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Abstract 

Graphene nanoribbons (GNRs), the finite-wide counterparts of crystalline graphene 

sheets, have been potential materials used in nano-devices because of their excellent 

electronic, thermal and mechanical properties. The vibrational property of GNRs 

embedded in an elastic matrix is important to study in the application of GNRs. In this 

work, a theoretical analysis of nonlocal elasticity theory for the free vibrational 

characteristics of embedded double-layer GNRs (DLGNRs) is proposed based on 

continuum and Winkler spring models. We find two types of vibrational modes, in-phase 

mode (IPM) and anti-phase mode (APM), by a mathematical method. The results show 

that the natural frequencies of DLGNR embedded in an elastic matrix are significantly 

influenced by vibrational modes, nonlocal effects, the aspect ratio of DLGNRs and the 

Winkler foundation modulus. 
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1. Introduction 

A conceptual model named graphite ribbon was first developed by Fujita et al. in 1996 

[1], when they investigated the electronic states of graphite ribbons with armchair and 

zigzag edges by performing tight binding band calculations. Graphene sheet (GS), an 

infinite two-dimensional layer consisting of sp2 hybridized carbon atoms, was produced 

in 2004 [2]. Since then, graphite ribbon, often called graphene nanoribbon (GNR) that 

possesses a large aspect ratio [3], has attracted significant interests because of its 

remarkable electronic [4, 5], thermal [6, 7] and mechanical properties [8-16]. 

A wide range of methods to produce GNRs is available. Kosynkin et al. [17] and 

Cataldo et al. [18] successfully synthesized GNRs by oxidative unzipping of carbon 

nanotubes (CNTs). Cai et al. [19] devised a simple, bottom-up approach to produce GNRs 

with different topologies and widths. Sen et al. [20] produced GNRs by tearing GSs from 

adhesive substrates and discovered the formation of tapered GNRs. Fan et al. [21] 

fabricated GNRs by a microexplosion method, which involved filling multi-walled CNTs 



3 
 

with potassium and then reacted them vigorously with water. 

Vibration occurs during certain manufacturing processes (e.g., ultrasonication in 

nanocomposite processing) and as part of some nondestructive evaluation processes (e.g., 

Raman spectroscopy) [22, 23]. Investigation of the vibrational characteristics of materials 

is thus of fundamental importance for understanding electron transport in electron 

devices and is also of general interest [8]. Vibrational properties play a role in structural 

stability, structure identification and ballistic transport through electron-phonon coupling 

[9]. Gillen et al. [10] investigated the symmetry property of the vibrational modes of 

GNRs by using density functional theory (DFT), and their calculations suggested that the 

frequency splitting of the fundamental longitudinal-optical and transverse-optical modes 

exhibits a characteristic family dependence with quasi-metallic GNRs. Rao et al. [24] 

pointed out that double-layer GSs are of considerable interest as well as single-layer GSs. 

Moreover, double-layer GNRs (DLGNRs) has been proposed as the only semiconductor 

to produce insulating state and switch-off electrical conduction [25] and Behfar et al. [26] 

pointed out that a graphite sheet or a multi-layered graphene sheet is used in polymer 

composites as embedded structures to enhance its strength. Therefore, it is important to 

study the vibrational characteristics of DLGNRs embedded in an elastic matrix for the 

practical applications. However, this kind of research has been seldom reported to our 
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knowledge. 

On the other hand, nonlocal effects often become prominent at nanometer scales, the 

cause of which needs to be explicitly addressed with the general increasing interest in 

nanotechnology. In this study, the natural frequencies of DLGNRs embedded in an elastic 

matrix are analyzed by nonlocal elasticity theory based on a continuum model. In the 

theoretical approach, we divide the vibrational mode into in-phase mode (IPM) and 

anti-phase mode (APM), which is a feature of DLGNRs [27, 28]. The influence of 

vibrational modes (IPM and APM), nonlocal parameters, the aspect ratio of the DLGNRs 

and the Winkler foundation modulus on the natural frequencies of embedded DLGNRs 

are investigated in detail and compared with our previous work [29]. 

