

感性製品のための物理計測と心理評価

高寺 政行*

1. 緒 言

感性とは、人間が関係性を形成するため用いる、感 覚、認知、認識、関係性の構築、創造活動などの洗練 された能力のことである。感性はその豊かな特性をも ってして、感性ネットワーク世界の基礎を形作る。そ れを基礎とする感性工学は幅広い分野と関わりを持ち、 感性製品の追求によって原子から精神まで、全てのも のを紡ぎ出し織り上げることができる。すなわち、感 性工学は社会の文化を豊かにすることができる[1].

生産者と消費者が製品の設計,製造の過程で協力す ることができれば,お互いの意見の交換によってより 創造的で優れた製品を生み出すことができる.

感性製品である衣服はいうまでもなく、個人対応が 最も必要な製品である。しかし、大量生産の安価な供 給の恩恵を受ける代わりに身体的、生理的、心理的要 求のいくつかを常に犠牲にして着用している.幸いな ことに、あらゆる商品のなかで、衣服は最も商品点数 が多く、選択の多様性という点で、多少なりともその 要求はカバーされている.

個人の体形に合い,デザインに優れ,着心地が良く, 機能にすぐれた個人対応の衣服を設計・生産するため には,素材の特性をデータスペースに蓄え,有機的な 利用を可能としなければならない.シミュレーション 技術の発達により,布のテクスチャや衣服の着衣状態 の視覚的表現は可能になりつつある.対話型衣服設計 を実現するためには,情報のやり取りのために,視覚 提示の高精度化だけでなく,触感や着心地の提示も必 要となる.そのためには素材の物性と感性評価の関わ りを把握し,新製品の創造に活用しなければならない.

本稿では感性製品としての衣服の対話型生産ネット ワークのひとつのハブを構成する素材データベースに 必要な素材特性とその測定方法,心理評価との関係の 解析について述べる.

* 信州大学繊維学部 高寺政行

2. 繊維の価値と物性

繊維製品の特性として, 製造プロセスの階層構造と, 製品の多様性がある.繊維製品の製造プロセスは, 繊 維→糸→布(織物, ニットなど)→最終製品である(図 1). それぞれの中間製品が膨大なバリエーションを持 つ.繊維製品と人間のかかわりは最終製品を通じてな されるが, その際, 布や糸, 繊維までも感じ, 評価は 複合的である.

綿,毛,麻,絹などの天然繊維は農業製品であり, 長さや繊度(太さ)が一定でないため平均値で管理さ れる.高級天然繊維として,その柔らかさと光沢,希 少価値(したがって価格)そして,それらから生まれ たイメージにより絹,モヘア(アンゴラ山羊毛),カシ ミア,その他の繊維が挙げられる[2].表1にそれらの 生産量と原料価格および繊維直径と繊維長を示す.比 較のために汎用の綿とポリエステル糸の価格を示す. 2000年の世界の繊維最終消費量が,46732千トンである から希少性が判断可能と思う.価値は原料価格である から製品価格差はさらに大きくなる.高級繊維の中で はカシミア,絹,亜麻の生産量が比較的多い.高級繊 維の価値のうち,物理的に計測可能なものとして,そ れらを用いた製品の触感と光沢が注目された.

合成繊維は,化学工業の産物である合成高分子を繊 維化したものである. 衣料用に大量に用いられるのは ナイロン,ポリエステルなど数種類であるが,特殊な 機能や感性を備えた繊維も高級天然繊維と同様に多数 使われている. 繊維の幾何学的特長は直径と断面形状 である. 高級繊維の触感と光沢を目指して,さまざま

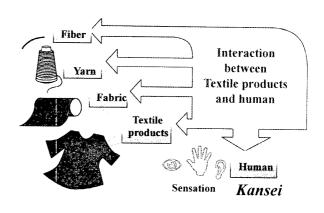


図1 繊維製品の階層構造

[†] Physical measurement and psychological evaluation for KANSEI products Masayuki TAKATERA

Faculty of Textile Science and Technology, Shinshu University, 3-15-1, Tokida, Ueda-shi, Nagano-ken, 386-8567, Japan

