Synthesis of Hollow Poly(aniline-*co*-pyrrole)-Fe₃O₄ Composite Nanospheres and their Microwave Absorption Behavior

Yao-Feng Zhu^a, Li Zhang^b, Toshiaki Natsuki^c, Ya-Qin Fu^d, Qing-Qing Ni^{c,d*}

- ^a Interdisciplinary Graduate School of Science and Technology, Shinshu University, Tokida, Ueda 386-8576, Japan
- ^b Faculty of Engineering, Shinshu University, Wakasato, Nagano 380-8553, Japan
- ^c Department of Functional Machinery & Mechanics, Shinshu University, Tokida, Ueda 386-8576, Japan
- ^d Key Laboratory of Advanced Textile Materials and Manufacturing Technology Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, P.R. China

Abstract

poly(aniline-*co*-pyrrole)-Fe₃O₄ Hollow $(HPAP-Fe_3O_4)$ nanospheres with significant electromagnetic properties were successfully prepared via the oxidative polymerization of a mixture of aniline and pyrrole in the presence of a magnetic fluid, using a non-ionic surfactant as a template. The products were characterized by field emission scanning electron microscopy, transmission electron microscopy, Fourier transform infrared spectroscopy, X-ray powder diffraction, thermogravimetric analysis and X-ray photoelectron spectroscopy. The electromagnetic (EM) and microwave absorbing properties of the nanocomposites were also investigated. The HPAP-Fe₃O₄ nanospheres exhibit superparamagnetic properties, and the conductivity increases with Fe₃O₄ content. The reflection loss evaluation based on the absorbing wall theory at 2 mm thickness shows that the reflection loss is reinforced in the frequency range of 0.5-10 GHz by the presence of Fe₃O₄ nanoparticles, and the frequency of minimum reflection loss shifts to a higher value with increasing Fe₃O₄ content. HPAP-Fe₀₆ exhibits the best microwave absorbing property between 0.5 and 10 GHz.

^{*}Corresponding author at: Department of Functional Machinery & Mechanics, Shinshu University, 3-15-1 Tokida, Ueda 386-8567, Japan. Tel/Fax: +81 268 21 5438

E-mail address: niqq@shinshu-u.ac.jp (Qing-Qing Ni)

Keywords: Copolymer; Magnetite; Nanospheres; Hollow structures; Microwave absorbing property

1. Introduction

The rapid development of gigahertz (GHz) electronic systems for telecommunications and defense applications has led to serious EM interference problems and thus a requirement for EM wave absorbing materials with effective shielding over a broad band of frequencies and preferably with a low density [1-3]. EM functionalized conducting polymer composites with micro/nanostructures are considered good candidate materials for EM wave absorption because their microwave properties can be improved by both magnetic and dielectric losses, which are expected to lead to microwave absorption over a broad range of frequencies [4-6].

Conductive polymers play an important role in technologies such as those requiring "stealth", electrostatic charge dissipation and EM interference shielding [1]. Among them, polyaniline (PANI) and polypyrrole (PYY) are promising materials for practical applications because of their controllable conductivity, environmental stability, ease of preparation and favorable physiochemical properties, In addition, the inorganic magnetic micro/nanoparticles can co-structure with a monomer to form micro/nanostructured composites via a self-assembly process [7-11]. Fe₃O₄ nanoparticles have unique magnetic properties and facile synthesis routes. It is also reported that Fe₃O₄ nanoparticles exhibit excellent microwave absorption at low frequencies, which is particularly relevant to magnetic loss[12]. Therefore we have prepared Fe₃O₄-conducting polymer composite materials because their microwave absorption properties are likely to be improved by both magnetic and dielectric loss mechanisms. Recently, Deng et al synthesized Fe₃O₄ cross-linked PAni nanoparticles that exhibited high magnetization and conductivity [13]. Phang et al prepared hexanoic acid doped PAni nanocomposites containing TiO₂ and Fe₃O₄ that have excellent microwave absorption performance [14]. He et al synthesized PANI/CIP/Fe₃O₄ composites that have good EM wave absorption at high frequencies [4]. However, the preparation of EM functionalized conducting polymer composites has not yet been reported in detail. Composite properties are dependent on structure and component size, so the synthesis of composite nanostructures with well defined component size and morphology is of great interest. Despite all the

progress in the synthesis of Fe_3O_4 -conducting polymer nanospecies with various structures, the controllable and selective fabrication of Fe_3O_4 -conducting polymers nanomaterials of a particular desired shape is still a challenge.

