exam-
ple, So/M do not provide types of relationships among char-
acteristics of existing systems. If So/M is extended for pro-
viding typed relationships and its effectiveness are getting
better, we can confirm the usefulness of typed relationships
objectively.

In our current work, we do not mention the quality and
quantity of information about existing systems. Support-
ing tools should be scaleable with respect to the amount of
information, but we do not have confirmed this point yet.
Therefore, we would like to investigate this point. Support-
ing tools cannot work validly with information of bad qual-
ity, thus information quality problem depends on how to
create such information. Therefore, we assume the quality

of information is high enough in the context of researches
about using such information.
Acknowledgements

This work is partially supported by International Infor-
mation Science Foundation (IISF), Japan.

References
[1] DAML Ontology Library. http://www.daml.org/ontologies/.
[2] KAON Tool Suite. http://kaon.semanticweb.org/.
[3] IEEE Recommended Practice for Software Requirements

Specifications, 1998. IEEE Std. 830-1998.
[4] A. S. Andreou, D. G. Vogiatzis, and G. A. Papadopoulos.

Intelligent Classification and Retrieval of Software Compo-
nents. In COMPSAC 2006, pages 37–40, 2006.

[5] V. R. Basili and D. M. Weiss. A Methodology for Collect-
ing Valid Software Engineering Data. IEEE Transactions on
Software Engineering, SE-10(6):728–738, Nov. 1984.

[6] A. Davis. Software Requirements. Prentice-Hall, 1990.
[7] A. M. Davis. The Art of Requirements Triage. Computer,

pages 42–49, Mar. 2003.
[8] J. C. S. do Prado Leite and A. P. M. Franco. A Strategy

for Conceptual Model Acquisition. In Proceedings of First
IEEE International Symposium on Requirements Engineer-
ing, pages 243–246, 1993.

[9] M. Jackson. Problem Frames, Analyzing and structuring
software development problems. Addison-Wesley, 2000.

[10] H. Kaiya and M. Saeki. Using Domain Ontology as Domain
Knowledge for Requirements Elicitation. In Proc. of RE06,
pages 189–198, Sep. 2006. IEEE CS.

[11] J. Kato, M. Saeki, A. Ohnishi, M. Nagata, H. Kaiya,
S. Komiya, S. Yamamoto, H. Horai, and K. Watahiki.
PAORE: Package Oriented Requirements Elicitation. In
Proc. of APSEC 2003, pages 17–26, Dec. 2003. IEEE Com-
puter Society Press.

[12] M. Kitamura, R. Hasegawa, H. Kaiya, and M. Saeki. An
Integrated Tool For Supporting Ontology Driven Require-
ments Elicitation. In ICSOFT 2007, pages 73–80, Jul. 2007.

[13] G. Kotonya and I. Sommerville. Requirements Engineering
Process and techniques. Wiley, 1998.

[14] S. Lauesen. Requirements Engineering Styles and Tech-
niques. Addison-wesley, 2002.

[15] A. Osada, D. Ozawa, H. Kaiya, and K. Kaijiri. Modeling
Software Characteristics and Their Correlations in A Spe-
cific Domain by Comparing Existing Similar Systems. In
QSIC 2005, Proc. of QSIC05, pages 215–222, Sep. 2005.
IEEE Computer Society.

[16] K. Pohl, G. Bockle, and F. V. D. Linden. Software Product
Line Engineering: Foundations, Principles And Techniques.
Springer-Verlag New York Inc, 2005.

[17] W. ZHOU, Z. tian LIU, and Y. ZHAO. Ontology Learning
by Clustering Based on Fuzzy Formal Concept Analysis. In
COMPSAC 2007, pages 204–210, 2007.

[18] L. Zong-yong, W. Zhi-xue, Y. Ying-ying, W. Yue, and
L. Ying. Towards a Multiple Ontology Framework for Re-
quirements Elicitation and Reuse. In COMPSAC 2007,
pages 189–195, 2007.

262262262262