28

繊維	繊維直径/μm (線密度/dtex)	繊維長/mm	2000年生産量 (トン)	価格 (US\$/kg)
ビキューナ	12-15	30-40	5	360
グアナコ	14-16	30-60	10	150
カシミア	12.5-19	35-50	9000-10000	100-130
Cashgora*	18-23	30-90	50	45
絹	(2.41-3.44)	1100-1600m	75000	20-22
ヤク	15-20	35-50	1000	20
らくだ	18-24	36-40	4500	9.5-24
アンゴラウサギ	14	60	3000	20
アルパカ	20-36	200-550	4000-5000	2-10
モヘア	23-40	84-130	7000	7.5-8
ラマ	19.38	80-250	2500-2750	2.4
ジャコウウシ	11-20	40-70	3	
亜麻	15-24	20-30が連結	353000	32(糸)
綿(海島綿)	(1.25-1.33)	40-45	230	18(糸)

表1 高級天然繊維の生産量と価格[2]

参考 綿(20番糸)2-2.2\$/kg,ポリエステル(20番糸)3.8\$/kg,*カシミア山羊とアンゴラ山羊の交配種

な材料, 繊度, 断面形状の合成繊維が開発された. 天 然繊維よりも細い, 直径数 µm の繊維が合成繊維布の 風合いを革新した[12].また, 断面形状は光沢や触感 の改質をめざし様々な形状が試みられてきた.中空繊 維や特殊断面形状繊維は, 布の吸湿速乾性, 保温性な どの機能性を向上させるとともに, 新たな触感や質感 を生み出している.

3. 繊維の物性と触感

布が皮膚と接触し始めると、最初に布から突き出た 繊維に接触する、フィラメント糸のように繊維が突き 出ていない布では繊維の側面が接触する。繊維は一定 荷重で座屈し、側面が接触するようになり、接触面積 が増える。毛布やベルベットは表面が突き出た繊維で 覆われている.しかし、一般に1本の繊維を感じるこ とはない.繊維状圧縮子1本による先端荷重の閾値は, 最も低い女性の鼻のわきで 5 mgf, 指先で38.9mgf であ る[3]. 座屈荷重がこれ以下であれば、1本の繊維を感 じることはない。座屈荷重は繊維の曲げ剛性と長さに より定まる。繊維のチクチク感は皮膚のせん断応力に よる痛覚刺激であり、痛覚受容器の反応は0.75mgf以 上の荷重で生じるといわれている. 1本の繊維では約 100mgf で感じ, 複数の繊維では一定面積中の刺激繊維 の総荷重に依存する[4]. 毛では直径15µm 以下でちく ちく感を感じなくなる[14]. 垂直に接触しない繊維は, 側面が接触する.繊維の材料は固体としては硬いもの であるが、細くて長い形態的特長により、変形は曲げ やねじり変形になり、柔らかさを生み出す.

4. 布の風合いと物性

布の風合いは広義には官能的評価全般を指すが、一 般には生地を手で触ったり、握ったりした時の総合的 な評価を言う. 古くから織物の品質と価格はバイヤー の感覚により判断されていた.感覚による評価は、材 料の物理特性に依存する.従って物理測定は判断の訓 練のためのデータを与えてくれる大きな価値を持つ. この視点の下で1930年 Peirce [5] は布の剛さの物理測定 を行うための理論解析と測定を行った。彼の測定した 項目は、ベンディングレングス(布の重量と曲げ剛性 により自重によるたわみ易さを表した量),曲げ剛性, 厚さ, 圧縮硬さ, 曲げ弾性係数, 圧縮弾性係数, 密度, 伸長性であった。布は微小荷重で大きな変形をするた め、カンチレバー法やループ法による測定値と物理量 との関係が解析された。ただし、Peirce は感覚による 判断は時と場所と季節と流行と個性と人種による好み に依存するので、エキスパートの評価や審美性を物理 テストの数値結果に置き換えることは意味のないこと だと述べている.