In this paper, the main objective is to design a microwave absorbing composite material with controllable nanostructure. Hollow nanospheres have a wide range of potential applications [15-17], but the preparation of EM functionalized copolymer hollow structures has not yet been reported. Hollow poly(aniline-*co*-pyrrole)-Fe₃O₄ (HPAP-Fe₃O₄) nanosphere composites were synthesized by the oxidative polymerization of a mixture of aniline and pyrrole in the presence of a magnetic fluid, using a non-ionic surfactant as a template. The morphology and molecular structure of the composite hollow nanospheres were investigated in detail, as was the correlation between electrical and magnetic properties with microwave absorption.

2. Experimental

2.1 Materials

Aniline (99%) was supplied by Wako Pure Chemical Reagent Co., Ltd., Japan). Pyrrole (98%, by Sigma Aldrich, Co., Ltd., USA) and was stored below 0°C. Sodium dodecyl sulfate, polyoxyethylene(10) octylphenyl ether (Triton X-100), ammonium peroxodisulfate, FeCl₃·6H₂O, FeCl₂·4H₂O, ammonia (28%), and ethanol (99.5%) were of analytical purity and were used as received. Deionized water was used throughout the experiments.

2.2 Synthesis of Fe₃O₄ nanoparticles

The Fe₃O₄ magnetic nanoparticles were prepared by a modified co-precipitation method. The reaction was carried out in a 250-ml three-necked round-bottom flask equipped with a stirrer. FeCl₂·4H₂O (0.994 g, 5 mmol) in 10 ml of deionized water and 2.73 g (10 mmol) of FeCl₃.6H₂O in 10 ml of deionized water were mixed by vigorous stirring and the mixed solution kept in a water bath at 80°C. Twenty milliliters of preheated ammonia solution (1.5 M) was added rapidly to the solution, followed by dropwise addition of aqueous ammonia with stirring until the pH reached 10-12, and stirring was then continued for 1 h. The Fe₃O₄ nanoparticles formed were collected by

magnetic field separation, washed three times with deionized water, and dried under vacuum at 50°C for 24 h.

2.3 Synthesis of HPAP-Fe₃O₄ nanospheres with hollow structure

Hollow poly(aniline-co-pyrrole)-Fe₃O₄ (HPAP-Fe₃O₄) nanospheres were prepared via in situ emulsion polymerization in an aqueous solution containing Fe₃O₄ magnetic fluid and a surfactant. A typical synthesis for HPAP-Fe₃O₄ nanospheres was as follows. A known amount of Fe₃O₄ nanoparticles were mixed with a known amount of surfactant (sodium dodecyl sulfate) dispersed in 20 ml of deionized water with ultrasonication for 2.5 h to obtain a uniform magnetic fluid. Then 1 mmol of pyrrole was added and the suspension was ultrasonicated for 0.5 h. Aniline (1 mmol) and 0.02 g Triton X-100 were added and the mixture ultrasonicated for a further 0.5 h. The mixture was maintained at 0-5°C for 0.5 h, and then 0.2 mmol of ammonium peroxodisulfate was added to initiate polymerization, which took place at 0-5°C for 24 h without agitation. The resulting product was collected by filtration and thoroughly washed with a mixture of deionized water, 95% ethanol, 0.1 Μ **HCl** until filtrate Finally, and the became colorless. the hollow poly(aniline-co-pyrrole)-Fe₃O₄ nanospheres were vacuum-dried at 50°C for 24 h. By varying the amount of the Fe₃O₄ magnetic nanoparticles used (0.01 g, 0.02 g, 0.04 g, and 0.06 g), different products were obtained, and these were designated as HPAP-Fe₀₁, HPAP-Fe₀₂, HPAP-Fe₀₄, and HPAP-Fe₀₆. As a control, HPAP nanospheres were prepared in the absence of Fe₃O₄ nanoparticles via in situ emulsion polymerization as described above.