 

2. Theoretical approach 

GNRs can be treated as a continuum model [12, 13] which is mostly used in theoretical 

analysis. Fig. 1(a) shows a continuum model of the DLGNRs, in which L and b are the 

length and width of the DLGNRs, respectively. The upper and lower layers of the 

DLGNRs are coupled to each other by van der Waals (vdW) interaction forces. 

2.1 Governing equations 

Nonlocal elastic theory has been used in mechanical analysis of nanoscale materials, 
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such as CNTs [30-32] and GSs [33-38]. In especial, Pradhan et al. [35, 36] and Ansari et 

al. [37, 38] studied the vibration characteristics of orthotropic GSs and multilayer GSs 

based on nonlocal plate model. Whereas for the vibration analysis of GNRs, a special 

kind of GSs with a large aspect ratio, the nonlocal beam model is preferred. Because of 

the Euler-Bernoulli beam theory is a simple but practical tool for validating the beam 

deflection calculation, we can divide IPM and APM directly and provide an appropriate 

method for the further application of DLGNRs. Based on the nonlocal beam model, the 

Hookeʹ s law of GNRs can be determined as a nonlinear relationship given as 

                                                              1  

where σ and ε are the axial stress and axial strain, respectively. E is the elastic modulus of 

GNRs. e0a is the nonlocal parameter appropriate to GNRs, where e0 is a constant that is 

appropriate to the material, and a is the characteristic internal length of a C-C bond, 

which is 0.142 nm. It should be noted that the value of e0 needs to be determined from 

experiments or by matching dispersion curves of plane wave with those of atomic lattice 

dynamics, which has not yet been achieved for GNRs and remains an unresolved problem 

currently.  

The definitions of the resultant bending moment M and the kinematic relationship in a 

continuum beam model are considered, that is 
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,                                                          2  

 
,

                                                           3  

where x, z are the coordinates shown in Fig. 1 (a). t is time. w is the flexural deflection of 

GNRs and A is the area of the cross-section of the GNRs. Then Eq. (1) can be rewritten as 

,
, ,

                                    4  

where I is the moment of inertia of the GNRs. 

Based on the Euler-Bernoulli beam model, which assumes that the cross-section of a 

DLGNR remains planar during flexion and is perpendicular to the neutral axis, we obtain 

, ,
                                                5  

   ,
,

                                                              6  

where V is the resultant shear force. ρ is the mass density of the GNRs. p is the distributed 

transverse pressure acting on a DLGNR per unit of axial length. 

Using Eqs. (4)–(6), the governing equation of motion for a continuum beam is derived 

as 

, , ,
               7  

For the upper and lower layers of a DLGNR, Eq. (5) can be rewritten as the following 

two-coupled equations, 

                        8  
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                        9  

where the subscripts 1 and 2 denote the quantities associated with the upper and lower 

layers of a DLGNR, respectively.  

The Winkler spring model has been widely used to analyze the mechanical properties 

of embedded GSs [38], in which the elastic matrix is described as a Winkler model 

characterized by the spring. The cross-section of a DLGNR embedded in an elastic matrix 

is shown in Fig. 1 (b), in which the Winkler foundation modulus relative to the elastic 

matrix is defined as kW. Then the distributed transverse pressure acting on the upper and 

lower layers of a DLGNR can be given by 

                                                       10  

                                                       11  

where c is the vdW interaction coefficient between the upper and lower layers, which can 

be obtained from the Lennard-Jones pair potential [39], and is given as 

4√3
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1
                                                                      12  

where ζ = 2.968 meV and δ = 3.407 Å are parameters chosen to fit the physical properties 

of GNRs, and /  (j = 1, 2), where zj is the coordinate of the jth layer in the 
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direction of thickness with the origin at the midplane of the GNR. 

To divide the vibration modes into IPM and APM, we assume 

                                                           13  

                                                           14  

From Eqs. (8) and (9), the governing equations of IPM and APM can be derived as, 

respectively, 

                         15  

2 2    16  

Considering that the deflection of a DLGNR has different vibration modes Yj (x), j = 1, 

2 for the IPM and APM, respectively, the displacements of the vibration solution in the 

DLGNRs can be given by 

       1, 2                                                17  

where ω is the vibrational frequency of DLGNRs. 