日本では布の風合いの客観評価を目指して,評価用 語の収集と定義,関連する物理特性と測定理論の検討, 官能検査の方法,統計的な解析手法などの研究が続け られてきた[6].川端季雄らは物理計測システムとして, KES-F システムを開発した.用いる力学量は,引張り (荷重-ひずみ曲線の直線性,仕事量,レジリエンス),

曲げ(曲げ剛性,ヒステリシス幅),せん断(せん断剛 性, せん断角度0.5度および5度におけるヒステリシス 幅), 圧縮(直線性, 仕事量, レジリエンス), 表面(平 均摩擦係数,同平均偏差,表面粗さ),厚さおよび単位 面積あたり重量である[7].独立性の高い風合いを基本 風合いとし,「こし」,「ぬめり」,「ふくらみ」,「しゃり」、 「はり」を採用した. 測定した物理量と布を扱う専門 家の風合いの官能検査結果との関係を統計解析し、力 学量から基本風合いを、基本風合いから総合風合いの 等級を2段階で重回帰式による推定を行った.この方 法で順序づけられたたサンプルで学習することにより、 好みに依存しない風合いの官能評価に国際的な統一性 をもたせることができる。しかし、基本風合いとして 用いられた言葉は一般消費者になじみのあるものでは なく、訓練されない消費者の求める風合いを布の物理 量に変換することはできない。布の触感には温冷感や 水分量も関係することからそれらとの複合評価も必要 である.また、摩擦を伴う評価は再現性が得にくい. マイクロファイバー[8]や自動車シート[9]などの新し い素材や用途が新しい物性と心理評価を生み出すので, 新しい評価用語や測定法が提案されている。触覚のみ の場合と視覚が伴う場合では、評価が異なることも知 られている. 布の風合いについては触感に関する神経 生理学的研究に加え, 布の評価時の指の動かし方や指 先の荷重分布とその動的変化を捉える研究[10]や基本 風合いと、より総合的な感性評価との関係解析[20]な どが進められている。

5. 衣服の快適性

衣服の生理心理的着心地の主要因は,①衣服内気候, ②衣服圧、③肌触りである。衣服内気候は衣服内の温 度・湿度・気流に関係し、快適と感じる範囲が概ね明 らかになっている[13]. 図2に衣服の快適性評価のプ ロセスを示す.着心地は衣服と人間との相互作用であ り、生地物性や衣服形状だけでなく、環境温湿度、気 流,着用者の代謝・発汗などが影響する。衣服の温熱 特性の機械評価は、サーマルマネキンと呼ばれる発熱, 発汗可能な人体モデルで行われる。しかし、快適性評 価は着用実験が必要である。蒸れ感とも呼ばれる湿気 の知覚はまだ明らかになっていない、人間に湿気を感 じる特別な検出器があることを裏付ける証拠は見つけ れてはいない. そこで, 湿気は温度, 圧力, 圧力分布, 皮膚温低下のような構成要素からなる総合感覚と考え られている[4]. 衣服圧はエアパック式圧力センサやシ ート状圧力センサアレイで測定される。靴下やファン デーションなどの快適と感じる被服圧が測定されてい る。また、スラックスなどの運動時の評価も行われて

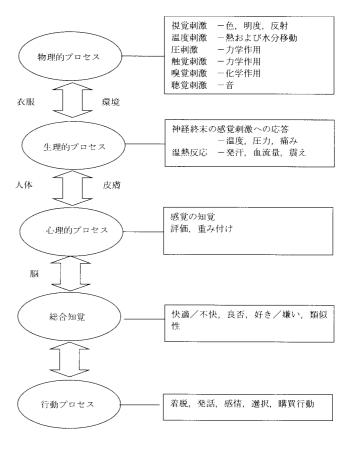


図2 衣服の主観評価プロセス

いる.

衣服圧は布の伸長特性,皮膚と布の間の摩擦,部位 の曲率と,張力に依存すると考えられる。布の伸長特 性は異方性が顕著である。一般にはたて・よこ方向の 伸長特性と斜め方向の伸張性を与えるせん断剛性が測 定される[15].また,一方向に伸ばすと直交方向に縮 むポアソン効果が見られるが,その測定と評価は十分 にはなされていない[16].