2.4 Characterization

The morphology of the products was investigated using field emission scanning electron microscopy (FE-SEM; JEOL S-5000) and transmission electron microscopy (TEM; JEOL JEM-2010). X-ray powder diffraction (XRD) patterns were obtained with a RINT 2550H diffractometer using Cu K α radiation. Fourier transform infrared spectroscopy (FT-IR) spectra of KBr powder pressed samples were recorded in the range 400-4000 cm⁻¹ with a Shimadzu IR-prestige21 spectrometer. Thermogravimetric analysis (TGA; TG8120, Rigaku Denki) was

carried out under an air atmosphere from 50 to 600°C at a heating rate of 5°C min⁻¹, then a soak at 600°C for 30 min. X-ray photoelectron spectroscopy (XPS) was performed using a Kratos Axis Ultra DLD X-ray spectrometer with Mg as the exciting source. The room-temperature conductivity of the nanocomposites formed under 30MPa was measured according to a standard four-probe method using a MCP-HT450 conductivity meter (Dia-instruments Co., Ltd.). Magnetic measurements were carried out at room temperature using a vibrating sample magnetometer (TM-VSM5250, Japan) with a maximum magnetic field of 10 KOe.

The samples used for measurement of microwave properties were prepared by dispersing the poly(aniline-*co*-pyrrole)-Fe₃O₄ nanocomposite powder in paraffin wax. The powder-wax compound was pressed into a toroidal shape with an outer diameter of 7 mm, inner diameter of 3.0 mm and a thickness of 2 mm. The complex permittivity and permeability of the compound samples were measured using a vector network analyzer (37247D Anritsu Co., Ltd.) over a range of 0.5-10 GHz, and the reflection loss was calculated from the measured complex permittivity and permeability.

3. Results and discussion

3.1 Morphology and structure of HPAP-Fe₃O₄ nanospheres

A TEM image of Fe_3O_4 nanoparticles is shown in Fig. 1. The Fe_3O_4 nanoparticles were almost uniform in shape and size, at about 10 nm in average diameter, and were relatively well dispersed. The enlarged TEM image in the inset to Fig. 1 suggests that the nanoparticles were well crystallized. FE-SEM images of the HPAP nanospheres and HPAP- Fe_{04} nanospheres (Fig. 2 (a) and (b)) show that the samples were uniform spheres with an average diameter of about 100 nm. From the insets (magnified FE-SEM images) it is clear that the HPAP nanospheres had smooth surfaces, while the surfaces of the HPAP- Fe_{04} nanospheres were relatively rough. The TEM images of HPAP nanospheres and HPAP- Fe_{04} nanospheres in Fig. 2 (c) and (d) reveal that the samples had hollow interiors. The TEM images also show that the average shell thickness was in the range 20-30 nm. From Fig. 2 (d) it is clear that the Fe_3O_4 nanoparticles were encapsulated in the compound nanospheres, causing the rough surface. Figure 4 shows XRD patterns from HPAP nanospheres (Fig. 3(a)), HPAP-Fe₃O₄ nanospheres (Fig. 3 (b-e)) and Fe₃O₄ nanoparticles (Fig. 3(f)). The single broad band centered at around 21° for the HPAP nanospheres (Fig. 3(a)) is indicative of an amorphous structure, arising from the interaction between the different components [8,18]. The broad band centered at around 21° was also observed for HPAP-Fe₃O₄ nanospheres (Fig. 3 (b-e)), together with diffraction peaks at 2θ =30.1°, 35.5°, 43.3°, 53.6°, 57.2° and 62.7° that are in agreement with the XRD peaks of pure Fe₃O₄ nanoparticles (Fig. 3 (f)). The peaks correspond to the (220), (311), (400), (422), (511), and (440) Bragg reflections characteristic of Fe₃O₄, confirming that the HPAP-Fe₃O₄ nanospheres contained Fe₃O₄ nanoparticles. The results also indicate that the Fe₃O₄ nanoparticles had a cubic spinel structure identical to that of the reference material in the JCPDS file (PDF No. 65-3107) [19-21].