Substituting Eq. (17) into Eqs. (15) and (16), the governing equations of the vibrational 

properties for the IPM and APM of DLGNRs embedded in an elastic matrix are obtained 

as 

0                                     18  

0                                    19  
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where  

                                                         20  

2                                                    21  

2.2 Solution of governing equations 

By solving the four-order polynomial functions Eqs. (18) and (19), the whole solution 

of the governing equations can be obtained as follows 

cos sin                   22  

and         cos sin                  23  

or                                          24  

or cos sin cos sin     25  

where Cm (m = 1, 2,…,8) are the coefficients that need to be determined via boundary 

conditions, and 

4
2                                  26  

4
2                               27  

4
2                                  28  

4
2                              29  
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4
2                              30  

2
4                                                     31  

2
4                                                  32  

2.3 Boundary conditions 

The boundary conditions for IPM and APM of free embedded DLGNRs of length L are 

given as 

0 0
0                        33  

0 0
0                        34  

Substituting the deflection functions of the DLGNRs (Yj, j = 1, 2) into the boundary 

conditions, we obtain the simultaneous equations 

Ω , 0                                                          35  

and                      Ψ , 0                                                          36  

where Ω ,  and Ψ ,  are 4×4 matrices containing the natural frequency ω 

and the length L of DLGNRs. The vibrational frequencies and associated vibration modes 

of DLGNRs embedded in an elastic matrix can be obtained from the 
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eigenvalue | , | 0, which is the condition of nontrivial solution of Cm (m = 1, 

2,…,8) in Eqs. (35) and (36). 

 

3. Analytical Results and Discussion 

To study the vibrational characteristics of DLGNRs embedded in an elastic matrix, 

each layer of a DLGNR is modeled as an individual classical thin beam of the same width, 

thickness and length. The effective thickness of each layer of a DLGNR is equal to the 

diameter of a carbon atom, 0.34 nm. The aspect ratio of a DLGNR L/b is larger than 5 

because the Euler beam theory produces errors for structures with a small aspect ratio. 

The Youngʹs modulus E and mass density ρ of the DLGNRs are the same as those of a GS; 

1.02 TPa and 2250 kg/m3, respectively [39]. 

Based on the proposed theoretical approach, IPM and APM, derived from Eqs. (35) 

and (36), respectively, can occur in DLGNRs with free boundary conditions. As shown in 

Fig. 2, IPM 1-4 are the first four in-phase vibration modes of a DLGNR, which means 

that both the upper and lower layers have the same direction of deflection. APM 1-4 are 

the first four anti-phase vibration modes, in which the deflections of the upper and lower 

layers occur in the opposite direction. Unlike our previous work [29], the vibration 

amplitude ratios of the upper and lower layers in different vibrational modes are the same, 
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because of the symmetry of the upper and lower layers of a DLGNR. 

Fig. 3 shows the relationship between the natural frequencies (kW = 0 GPa) and 

vibrational modes of DLGNRs of different aspect ratio and e0a = 0 nm, where Figs. 3 (a) 

and (b) present the natural frequencies of IPM 1-4 and APM 1-4, respectively. It is clearly 

seen that as the number of the mode increases, the natural frequencies increase, and the 

shorter DLGNR show higher sensitivity to the mode number, which is the same as 

DWCNTs [29]. For example, the natural frequencies of DLGNRs for IPM 1-4 with L/b = 

10 ranges from 10.3 to 117.8 GHz, but for L/b = 20 it is only 2.6 to 29.5 GHz. 

Furthermore, because of the influence of vdW interaction forces, when vibrations have 

the same harmonic number, the resonant frequencies of APM are larger than those of 

IPM. 

The nonlocal effects on the natural frequencies of DLGNRs with L/b = 10 for IPM 1–4 

and APM 1–4 as a function of the vibrational mode are shown in Figs. 4 (a) and (b), 

respectively. The natural frequencies of DLGNRs decrease with increasing nonlocal 

parameters (e0a), and, as both the numbers of the IPM and APM increase, the natural 

frequencies of DLGNRs become more sensitive to the nonlocal parameters. It is obvious 

that the natural frequencies of DLGNRs with different nonlocal parameters are nearly the 

same in both of the first mode of IPM and APM in Figs. 4 (a) and (b), and become 
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scattered as the number of the vibrational mode increases. 