肌触りは低荷重の接触,摩擦および接触温冷感であ り,風合いと同様の物性が関与するが,風合い評価が 能動的評価であるのに対して,肌触りは受動的に評価 され,荷重がより小さい領域であるため関連物性が十 分評価されているとはいえない.衣服の快適性は官能 評価で行われるが,意識下にない生理的影響を評価す るために,心電図,血流量,脳波計測なども行われて いる[17,18].

6. 布のテクスチャ

布のテクスチャは表面の均一性や変化の特徴である. 視覚,触覚,あるいは撫でた時の音の聴覚などを含ん だ複合的な感覚である.食感や建築材の材質感,音楽 における音の構成もテクスチャと呼ばれる.

織物のテクスチャは糸のテクスチャと繊組織により 構成される.織物の幾何学パラメータおよび色彩と感 性評価の関係はニューラルネットワークなどによりモ デル化されている[19].また,力学特性とテクスチャ 評価の関係も検討されている[27].表面的なテクスチ ャはテキスタイル CAD でシミュレートされる[21].織 物は立体構造を持つため,光源と視線の方向により見 え方が異なる.糸物性からの布中の糸の変形のシミュ レーションは研究途上であり,布の3次元シミュレー ションのためには様々な方向からの布画像を撮影し, これをテクスチャマッピングして用いる.織物の光透 過性においても同様であるが,幾何学的構造から異方 性のある程度の予測が可能である.

テクスチャの特徴は、画像の2次元フーリエスペク トル、フラクタル次元、同時生起行列などを用いて抽 出される. 布の知覚において糸の太さむらによるテク スチャが関係することから、糸むらのフラクタル次元 を制御することにより、素材と異なる知覚を与える織 物が開発された[22]. また、冷涼感と手クスチャの関 連も報告されている[23].

7. 布のしわとドレープ

布に発生した不規則な細かい凹凸をしわという.洗 濯じわ,着用じわ,縫い目に生じるシームパッカリン グなどがある.しわの程度はレプリカとの比較による 官能検査で行われるが,これを画像処理により行うこ とも可能になっている[31].しわの発生は折り曲げや 圧縮座屈によるが,しわが回復しない理由は,繊維の 塑性変形,布における糸交差部や糸内繊維の非回復性 の滑りなどである.また,衣服の袖や脚部,胴部に生 じる圧縮座屈しわは,布と内部円筒とのクリアランス によりパタンが決まることが知られている.歴史的に 衣服のしわに注目したのは芸術家たちであった.モナ・ リザの腕のしわの美しさは圧巻である.このようなし わの美しさは「しわの美学」と呼ばれている[11].

布の自然な垂れ下がり状態をドレープといい,フレ アスカートやカーテンのひだの生じ方に関連する.少 面積の生地でこれを評価する方法として,F.R.L.ドレー プ(JIS L1085)と M.I.T.ドレープ[24]がある.F.R.L.ド

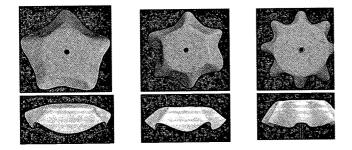


図3 布の F.R.L. ドレープ試験

レープは円盤の上にそれより直径の大きな円形の布を 掛けたときの布の垂下の程度を, M.I.T.ドレープは円筒 に布端を巻きつけた時の裾の広がりの程度を測定する. F.R.L.ドレープは布の曲げ特性とその異方性, せん断特 性および面密度により力学的にシミュレート可能であ る(図4)[25].スカートのドレープの美しさの官能評 価もなされているが,数量化したドレープとは必ずし も一致しない.

8. 衣服の視覚評価とシミュレーション

布の力学物性と衣服の外観評価の関係はさまざまな 衣服について検討されている[26,28].しかし,縫製品 質や、ドレープのように因果関係が理解できるものも あるが、衣服のパタンとボディ形状との関係があり、 結果の一般性を論じるのは難しい.