The molecular structure of the products was determined by FT-IR spectroscopy; sample spectra are shown in Fig. 4. Similar absorption bands were observed both for HPAP nanospheres (Fig. 4 (b)) and HPAP-Fe₃O₄ nanospheres (Fig. 4 (c-f)) at 1575, 1564, 1458, 1281, 1190 and 694 cm⁻¹. The bands at 1575 and 1564 cm⁻¹ correspond to the C-C stretch for the quinonoid phenyl rings of PANI and C=C stretching mode of polypyrrole [8, 22]. The peak at 1458 cm⁻¹ is attributed to benzenoid vibrations, and the bands at 1281 and 1190 cm⁻¹ are due to the presence of aromatic NH groups and the C-N stretching vibration [18, 23]. The band at 694 cm⁻¹ is attributed to C-H in-plane bending in the 1,3-substituted benzene ring [24]. Figure 4(a) shows the FT-IR spectrum of Fe₃O₄ nanoparticles, with characteristic absorption Fe₃O₄ at 586 cm⁻¹ that is assigned to the Fe-O bond. The characteristic peak of Fe₃O₄ was not observed in the HPAP-Fe₃O₄ nanospheres, indicating that the Fe₃O₄ nanoparticles were fully encapsulated in the nanospheres.

XPS analysis gave some insight into the chemical composition of the composite nanospheres. Figure 5 (a) shows that the HPAP-Fe₀₄ nanospheres were composed mainly of C, N and O. The N 1s XPS core level spectrum of HPAP-Fe₀₄ nanospheres is shown in Fig. 5 (b). The N 1s signal was fitted by three sub-bands, corresponding to quinonoid imine (=N-) at 398.0 eV, benzenoid amine (-NH-) at 398.9 eV, and positively charged nitrogen atoms with a binding energy of 399.6 eV. This result indicated coexistence of the pernigraniline and emeraldine states of the conducting polymer. However, the binding energies were shifted to lower energy and were slightly different from those reported previously [17,25]. The energy level shifts can be accounted for by the dehydrogenation of pyrrolylium nitrogen and rearrangement of the pyrrole bonds to satisfy the nitrogen valences, and interaction between N and Fe atoms to form a coordinate bond, which could reduce the energy level of the composite nanospheres [19,26]. The C 1s spectrum of HPAP-Fe₀₄ nanospheres displays a large peak centered at about 285 eV, as shown in Fig. 5 (c), which is attributed to the presence of aromatic carbons, quinoneimine units and charged species. In addition, the XPS spectra of HPAP-Fe₀₄ nanospheres show that no elemental Fe was present, confirming that the Fe₃O₄ nanoparticles were well encapsulated in the nanospheres. This result is in agreement with the FT-IR spectra and the morphology of the HPAP-Fe₃O₄ nanospheres.

TGA curves of the HPAP nanospheres and HPAP-Fe₃O₄ nanospheres are presented in Fig. 6. The HPAP nanospheres showed three stages of weight loss. The initial weight loss up to 100°C is due to the evaporation of water trapped in the sample. The gradual weight loss up to 280°C is attributed to loss of low molecular weight oligomer, and oxidative thermal degradation began above 300°C. The HPAP-Fe₃O₄ nanospheres showed similar decomposition steps to those of HPAP nanospheres, but the decomposition processes of the two samples above 300°C indicated that the HPAP-Fe₃O₄ nanospheres had lower thermal stability. The lower thermal stability of HPAP-Fe₃O₄ nanospheres may be due to the synthesis by *in situ* polymerization in the Fe₃O₄ magnetic fluid, which leads to the presence of polymer chain defects and a consequent broad molecular weight distribution. From the TGA trace of the HPAP-Fe₃O₄ nanospheres, we believe that the weight loss could be assigned to polymer decomposition. Meanwhile, Fe₃O₄ oxidized to form Fe₂O₃, and the Fe₂O₃ mass percentage and the Fe₃O₄ contents are then derived from the Fe₂O₃ mass percentage, as shown in Table 1.

3.2 Magnetic and electrical properties

The presence of Fe₃O₄ is the reason for the EM functionalization of the composite nanoparticles, so

