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Wave propagation in single- and double-walled carbon nanotubes filled with fluids

ABSTRACT

Wave propagation approach of single- and double-walled carbon nanotubes conveying 

fluid is presented through the use of the continuum mechanics. A simplified Flügge shell 

equations are proposed as the governing equations of motion for carbon nanotubes studied 

here. For the double-walled nanotubes, the deflection of nested tubes is considered to be 

coupled through the van der Waals interaction between two adjacent nanotubes. Effects of 

filled fluid property and nanotube diameter on the wave propagation are investigated and 

analyzed based on the proposed elastic continuum model. The theoretical investigation may 

give a useful reference for potential design and application of nanoelectronics and 

nanodevices.  
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INTRODUCTION

Carbon nanotubes (CNTs) have been shown to possess remarkable mechanical [1-3] and 

physical properties leading to many potential applications [4-8]. In particular, CNTs hold 

substantial promise as superfibers for composite materials [2,4,5]. Hence, understanding the

mechanical and physical properties of CNTs is essential for their applications. The study of 

vibration and wave propagation in CNTs is a major topic of current interest, which is used to 

understand the dynamic behaviors of CNTs. Many experimental [1-3,9] and theoretical 

methods [10-15] have been presented for measuring and predicting the stiffness and strength

properties of CNTs. Some studies on the vibration [16-18] and the wave propagation [19-21] 

have been done. Since CNTs are extremely small, the experiments to measure the properties 

of individual CNT are quite difficult . Therefore, the computational simulations have been 

regarded as a powerful tool to study properties of CNTs. There are two major categories for 

simulating the mechanical properties of CNTs: molecular dynamics (MD) simulation and 

continuum mechanics. Although the MD method has been successfully used for simulating

the mechanical and physical properties of structures at atomic-scale level, this method is 

time-consuming and remains formidable especially for larger-scale systems. Recently, solid 

mechanics with elastic continuum model have been regarded as an effective method and 

widely used for studing the mechanical and physical properties of CNTs [16,18-24]. 

Yoon et al. have studied the transverse vibration and wave propagation in multi-walled
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carbon nanotubes (MWNTs) using Bernouli-Euler beam model [16,19,20]. The analytical 

solutions were limited to the one-dimensional model since CNTs are modeled as beams. 

Recently, the vibration of MWNTs and wave propagation of double walled carbon nanotubes 

(DWNTs) have been studied based on Flügge shell equation [18,21]. The results showed that 

the CNTs have sound wave frequencies over terahertz because of their nanoscale, which 

opens a new topic on wave characteristics. Wang and Varadan [24] have presented the elastic 

wave solution obtained from Euler-Bernoulli beam and Timoshenko beam models. They 

reported that the comparison between the two models is inappropriate on the terahertz

frequency range. This suggested that the Timoshenko beam model should be employed in 

analyzing the wave propagation for the high frequency range.

Because of the superior mechanical behaviors and hollow geometry, CNTs hold 

substantial promise as nanopipes for conveying fluid or gas. The study of CNTs filled with 

fuilds is a challenging topic of current interest [25-27]. Therefore, it is very significant to 

study the vibration and the wave propagation of CNTs conveying fluid. The present work

presents a theoretical approach to investigate the wave propagation of single- and 

double-walled CNTs conveying fluids. The constitutive behavior of CNTs is described by 

Flügge shell equation, and the motion equation of fluids is given by Morse and Ingard [28]. 

Using the proposed method, the influence of fluid properties on the wave propagation in

CNTs conveying fluid is investigated and analyzed.
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�. THEORETICAL APPROACH

A. Fundamental equations

Approximate Flügge shell equations are proposed as the governing equations of vibration 

for CNTs. Figure 1 shows a cylindrical coordinate system of the CNT shell model. The x

coordinate is taken in the axial direction of the shell, where the θ and z coordinates are in the 

circumferential and radial directions, respectively. The displacements of the nanotube are 

defined by u, v and w in the direction of x, θ and z-axes, respectively. The CNT has a 

thickness of h, radius of R and length of L.

The equations of motion for nanotubes can be obtained based [21] on Love’s first 

approximation shell theory [28]
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where ( )6,,1 Λ=jL j  are the differential operators with respect to x and θ given by
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where ( ) EhK 21 ν−= , 22 12Rh=α . E  and ν  are the elastic modulus and Poisson’s 

ratio of a graphe ne sheet folded into CNTs.