衣服の力学的着装シミュレーションは、布が実用状 態で大変形するために困難な課題であったが、計算技 術の進歩とコンピュータの高速化により著しい進歩を とげた[21,29]. ここで用いられる力学特性は、たて・ よこの伸長特性、せん断特性およびたて・よこの曲げ 特性であり、力学的パラメータの影響が定性的には明

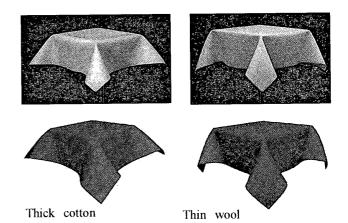


図4 テーブルクロスとそのシミュレーション

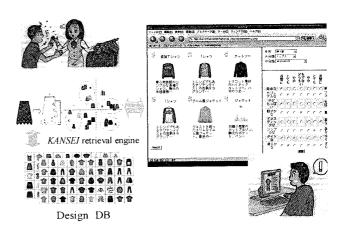


図5 感性衣服検索システム

らかになり, 製作前の視覚評価が可能になった.しか し, 衣服の着心地を評価し,他の繊維製品設計に利用 するためには定量的評価が可能でなければならない. そのために現在,測定が簡単でないポアソン比や,引 張りとせん断のカップリング, 布と布あるいは皮膚の 間の低荷重摩擦などの測定方法の確立と,定量的検証, シミュレーションの高速化などが必要である.

9. デザイン選択のための感性検索システム

アパレル製品のデザインの選択肢は膨大であるが、 オンデマンド生産のためには効率的な選択が不可欠で ある.デザインに対する評価は個人間で異なるため、 個々の消費者に対応したデザインの提示が必要となる. このような問題を解決するために感性検索システムが 開発された[30].このシステムでは、ユーザはカテゴ リの情報や感性に関わる計測値を入力することにより デザインを検索することができる(図5).そのために アパレル製品についての、検索に適したカテゴリ情報 の統一フォーマットを開発した.また、検索において 感性語を用いる際の個人差を反映するような手法が検 討された.

衣服のカタログやデザインストックから好みの衣服 を探す際に、詳細な仕様を記述するよりは、主観的な 評価語で指示できる方が便利である。あらかじめ販売 側でつけられた主観評価値と、個人の評価の関係が分 かっていればそれが可能になる。同じ衣服に対する双 方の評価値が等しければ問題はないが、一般には異な る。しかし、双方の評価に何らかの関係が仮定できれ ばその関係式を求めることができる。線形関係を仮定 したモデル、ニューラルネットワークによるモデルな どが試みられている。また、画像の特徴量から感性評 価地を予測する試みもなされている[32]. 画像の特徴 量としては、衣服の輪郭形状、テクスチャ、色が用い られている.スカート画像の類似性の主観評価はこの 3つの類似性の線形結合で説明された.画像の特徴量 の抽出,感性評価値の予測,個人対応化の方法につい ては試行がつづいている.

10. 新しい布物性計測装置

感性製品設計のための被服材料の評価を行うために, これまで計測することができなかった特性、あるいは 格段に効率的な計測を行うことが可能な特性について, 以下のような試験器が開発された。(1)引張り特性に関 しては典型的な異方性材料である織物の引張り異方性 を計測するために環状多軸試験器が開発された.従来 の引張り試験では経糸、緯糸、バイアスの各方向とせ ん断試験が必要であったが、開発した試験器では織物 の多方向の引張りを同時に計測し、引張り異方性を一 度で評価できる[36].(2)糸や単繊維の径方向の圧縮特 性は布の手触りに影響を及ぼす。ピエゾスタックと顕 微鏡を用いた径方向の圧縮試験器が開発された(図6). これはタオルの触感と糸の圧縮特性の関係解析応用さ れた[35]。(3)純曲げ試験では単繊維の曲げ剛性の測定 は困難であった。遠心力を利用した単繊維あるいは糸 のための新たな曲げ剛性試験器が開発された(図7) [33].(4)小さな張力下での初期のせん断特性値を計測 するため、小さな張力下で均一なせん断変形を織物に 与えるトレリスせん断試験機を開発した[34]. 今後, これらの測定機で測定された物性を用いることにより, 視覚提示のためのシミュレーションや触感予測の精度 が向上するものと考えられる.