the magnetic properties of Fe₃O₄ and HPAP-Fe₃O₄ nanospheres were measured using a vibrating sample magnetometer at room temperature with an applied field -10 KOe $\leq H \leq 10$ KOe. As shown in Fig. 7, the saturated magnetization of pure Fe₃O₄ nanospheres is affected by the amount of magnetic fluid present. The saturated magnetizations of HPAP-Fe₀₁, HPAP-Fe₀₂, HPAP-Fe₀₄, and HPAP-Fe₀₆ are 2.49, 4.99, 11.07, 17.2 emu/g. According to the TGA analyses, the Fe₃O₄ content of HPAP-Fe₃O₄ nanospheres increased with the increase in the amount of magnetic fluid added, and the results for the Fe₃O₄ mass percentage are shown in Table 1. The relationship between saturated magnetization and Fe₃O₄ content is obtained as shown in Fig. 8. The saturated magnetization of HPAP-Fe₃O₄ nanospheres increased linearly with Fe₃O₄ content. This indicates that the magnetic properties of the composites are mainly due to Fe₃O₄. The Fe₃O₄ and HPAP-Fe₃O₄ nanospheres have a low coercive force (*Hc*) (about 300 Oe). Therefore, this kind of composite could exhibit significant electric-magnetic absorption properties.

The electrical properties of HPAP and HPAP-Fe₃O₄ nanospheres were also examined. As shown in Fig. 9, the room temperature conductivity of the HPAP and HPAP-Fe₃O₄ nanospheres was measured by a four-probe method. It is found that the conductivity of the HPAP-Fe₃O₄ nanospheres was higher than that of the HPAP nanospheres. Furthermore, the conductivity of the HPAP- Fe₃O₄ nanospheres increased to some extent with Fe₃O₄ content, which has been previously observed [27,28]. The conductivity of HPAP-Fe₃O₄ nanospheres may be not only affected by the microscopic conductivity but could also be affected by macroscopic conductivity [27]. Microscopic conductivity depends upon the doping level, conjugation length and polymer chain length, which should not vary widely in samples prepared under identical conditions. Our HPAP-Fe₃O₄ nanospheres were polymerized in identical conditions, so the microscopic conductivities should be nearly the same. However, the macroscopic conductivity depends on certain external factors such as compaction of the samples or molecular orientation, which in turn significantly depend on the Fe₃O₄ content in the HPAP-Fe₃O₄ nanospheres. Pure co-polymer is poorly compacted, which results in relatively lower

conductivity. In the HPAP-Fe₃O₄ nanospheres, the growing polymer chains are supported on the Fe_3O_4 particles, which lead to an improvement in the compaction of the composite material. Therefore, as the Fe_3O_4 content increases, the compaction of the composites is significantly improved, which results in an enhancement in macroscopic conductivity measured in the pelletized form.

3.3 Microwave absorption properties

The complex permittivity of HPAP-Fe₃O₄ nanosphere-paraffin wax composites made with 50 wt% of HPAP-Fe₃O₄ is presented in Fig. 10 (a-b). The complex permittivity ε ($\varepsilon = \varepsilon' - j\varepsilon''$) has real (ε') and imaginary (ε'') permittivities. Figure 10 (a-b) shows the real and imaginary parts of the complex permittivity ($\varepsilon'_{,\varepsilon''}$) of the HPAP-Fe₃O₄-paraffin wax nanocomposites. As shown in Fig. 10 (a), the real part (ε') of the permittivity of the samples increases with Fe₃O₄ content in the HPAP-Fe₃O₄ nanospheres, especially in the range of 0.5-6 GHz, while HPAP-Fe₀₆ is similar to HPAP-Fe₀₄ in the range of 0.5-2 GHz. Between 6 and 10 GHz, the ε' of the samples is less sensitive to the Fe₃O₄ content, except in HPAP-Fe₀₆, which has a higher value. It is also found that the ε' is critically dependent on the frequency and decreases in inverse proportion to the frequency. For the imaginary part of the permittivity ε'' , it can be seen in Fig. 10 (b) that ε'' of the samples increases with the Fe₃O₄ content in the frequency of 3-8 GHz range and remains approximately constant between 8 and 10 GHz except in the HPAP-Fe₀₆ sample. It also can be seen that there is some cross-over of ε'' between HPAP-Fe₀₄ and HPAP-Fe₀₆ at low frequencies. ε'' exhibits four resonance peaks, lying at 1.5, 3.5, 5.5 and 7.5 GHz. These resonance peaks are usually attributed to interfacial polarization [29], which may be caused by the nature of the interface between the Fe₃O₄ nanoparticles and the co-polymer, and polarization by the Fe₃O₄ nanoparticles [30].