Eliminating u and v from Eq. (1), we have

0)( =+ pKLwL BA ,                                       (3) 

where
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The motion equation of fluid in the cylindrical shell can be given by [29] 
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where p  is the acoustic pressure and fc  is the sound speed of the fluid.

B. Wave propagation approach

In the coordinate system as shown in Fig. 1, the displacement of nanotubes in the z 

direction can be expressed in the form of wave propagation, associated with the axial wave 

number mk  and the angular wave number n. DWNTs are assumed to be two individual 

coaxial tubes coupled together through van der Waals (vdW) interaction between the inner 

and outer nanotubes. The general solution form of the wave propagation can be given by 

( )[ ]tnxkiAw mjj ωθ −+= exp ,                              (6) 

where ( )2,1=jAj  are the amplitude of vibration in the inner and outer nanotubes, and ω is 
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the circular frequency.

The solution form of the acoustic pressure field of the cylindrical shell filled with fluid, 

which satisfies Eq. (5), can be expressed as  

( ) ( )[ ]tnxkirkZPp mrnf ωθ −+= exp0 (7) 

where nZ  denotes a Bessel function nJ of order n when 02222 >−= mfr kck ω , and the 

modified Bessel function nI  when 02222 >−= fmr ckk ω . rk and mk present the radial 

and axial wave numbers, respectively.

Since the fluid remains in contact with the tube wall, the fluid displacement is equal to the 

radial displacement of the inner tube wall. This coupling condition is given by Fuller and 

Fahy [30] from the momentum equation. Thus, the fluid pressure amplitude to be written in 

terms of the radial displacement amplitude as
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where fρ  is the density of the fluid. 1A  is the amplitude of vibration in the inner nanotube.

Substituting Eq. (8) into Eq. (7), and using Eq. (6), we obtain
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DWNTs are regarded as nested SWNTs whose pressure between two adjacent nanotubes 

results from the vdW interaction. The vdW interaction energy potential, as a function of the 

interlayer spacing between the inner and outer nanotubes, can be estimated by the 



7

Lennard-Jones potential. Since the interlayer spacing of DWNTs is very close to equilibrium 

spacing, the initial van vdW force remains zero for each of the tubes provided they deform 

coaxially. In case of small-amplitude vibration of CNTs, the interaction pressure between two 

adjacent nanotubes is assumed to be linear relative to the difference of their deflections in the 

radial direction. Therefore, the coupled equations of the pressure ( )p  in the Eq. (4) caused 

by the vdW interaction in DWNTs can be given by

( )
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wwcp
wwcpp f

−=

−+=
             (10)

where 1w  and 2w  are the deflections in the inner and outer nanotubes, respectively. 

In this simulation, the vdW interaction coefficient ijc  can be estimated as [31]
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where σ  and ε  are the depth of the Lennard-Jones potential and vdW radius, respectively.

Substituting Eq. (10) into Eq. (3), the coupled equations of the wave speed in DWNTs 

are written as
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By substituting Eqs. (7) and (9) into Eq. (14), the phase velocity in DWNTs can be 

determined by a nontrivial solution in Eq. (14) as
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where j
AL and ( )2,1=jLj

B  are the differential operators, which are given by Eqs. (2) and 

(4) for inner and outer tubes, respectively.

   The amplitude ratio of phase velocity is given by
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For SWNTs, the solution of the wave velocity is given by a polynomial function of

( ) 0,, =nkLA ω . The frequency dependence of the phase velocity ( )pc  can be obtained in 

terms of kc p ω= .

�. NUMERICAL RESULTS AND DISCUSSION 

Influences of fluid properties on the natural frequency of CNTs were investigated using

the proposed method. In this simulation, the thickness of individual SWNT was assumed to be 

that of a graphite sheet with 0.34 nm. CNTs had an elastic modulus of 1 TPa, Poisson’s ratio 

of 0.27, and the density of 2.0 g/cm3. The vdW parameters used in the Lennard-Jones

potential are taken as meV967.2=ε  and nm34.0=σ  reported recently by Saito et al. [32]
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For following solution of the natural frequency in CNTs, we will discuss the low-frequency

mode of 1== nm .

Figures 2 shows the dispersion curves of wave speed with different frequencies for

SWNTs filled with the fluids of different properties. The SWNTs have a diameter of 3.0 nm. 