11. おわりに

繊維製品を例に感性製品の物理計測と心理評価,両 者の関係のモデル化について紹介した.衣服を購入す る際に,我々は,見て,触って,着てみて評価する.

図6 繊維と糸の直径方向圧縮試験機

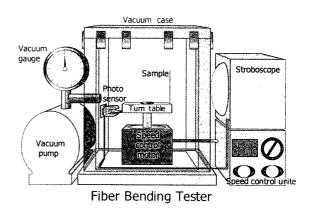


図7 単繊維曲げ試験機

また,生地は見て,触って評価するし,繊維や糸は素 材の特徴の知識から評価される.心理評価や物理特性 の測定,画像特徴の抽出はデータの圧縮技術であり, シミュレーションは展開技術である.衣服のシミュレ ーションは,物理的厳密性の段階へ進歩しつつあり, 物理測定理論と技術の開発がそれを後押しするだろう. しかし,触感や着心地のシミュレーションのためには 提示技術,生理心理計測技術など克服すべき課題は多 い.心理評価の予測と設計には知識と知覚,思考プロ セスの脳科学的解明とともにに,より大きな計算機パ ワーとデータ圧縮技術,画期的なアルゴリズムが必要 であろう.人体の形状や変形,感覚の神経生理学的解 明も必要である.新しい繊維製品や素材を開発・選択 するためには分子から最終製品までをモデル化して, 構造と特性の関係を予測しなければならない.

これらの科学と技術の集積により個人と社会の求め る性能と感性要求に合った新しい製品の設計が可能と なる. 繊維とテキスタイルの問題は難しいが、それら を解くことは可能であろう.

参考文献

- 1) Yoshio Shimizu et.al, International Journal of Clothing Science and Technology, 16, 32-42 (2004)
- Robert R Franck ed., "Silk, Mohair, Cashmere and Other Luxury Fibres", Woodhead Publishing Ltd (2001)
- S. Weinstein, Proceedings of 1st International Symposium on the Skin Senses, Springfield, 195 (1968)
- 4) Y. Li, "The Science of Clothing Comfort", *Textile* Progress, 31 (1/2), (2001)
- 5) F. T. Pierce, J. Textile Institute, 21, T377 (1930)
- 6)日本繊維機械学会布の風合い編集委員会編,布の風合い,日本繊維機械学会(1972)
- 7)川端季雄、風合い計量と規格化研究委員会、風合い評価の標準化と解析第2版、日本繊維機械学会、(1980)
- 8) Mika MORISHIMA, Akira MORIKAWA, Yoshio SHIMIZU, Masayuki TAKATERA, Hiromi GOCHO, Eiichiro JOJIMA, KANSEI Engineering International, .2(4), 27 (2001)
- 9) Toyonori NISHIMATSU, Hiromasa HAYAK-AWA, Yoshio SHIMIZU, Masayoshi KAMIJOH, Eiji TOBA, KANSEI Engineering International, 1 (1), 17 (1999)
- 10) 西松豊典,長野史智,前田邦峰,上條正義,鳥羽栄治,石澤広明,感性工学研究論文集,1(1),39 (2001)
- 11) 篠原昭, 衣服の幾何学, 光生館 (1997)
- 12) 本宮達也,ハイテク繊維の世界,日刊工業新聞社 (1999)
- 13) 原田隆司,着心地と科学,裳華房(1997)
- 14)田村照子,酒井豊子,着ごこちの追及,放送大学教育 振興会(1999)
- 15) 高寺政行, 雲田直子, 鮑力民他, 繊維学会誌, 55(7),

306-314 (1999)