Figure 10 (c-d) shows the complex permeability of the HPAP-Fe₃O₄ nanosphere-paraffin wax composites with 50 wt% of HPAP-Fe₃O₄ in the frequency range of 0.5-10 GHz. The result for the real part (μ') of the complex permeability is shown in Fig. 10(c). It is found that μ' increases along with frequency. The samples have similar values below 5.5 GHz and have three resonance peaks in

the frequency of 4-10 GHz, implying normal resonance. The imaginary part (μ'') of the complex permeability of the samples is shown in Fig. 10 (d). It is found that the μ'' values of the samples increase with frequency, but sample HPAP-Fe₀₁ and HPAP-Fe₀₂ have a slight decrease at high frequencies. The μ'' values of the samples have three resonance peaks near 5 GHz, 6.5 GHz and 8.5 GHz. The magnetic losses mainly consist of natural resonance, domain-wall displacement, magnetic hysteresis, and eddy current loss, and because the size of the Fe₃O₄ nanoparticles is far smaller than the skin depth (~1 μ m), it may be that the microwave magnetic loss for the present HPAP-Fe₃O₄ nanospheres is mainly due to natural resonance of the Fe₃O₄ nanoparticles [31,32]. It is believed that natural resonance results in strong magnetic loss, implying enhanced microwave absorption by the HPAP-Fe₃O₄ nanospheres as EM energy is converted into heat energy [33].

To investigate the intrinsic reasons for microwave absorption by the HPAP-Fe₃O₄ nanospheres, the dielectric loss factor (tan $\delta_E = \varepsilon''/\varepsilon'$) and the magnetic loss factor (tan $\delta_M = \mu''/\mu'$) of sample HPAP-Fe₀₄ were calculated. It can be seen from Fig. 11 that both the dielectric and magnetic loss do contribute to microwave absorption. The magnetic loss factor is larger than the dielectric loss factor, and the total EM loss behavior is similar, if somewhat larger than that of magnetic loss. Thus the main contribution to microwave absorption comes from magnetic losses.

The reflection loss (*R.L.*) of the samples with thickness of 2 mm in 0.5-10 GHz was calculated, as shown in Fig. 12, according to transmission line theory [34], as:

$$R.L. = 20 \log \left| \frac{Z_{in} - 1}{Z_{in} + 1} \right|$$
(1)

 Z_{in} is the normalized input impedance of a metal-backed microwave absorbing layer.

$$Z_{in} = \sqrt{\frac{\mu_r}{\varepsilon_r}} \tanh\left[j\left(\frac{2\pi f d}{c}\right)\sqrt{\mu_r \varepsilon_r}\right] \qquad (2)$$

where f is the microwave frequency in Hz, d is the thickness of the absorber in m, and c is the velocity of light in free space in m/s.

It can be seen that the frequency for the minimum reflection loss decreases with increasing Fe₃O₄

content. Meanwhile, the increased reflection loss at higher frequency ranges is accompanied by attenuation at lower frequency bands. From the composites prepared in this study, HPAP-Fe₀₆ exhibits the best microwave absorbing property. The minimum reflection loss of HPAP-Fe₀₆ sample is about -3 dB at 9 GHz and 10 GHz when d=2 mm, which is higher than other reported results [29,35]. As the Fe₃O₄ content increases, the reflection loss peaks shift slightly towards higher frequency, which is consistent with previous reports [36]. Additionally, the magnetic and conductivity properties are enhanced by increasing the Fe₃O₄ content, as shown in Fig. 7 and Fig. 9, showing the distinct resulting change in both dielectric and magnetic loss, significantly affecting the efficiency of microwave absorption [37].

4. Conclusion

HPAP-Fe₃O₄ composite nanospheres with EM properties were successfully fabricated by oxidative polymerization of a mixture of aniline and pyrrole in the presence of a magnetic fluid, using a non-ionic surfactant as template. The HPAP-Fe₃O₄ composite nanospheres exhibited good conductivity and magnetic properties. The reflection loss in 0.5-10 GHz range of HPAP-Fe₃O₄ composite nanospheres was reinforced by the presence of Fe₃O₄ nanoparticles and the frequency relating to minimum reflection loss shifted to higher value with increased Fe₃O₄ content. The calculated result for the reflection loss also showed that the HPAP-Fe₀₆ sample had the best microwave absorbing property in the 0.5-10 GHz range. It is reasonable to believe that HPAP-Fe₃O₄ functional composites have potential applications in chemical sensors, gas separation, catalysis, microwave shielding, and magnetoelectric devices.