The property of water fluid has the density of 1000 kg/m3 and the free wave speed of 1530 

m/s. It is found that wave speeds rapidly increases with increasing frequency and reaches a 

peak. The peaks of the wave speed and its frequency are affected by the properties of filled 

fluids, and the peak values are approximately 2 km/s with a frequency of about 1.5 THz. After 

this peak, the analytical wave speed decreases with increasing frequency and then remains 

fairly to constants. It is also noticed that there exist several terahertz critical frequencies in

CNTs. The critical frequency is commonly called “cut-off frequency,” given by when the 

frequency the critical frequency. In physics, the cut-off frequency of an electromagnetic wave 

is the lowest frequency for which a mode will propagate in it. The critical frequencies are 

largely affected by the wave speed of filled fluids. For the CNT filled with water fluid shown 

in Fig. 2(b), the lowest critical frequency is about 5.5 Hz. The second and the third critical 

frequencies are 8.7 THz and 12.0 THz, respectively. Figure 3 shows the dispersion curves of 

wave speed for a CNT with 2.0 nm diameter and filled with water fluid. The lowest and the 

second critical frequencies are about 8.2 Hz and 13.4 Hz, respectively. Compared with the 

curve of the wave velocity shown in Fig. 2(b), the critical frequencies in CNTs will increase 
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with a decrease in the diameter of the CNTs.  

Figure 4 shows dispersion curves of wave propagation for DWNTs filled with water. The 

result is quite different from those obtained from the SWNT. As the frequency is increased, 

the wave speed of DWNTs rises rapidly and has the lowest critical frequency of 1.2 THz. The 

other several critical frequencies that are  similar to those in the SWNTs still exist in the 

DWNTs. The amplitude ratio of wave speeds in the inner to outer layers is shown in Fig. 5 as 

a function of the vibration frequency. It is seen that the amplitude ratio ( )21 AA is close to 1 

when the frequency is less than 0.7 THz. This indicates that the vibration mode is the coaxial 

for lower frequency and that the deflection of the inner to outer tubes has the same amplitude. 

When the wave speed is close to the critical frequency of 1.2 THz, the amplitude ratio of the 

inner to outer tube deflections rapidly increases. For the vibration frequency over 2.5 THz, the

inner tube deflection within DWNTs is larger than the outer tube deflection. 

�. CONCLUSIONS

A theoretical approach based on a continuum elastic shell model is proposed to study the 

sound wave propagation in both single- and double-walled CNTs filled with fluids. Using the 

proposed theoretical approach, the effects of nanotube diameter and fluid properties on the 

wave propagation are investigated. It is found that there exist several critical frequencies in 

CNTs. The wave propagation in fluid-filled CNTs is affected largely by the free wave speed 
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of the fluids. When a vibration frequency is lower than the lowest critical frequency (less than 

0.5 THz), the vibration mode is the coaxial and the wave deflection of the inner to outer tubes 

has the same amplitude. 
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Figure captions

Figure 1 Geometry of nanotube and coordinate system employed in the analysis 

Figure 2 Dispersion curves of wave propagation in SWNTs with a diameter of 3.0 nm. The 

properties of fluids are (a) density 3500 mkgf =ρ , sound speed smc f 1530= ;  

(b) density 31000 mkgf =ρ , sound speed smc f 1530= ;

(c) density 31000 mkgf =ρ , sound speed smc f 1800=

Figure 3 Dispersion curves of wave propagation in SWNTs with a diameter of 2.0 nm. The 

properties of fluid: density 31000 mkgf =ρ , sound speed smc f 1530=

Figure 4 Dispersion curves of wave propagation in DWNTs with the inner and outer 

diameters of 2.2 nm and 3.0, respectively. The properties of fluid: density 

31000 mkgf =ρ , sound speed smc f 1530= .

Figure 5 Amplitude ratio of the inner to the outer tube deflections in DWNTs with the inner 

and outer diameters of 2.2 nm and 3.0, respectively. The properties of fluid: density 

31000 mkgf =ρ , sound speed smc f 1530= .
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Figure 1   (T. Natsuki)
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Figure 2   (T. Natsuki) 
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 Figure 3   (T. Natsuki) 
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Figure 4   (T. Natsuki)

� � � � �� ��

�

�

�

�

W
av

e 
ve

lo
ci

ty
 (k

m
/s

)

Frequency (THz)



20

Figure 5   (T. Natsuki)
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