- 16) 鮑力民, 高寺政行, 篠原昭, 繊維学会誌, 53(1), 20-. 26 (1997)
- 17) Yosuke Horiba, Masayoshi Kamijo, Satoshi Hosoya, Masayuki Takatera, Tsugutake Sadoyama, Yoshio Shimizu, KANSEI Engineering International, 1(2), 9 (2000)
- 18) Yosuke HORIBA, Masayoshi KAMIJO, Tsugutake SADOYAMA, Yoshio SHIMIZU, Kazuya SASAKI and Hiroko SHIMIZU, KANSEI Engineering International, 2, (1), 1 (2001)
- 19) Fumio TERAUCHI, Mitsunori KUBO and Hiroyuki AOKI, Tsutomu SUZUKI, KANSEI Engineering International, 1(1), 33 (1999)
- 20) Nazlina SHAARI, Fumio TERAUCHI, Mitsunori KUBO and Hiroyuki AOKI,, KANSEI Engineering International, 3(2), 23 (2002)
- 21) Donald H. House and David E. Breen, "Cloth Modeling and Animation", A K Peters, Ltd. (2000)
- 22) Ken'ichi OHTA, Toshihiko TANAKA, Fujio MIY-AWAKI, KANSEI Engineering International, 1(1), 24 (1999)
- 23) Ken'ichi OHTA, Hidefumi NAKAGAWA, Fujio MIYAWAKI, KANSEI Engineering International, 1 (1), 29 (1999)
- 24) 鮑力民,高寺政行,澤田宏一,桜井正幸,中澤賢,篠 原昭,繊維学会誌,58(3),77-83 (2002)
- 25) X.Dai, T. Furukawa, S. Mitsui, M. Takatera, Y. Shimizu, *International Journal of Clothing Science and Technology*, **13**(1), 23-37 (2001)
- 26) 張明傑, 高寺政行, 古川貴雄, 上條正義, 清水義雄, 周愛英,繊維製品消費科学会誌, 41, (4), 423 (2000)
- 27) 孫珠熙, 米田守弘, 中川早苗, 感性工学研究論文集, 1(1), 7 (2001)
- 28) 孫珠熙, 米田守弘, 中川早苗, 感性工学研究論文集, 1(1), 17 (2001)
- 29) P. Volino, N. Magnenat-Thalmann, "Virtual Clothing", Springer (2000)
- 30) Masayuki Takatera, Takao Furukawa, Yoshio Shimizu, Masayoshi Kamijo, Satoshi Hosoya, Takeshi Morisaki, Atsushi Ohtake, *KANSEI Engineering International*, 1(2), 1 (2000)
- 31) 西松豊典, 上條正義, 松本陽一, 鳥羽栄治他, 繊維機 械学会誌, 56, T122 (2003)
- 32) Hye-Jun PART, Eri KOYAMA, Takao FURUK-AWA, Masayuki TAKATERA, Yoshio SHIMIZU and Hyungsup KIM, KANSEI Engineering International, 3(1), 11 (2001)
- 33) 高寺政行, 矢崎美彦, 中野智也, 細谷聡, 金井博幸, 清水義雄, 繊維学会誌, 59(12), 485-491 (2003)
- 34) Masayuki Takatera, Yoshihiko Yazaki, Jiaming Zheng, Shigeru Inui, Yoshio Shimizu, Proceedings of Japan-China-Korea Joint Symposium on Textile, Sen-i Gakkai, 48 (2004)
- 35)国広聡子,平山誠,高寺政行,清水義雄,繊維学会予 稿集2003,58(1),259(2003)
- 36) 清水義雄,高寺政行,阿部祐佑,バヤルマー,日本機 械学会ロボティクス・メカトロニクス講演会'01講演論 文集,1P1-C2 (2001)

414

感性製品のための物理計測と心理評価

(2004年8月10日 受付)

[問い合わせ先] 〒386-8567 長野県上田市常田3-15-1 信州大学繊維学部 感性工学科

歴

高寺 政行 TEL:0268-21-5536 FAX:0268-21-5511 E-mail:takatera@ke.shinshu-u.ac.jp

(法) (1981) 高寺 政行 1981) 信州大学繊維学部助手,1995年 同講師, 1997年 同助教授、2004年 同教授となり 現在にいたる。博士(工学),繊維学会論 文賞(2000),日本繊維機械学会賞技術賞 (2001),日本感性工学会賞技術賞(2003) 受賞、専門分野 感性工学,繊維工学, 衣服工学