Acknowledgments

This work was partly supported by grants-in-aid from the Global COE Program and CLUSTER (the second stage) by the Ministry of Education, Culture, Sports, Science and Technology, Japan

References

[1] S. W. Phang, M. Tadokoro, J. Watanabe, N. Kuramoto. Curr. Appl. Phys. 8(2008) 391-394
[2] R.T. Ma, H.T. Zhao, G. Zhang. Mater. Res. Bull. 45(2010) 1064-1068

- [3] T. H. Ting, K.-H. Wu. J. Magn. Magn. Mater. 322(2010) 2160-2166.
- [4] Z.F. He, Y. Fang, X.J. Wang, H. Pang. Synth. Met. 161(2011)420-425
- [5] G.Q. Wang, X.D. Chen, Y.P. Duan, S.H. Liu. J. Alloys Compd. 454(2008) 340-346
- [6] D.L. Zhao, Q. Lv, Z.M. Shen. J. Alloys Compd. 480(2009)634-638
- [7]C. Saravanan, R. C. Shekhar, S. Palaniappan. Macromol. Chem. Phys. 207(2006)342-348
- [8]S. E. Mavundla, G. F. Malgas, D. E. Motaung, E. I. Iwuoha. J. Mater. Sci. 45(2010)3325-3330
- [9] Y. L. Luo, L. H. Fan, F. Xu, Y. S. Chen, C. H. Zhang, Q.-B. Wei. Mater. Chem. Phys. 120(2011)590-597
- [10] Z.M. Zhang, M.X. Wan, Y. Wei. Nanotechnology 16(2005)2827-2832
- [11] X. Li, M.X. Wan, Y. Wei, J.Y. Shen, Z.J. Chen. J. Phys. Chem. B, 110(2006)14623-14626.
- [12] S.B. Ni, S.M. Lin, Q.T. Pan, F. Yang, K. Huang, D.Y. He. J. Phys. D: Appl. Phys. 42(2009)055004.
- [13] J. Deng, X. Ding, W. Zhang, Y. Peng, J.Wang, X. Long, P. Li, A. S. C. Chan, Polymer 43(2002) 2179–2184
- [14] S. W. Phang, M. Tadokoro, J. Watanabe, N. Kuramoto. Polym. Adv. Technol. 20(2009)550-557
- [15] Y. Zhu, G.Q. Ren, M.X. Wan, L. Jiang. Macromol. Chem. Phys. 210(2009)2045-2051
- [16] P. Jiang, J.F. Bertone, V.L. Colvin. Science 291(2001)453-457
- [17] C.H. Yang, J.J. Du, Q. Peng, R.R. Qiao, W. Chen, C.L. Xu, Z.G. Shuai, M.Y. Gao. J. Phys. Chem. B, 113 (2009)5052–5058
- [18]S.X. Xing, C. Zhao, T.L. Zhou, S.Y. Jing, Z.C. Wang. J. Appl. Polym. Sci. 104(2007) 3523-3529
- [19] J.G. Deng, Y.X. Peng, C.L. He, X.P. Long, P. Li, A. S. C. Chan. Polym. Int. 52(2003)1182-1187
- [20] A.K. Bajpai, R. Gupta. Polym. Compos, 31(2010) 245-255
- [21] W. Shen, M.M. Shi, M. Wang, H.Z. Chen. Mater. Chem. Phys. 112(2010)588-594