To further study the nonlocal effects on the vibrational characteristics of DLGNRs, the 

nonlocal effects on the natural frequency of DLGNRs of different aspect ratio for the first 

mode of IPM are calculated, as shown in Fig. 5. The influence of nonlocal effects on the 

natural frequency lessen as the aspect ratio of DLGNR increasing, which is consistent 

with the findings in reference [40]. For example, when the aspect ratio L/b of DLGNRs is 

20, and e0a is assumed as 0, 0.5, 1 and 2 nm, the natural frequencies of DLGNRs are 2.57 

2.56, 2.53 and 2.43 GHz, respectively, which are very similar to each other. In contrast, 

when aspect ratio L/b = 5, and e0a = 0, 0.5, 1 and 2 nm, the corresponding natural 

frequencies of DLGNRs are 41.05, 38.93, 34.12 and 24.66 GHz, respectively.  

The relationship between frequencies and IPM and APM of DLGNRs embedded in 

different elastic matrices with e0a = 0 nm and L/b = 10 is shown in Fig. 6. The influence of 

the surrounding elastic matrix on the natural frequency of DLGNRs is investigated based 

on the Winkler spring model. We take the ratio of the spring modulus to the vdW 

coefficient (kW/c) as a parameter to consider the stiffness of the elastic matrix. It can be 

found that for both IPM 1-4 and APM 1-4, when parameter kW/c is higher, the natural 

frequencies are higher, which means elastic matrix has a positive effect on the natural 

frequencies of both IPM and APM. The reason is that in both IPM and APM, DLGNRs 
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are tightened by the elastic matrix, and it is well known that higher tightening causes 

higher frequency.  

The natural frequencies of APM are less sensitive to the number of the vibration mode 

than those of the IPM as shown in Figs. 3, 4 and 6. This phenomenon is also found in 

DWCNTs [29], and the explanation is that the vdW interaction force is considered to be 

the dominating factor in frequency of APM but not in frequency of IPM. 

 

4. Conclusions 

In this study, the nonlocal effects on the free vibration of DLGNRs embedded in an 

elastic matrix were investigated. Based on the Euler-Bernoulli beam model, a theoretical 

approach was proposed to analysis the free vibration properties of DLGNRs with free 

supported boundary conditions. It is clarified that there exists two types of vibrational 

modes, IPM and APM, in which the deflections of the upper and lower layers occur in the 

same or opposite directions, respectively. The natural frequencies of DLGNRs are 

significantly influenced by the vibration mode (IPM and APM) and increase as the 

number of the mode increases. Nonlocal effects have a negative influence on the natural 

frequencies, especially for higher mode of IPM and APM. However, as the aspect ratio of 

the DLGNR increases, the nonlocal effects decrease until they become could be neglected. 
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The Winkler foundation modulus has a positive influence on the natural frequency of 

both IPM and APM of DLGNRs embedded in an elastic matrix because higher tightening 

causes a higher frequency. Moreover, because of the influence of the vdW interaction 

forces, the natural frequencies of APM are less sensitive to the vibration modes than those 

of IPM. With above results, the proposed theoretical approach will provide a guidance in 

the application of embedded DLGNRs in dynamic mechanical analysis, high frequency 

oscillators, graphene-based electrochemical sensors and so on.  
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Figure captions 

Fig. 1 Analytical model of a DLGNR. (a) Continuum model of a DLGNR, (b) 

Cross-section of a DLGNR embedded in an elastic matrix. 

Fig. 2 In-phase and anti-phase vibration modes of DLGNRs with free supported boundary 

conditions. 

Fig. 3 Relationship between the natural frequencies and vibration modes of DLGNRs of 

different aspect ratio with e0a = 0 nm. (a) In-phase modes, (b) Anti-phase modes. 

Fig. 4 Nonlocal effects on the natural frequencies of DLGNRs with L/b = 10 for different 
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