- [22] S. E. Mavundla, G. F. Malgas, P. Baker, E. I. Iwuoha. Electroanalysis 20(2008)2347-2353
- [23] C. He, C.H. Yang, Y.F. Li. Synth. Met. 139(2003)539-545
- [24] A. C. V. De Araújo, Jr. S. Alves, W. M. Azevedo. Adv. Sci. Tech. 54(2008)325-330
- [25] X.F. Lu, H. Mao, W.J. Zhang. Polym. Compos. 30(2009)847-854
- [26]E.T. Kang, K.G. Neoh, K.L. Tan. Prog. Polym. Sci. 23(1998)277-324
- [27] R. Gangopadhyay, A. De. Eur. Polym. J. 35(1999)1985-1992
- [28] A.H. Chen, H.Q. Wang, B. Zhao, X.Y. Li. Synth. Met. 139(2003)411-415
- [29] S.B. Ni, X.H. Wang, G. Zhou, F. Yang, J.M. Wang, D.Y. He. J. Alloys Compd. 489 (2010)252-256
- [30] S.B. Ni, X.L. Sun, X.H. Wang, G. Zhou, F. Yang, J.M. Wang, D.Y. He. Mater. Chem.Phys., 124(2010)353-358
- [31] X. L. Dong, X. F. Zhang, H. Huang, F. Zuo. Appl. Phys. Lett. 92(2008)013127-013127-3
- [32] C. Kittel. Phys. Rev.73 (1948)155-161
- [33] Z. Zou, A.G. Xuan, Z.G. Yan, Y.X. Wu, N. Li. Chem. Eng. Sci. 65(2010)160-164
- [34] S.S. Kim, S.B. Jo, K.I. Gueon, K.K. Choi, J.M. Kim and K.S. Churn. IEEE Trans. Magn. 27(1991)5462-5464
- [35] C.H. Yang, J.J. Du, Q. Peng, R.R. Qiao, W. Chen, C.L. Xu, Z.G. Shuai and M.Y. Gao. J. Phys.Chem. B, 113 (2009)5052–5058
- [36] P. Xu, X.J. Han, J.J. Jiang, X.H. Wang, X.D. Li, and A.H. Wen. J. Phys. Chem. C 111(2007)12603-12608
- [37] S.W. Phang, N. Kuramoto. Polym. Compos. 31(2010)516-523

Figure captions:

Figure 1. TEM image of Fe₃O₄ nanoparticles synthesized by co-precipitation (inset: corresponding enlarged TEM image).

Figure 2. Typical FE-SEM images, TEM images for (a, c) HPAP nanospheres and (b, d) HPAP-Fe₀₄ nanospheres.

Figure 3. XRD patterns of HPAP nanospheres, HPAP-Fe₃O₄ nanospheres with different amounts of Fe₃O₄ nanoparticles added, and Fe₃O₄ nanoparticles.

Figure 4. FT-IR spectra of Fe_3O_4 nanoparticles, HPAP nanospheres and HPAP- Fe_3O_4 nanospheres with different amounts of Fe_3O_4 nanoparticles added.

Figure 5. XPS spectra of (a) HPAP-Fe₀₄ nanospheres; (b) N 1s and (c) C 1s core level spectra of HPAP-Fe₀₄ nanospheres.

Figure 6. TGA curves for HPAP nanospheres and HPAP-Fe₃O₄ nanospheres with different amounts of Fe₃O₄ nanoparticles added.

Figure 7. Magnetization versus applied magnetic field at room temperature for the Fe_3O_4 nanoparticles and HPAP- Fe_3O_4 nanospheres

Figure 8. the relationship between saturated magnetization and Fe_3O_4 content in HPAP-Fe₃O₄ nanospheres.

Figure 9. Room temperature conductivity (σ) of the HPAP and HPAP- Fe₃O₄ nanospheres.

Figure 10. Permittivity and permeability of HPAP and HPAP- Fe₃O₄ nanospheres. (a) Real permittivity, ε' , (b) imaginary permittivity, ε'' , (c) real permeability, μ' and (d) imaginary permeability, μ'' .

Figure 11. Frequency dependence of tan δ (tan δ_E , tan δ_M , tan δ_E +tan δ_M) for HPAP-Fe₀₄ composite.

Figure 12. Reflection loss curves for HPAP and HPAP-Fe₃O₄ nanospheres with 2 mm thickness in the frequency range of 0.5-10GHz

Samples	Fe ₂ O ₃ Mass percentage (wt%) ^a	Fe ₃ O ₄ content (wt%) ^b
HPAP-Fe ₀₁	4.0	3.87
HPAP-Fe ₀₂	6.4	6.19
HPAP-Fe ₀₄	20.0	19.33
HPAP-Fe ₀₆	22.0	21.27

TABLE 1 Fe₃O₄ contents in HPAP-Fe₃O₄ composite nanospheres obtained by TGA analysis

^a Fe₂O₃ mass percentage (wt %) measured through TGA analysis.

^b Fe₃O₄ content in HPAP- Fe₃O₄ nanospheres calculated from the Fe₂O₃ mass percentage.

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

Figure 12.